Most cited publications

My h-index is 47. The following are my forty-seven most cited publications (see Google Scholar for an up to date version of this list)


[J12] M. Dorigo, M. Birattari, and T. Stützle (2006). Ant colony optimization: Artificial ants as a computational intelligence technique. [PDF] IEEE Computational Intelligence Magazine, 1(4):28-39 [12698 citations]

[J33] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo (2013).   Swarm robotics: A review from the swarm engineering perspective.[PDF]   Swarm Intelligence, 7(1):1-41 [1038 citations]

[J55] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle (2016).   The irace package: Iterated racing for automatic algorithm configuration.[PDF]   Operations Research Perspectives, 3:43--58 [922 citations]

[P18] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp (2002). A racing algorithm for configuring metaheuristics. [PDF] In W.B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller, E. Burke, and N. Jonoska (Eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11-18. Morgan Kaufmann, San Francisco, CA, USA [635 citations] — Winner of the 2012 SIGEVO Impact Award

[J38] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. Di Caro, F. Ducatelle, E. Ferrante, A. Förster, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N. Mathews, M. Montes de Oca, R. O'Grady, C. Pinciroli, G. Pini, P. Rètornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard (2013).   Swarmanoid: A novel concept for the study of heterogeneous robotic swarms.   IEEE Robotics & Automation Magazine. 20(4)60-71 [369 citations]

[C05] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle (2010).   F-race and iterated F-race: An overview.   In T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss (Eds.) Empirical Methods for the Analysis of Optimization Algorithms, pp. 311-336, Springer, Berlin, Germany [363 citations]

[B02] M. Birattari (2009). Tuning Metaheuristics: A machine learning perspective. Springer, Berlin, Germany [354 citations]

[J30] C. Pinciroli, V. Trianni, R. O'Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo (2012).   ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics.[PDF]   Swarm Intelligence, 6(4):271-295 [328 citations]

[J20] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo (2009).   Frankenstein's PSO: A composite particle swarm optimization algorithm. [PDF]   IEEE Transactions on Evolutionary Computation, 13(5):1120-1132 [323 citations]

[J05] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo (2004). Model-based search for combinatorial optimization: A critical survey. [PDF] Annals of Operations Research, 131: 373-395 [318 citations]

[J01] G. Bontempi, M. Birattari, and H. Bersini (1999). Lazy learning for local modeling and control design. [PDF] International Journal of Control, 72(7/8):643-658 [303 citations]

[C02] O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L.M. Gambardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle (2003). A comparison of the performance of different metaheuristics on the timetabling problem. [PDF] In E. Burke and P.D Causmaecker (Eds.) Practice and Theory of Automated Timetabling IV. 4th International Conference, PATAT 2002. LNCS 2740, pp. 329-351. Springer, Berlin, Germany [270 citations]

[P37] P. Balaprakash, M. Birattari, T. Stützle (2007).   Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. [PDF]   In T. Bartz-Beielstein, M. J. Blesa Aguilera, C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels (Eds.) Hybrid Metaheuristics, 4th International Workshop, HM 2007, LNCS 4771, pp. 108-122. Springer. Berlin, Germany [245 citations]

[J15] M. Dorigo and M. Birattari (2007).   Swarm Intelligence. [PDF]   Scholarpedia, 2(9):1462 [228 citations]

[T03] M. Birattari (2004).   The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. [PDF]   PhD Thesis, Université Libre de Bruxelles. [182 citations]

[J10] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria (2006). An effective hybrid algorithm for university course timetabling. [PDF] Journal of Scheduling, 9(5):403-432 [176 citations]

[J09] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-Doria, and T. Schiavinotto (2006). Hybrid metaheuristics for the vehicle routing problem with stochastic demands. [PDF] Journal of Mathematical Modelling and Algorithms, 5(1):91-110 [172 citations]

[P26] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo (2006). Parallel ant colony optimization for the traveling salesman problem. [PDF] In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.) Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, LNCS 4150 pp. 224-234. Springer, Berlin, Germany [156 citations]

[C09] T. Stützle, M. López-Ibañez, P. Pellegrini, M. Maur, M. Montes de Oca, M. Birattari, and M. Dorigo (2012).   Parameter adaptation in ant colony optimization.   In Y. Hamadi, E. Monfroy, and F. Saubion (Eds.) Autonomous Search, pp. 191-215. Springer, Berlin, Germany [144 citations]

[P08] M. Birattari, G. Bontempi, and H. Bersini (1999). Lazy learning meets the recursive least squares algorithm. [PDF] In M.S. Kearns, S.A. Solla, and D.A. Cohn (Eds.) NIPS'98: Advances in Neural Information Processing Systems 11. pp. 375-381. MIT Press, Cambridge, MA, USA [140 citations]

[J27] M. Montes de Oca, E. Ferrante, A. Scheidler, C. Pinciroli, M. Birattari, and M. Dorigo (2011).   Majority-rule opinion dynamics with differential latency: A mechanism for self-organized collective decision-making.[PDF]   Swarm Intelligence, 5(3/4):305-327 [111 citations]

[J14] M. Birattari, P. Pellegrini, and M. Dorigo (2007).   On the invariance of ant colony optimization. [PDF]   IEEE Transactions on Evolutionary Computation, 11(6):732-742 [111 citations]

[J41] M. Dorigo, M. Birattari, M. Brambilla (2014).   Swarm robotics.   Scholarpedia, 9(1):1463 [110 citations]

[J03] G. Bontempi, H. Bersini, and M. Birattari (2001). The local paradigm for modeling and control: From neuro-fuzzy to lazy learning. [PDF] Fuzzy Sets and Systems, 121(1):59-72 [108 citations]

[J44] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari (2014).   AutoMoDe: A novel approach to the automatic design of control software for robot swarms.[PDF]   Swarm Intelligence, 8(2):89-112 [100 citations]

[J39] A. Brutschy, G. Pini, C. Pinciroli, M. Birattari, and M. Dorigo (2014). <  Self-organized task allocation to sequentially interdependent tasks in swarm robotics.[PDF]   Autonomous Agents and Multi-Agent Systems, 28(1):101-125 [100 citations]

[J16] A. L. Christensen, R. O'Grady, M. Birattari, and M. Dorigo (2008).   Fault detection in autonomous robots based on fault injection and learning. [PDF]   Autonomous Robots, 24(1):49-67 [100 citations]

[P20] M. Birattari, G. Di Caro, and M. Dorigo (2002). Toward the formal foundation of ant programming. [PDF] In M. Dorigo, G. Di Caro, and M. Samples (Eds.) Ant Algorithms. Third International workshop, ANTS 2002. LNCS 2463, pp. 188-201, Springer, Berlin, Germany [96 citations]

[P22] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-Doria, and T. Schiavinotto (2004). Metaheuristics for the vehicle routing problem with stochastic demands. [PDF] In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. Rowe, P. Tino, A. Kabán, and H.-P. Schwefel (Eds.) Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference. LNCS 3242, pp. 450-460. Springer, Berlin, Germany [88 citations]

[R018] M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp (2001).   Classification of Metaheuristics and Design of Experiments for the Analysis of Components.   Technical Report AIDA-01-05.   Intellektik, Technische Universität Darmstadt, Darmstadt, Germany [80 citations]

[J22] C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, and M. Birattari (2010).   An analysis of communication policies for homogeneous multi-colony ACO algorithms. [PDF]   Information Sciences, 180(12):2390-2404 [75 citations]

[C06] M. Dorigo and M. Birattari (2010).   Ant Colony Optimization. [PDF]   In C. Sammut and G. Webb Encyclopedia of Machine Learning, pp. 37-40, Springer, Berlin, Germany [73 citations]

[J26] G. Pini, A. Brutschy, M. Frison, A. Roli, M. Dorigo, and M. Birattari (2011).   Task partitioning in swarms of robots: An adaptive method for strategy selection.[PDF]   Swarm Intelligence, 5(3/4):283-304 [69 citations]

[J21] P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo (2009).   Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. [PDF]   Swarm Intelligence, 3(3):223-242 [61 citations]

[P09] G. Bontempi, M. Birattari, and H. Bersini (1999). Local learning for iterated time-series prediction. [PDF] In I. Bradko and S. Dzeroski (Eds.) ICML'99: International Conference on Machine Learning, pp. 32-38. Morgan Kaufmann, San Francisco, CA, USA [61 citations]

[P60] M. Brambilla; C. Pinciroli; M. Birattari; and M. Dorigo (2012).   Property-driven design for swarm robotics. [PDF]   In V. Conitzer, M. Winikoff, L. Padgham, and W. van der Hoek (Eds.) Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2012, pp.139-146. IFAAMAS [60 citations]

[J18] M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo (2008).   Estimation-based local search for stochastic combinatorial optimization using delta evaluations: A case study on the probabilistic traveling salesman problem. [PDF]   INFORMS Journal on Computing, 20(4):644-658 [59 citations]

[J13] M. Birattari and M. Dorigo (2007).   How to assess and report the performance of a stochastic algorithm on a benchmark problem: Mean or best result on a number of runs? [PDF]   Optimization Letters, 1(3):309-311 [59 citations]

[P24] M. Birattari, P. Balaprakash, and M. Dorigo (2005).   ACO/F-Race: Ant colony optimization and racing techniques for combinatorial optimization under uncertainty. [PDF]   In K. F. Doerner, M. Gendreau, P. Greistorfer, W. J. Gutjahr, R. F. Hartl, and M. Reimann (Eds.) MIC 2005: The 6th Metaheuristics International Conference, pp. 107-112 [59 citations]

[P56] A. Roli, M. Manfroni, C. Pinciroli, and M. Birattari (2011).   On the design of Boolean network robots. [PDF]   In C. Di Chio, A. Brabazon, G.A. Di Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, and A.S. Uyar (Eds.) Applications of Evolutionary Computation, EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, LNCS 6624/5, pp. 43-52. Springer. Berlin, Germany [58 citations]

[J29] Z. Yuan, M. Montes de Oca, M. Birattari, and T. Stützle (2012).   Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms.[PDF]   Swarm Intelligence, 6(1):49-75 [56 citations]

[P29] A. Campo, S. Nouyan, M. Birattari, R. Groß, and M. Dorigo (2006).   Negotiation of goal direction for cooperative transport. [PDF]   In M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli, and T. Stützle (Eds.) Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2006, LNCS 4150 pp. 191-202. Springer, Berlin, Germany [54 citations]

[P02] G. Bontempi, M. Birattari, and H. Bersini (1998).   Recursive lazy learning for modeling and control. [PDF]   In C. Nédellec and C. Rouveirol (Eds.) Machine Learning: ECML-98. 10th European Conference on Machine Learning. LNCS 1398, pp. 292-303. Springer, Berlin, Germany [54 citations]

[J46] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari (2014).   Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking.[PDF]   ACM Transactions on Autonomous and Adaptive Systems, 9(4):17/1-17/28 [53 citations]

[J06] D. Villacci, G. Bontempi, A. Vaccaro, and M. Birattari (2005).   The role of learning methods in the dynamic assessment of power components loading capability. [PDF]   IEEE Transactions on Industrial Electronics, 52(1):280-290 [51 citations]

[J52] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia, V. Trianni, and M. Birattari (2015).   AutoMoDe-Chocolate: automatic design of control software for robot swarms.[PDF]   Swarm Intelligence, 9(2/3):125-152 [50 citations]

[J54] G. Francesca and M. Birattari (2016).   Automatic design of robot swarms: achievements and challenges.   Frontiers in Robotics and AI, 3(29):1-9 [48 citations]

Last update: Aug 15, 2020