
Swarm Intell
DOI 10.1007/s11721-015-0107-9

AutoMoDe-Chocolate: automatic design of control
software for robot swarms

Gianpiero Francesca1 · Manuele Brambilla1 · Arne Brutschy1 ·
Lorenzo Garattoni1 · Roman Miletitch1 · Gaëtan Podevijn1 ·
Andreagiovanni Reina1 · Touraj Soleymani1,2 · Mattia Salvaro1,3 ·
Carlo Pinciroli1,4 · Franco Mascia1 · Vito Trianni5 · Mauro Birattari1

Received: 10 November 2014 / Accepted: 12 May 2015
© Springer Science+Business Media New York 2015

Abstract We present two empirical studies on the design of control software for robot
swarms. In StudyA, Vanilla and EvoStick, two previously published automatic design
methods, are compared with human designers. The comparison is performed on five swarm
robotics tasks that are different from those on which Vanilla and EvoStick have been
previously tested. The results show that, under the experimental conditions considered, Va-
nilla performs better than EvoStick, but it is not able to outperform human designers.
The results indicate that Vanilla’s weak element is the optimization algorithm employed

The main contributors to this research are G. Francesca and M. Birattari. AutoMoDe and Vanilla were
conceived and developed by G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari.
Chocolate was conceived by G. Francesca and M. Birattari. F. Mascia contributed to the implementation.
L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, and T. Soleymani acted as human experts: They defined
the tasks on which the experimental analysis is performed and they developed control software via
C-Human and U-Human. M. Salvaro developed and operated the software we used to track the robots and
to compute the value of the objective functions. C. Pinciroli contributed his experience with the ARGoS
simulator. The analysis of the results has been performed by G. Francesca, F. Mascia, and M. Birattari. Most
of the manuscript has been drafted by G. Francesca and M. Birattari. M. Brambilla drafted the state of the art
on manual design methods and V. Trianni the one on automatic design methods. L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, and T. Soleymani drafted the paragraphs that describe the tasks. All authors read and
commented the manuscript. The final editing has been performed by M. Birattari and G. Francesca, with
notable contributions from C. Pinciroli and A. Brutschy. The research has been conceived and directed by
M. Birattari.

B Gianpiero Francesca
gianpiero.francesca@ulb.ac.be

B Mauro Birattari
mbiro@ulb.ac.be

1 IRIDIA, Université libre de Bruxelles, Brussels, Belgium

2 Present Address: ITR, Technische Universität München, Munich, Germany

3 Alma Mater Studiorum – Università di Bologna, Bologna, Italy

4 Present Address: MIST, École Polytechnique de Montréal, Montreal, Canada

5 ISTC-CNR, Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-015-0107-9&domain=pdf


Swarm Intell

to search the space of candidate designs. To improve over Vanilla and with the final goal
of obtaining an automatic design method that performs better than human designers, we
introduce Chocolate, which differs from Vanilla only in the fact that it adopts a more
powerful optimization algorithm. In StudyB,weperforman assessment of Chocolate. The
results show that, under the experimental conditions considered, Chocolate outperforms
both Vanilla and the human designers. Chocolate is the first automatic design method
for robot swarms that, at least under specific experimental conditions, is shown to outperform
a human designer.

Keywords Swarm robotics · Automatic design · AutoMoDe

1 Introduction

In this paper, we present two empirical studies on the design of control software for robot
swarms inwhichwe compare automatic andmanual designmethods.Moreover, we introduce
AutoMoDe-Chocolate (hereafter Chocolate), the first automatic design method for
robot swarms that, at least under specific experimental conditions, has outperformed a human
designer.

Designing control software for robot swarms is challenging due to the complex relation
existing between the individual behavior of each robot and the resulting swarm-level proper-
ties: Requirements are naturally expressed at the collective level by stating the characteristics
of the desired collective behavior that the swarm should exhibit. Nonetheless, the designer
must eventually define what the individual robots should do, so that the desired collective
behavior is achieved (Dorigo et al. 2014).

Presently, no general approach exists to derive the individual behavior of the robots from
a desired collective behavior—see Sect. 2 for some promising preliminary steps in this direc-
tion. Typically, control software for robot swarms is designed manually by trial and error:
The designer implements, tests, and modifies the behavior of the individual robots until the
desired collective behavior is obtained. Manual design by trial and error completely relies
on the intuition and skill of the designer.

Automatic design is an appealing alternative to themanual design process described above.
In an automaticmethod, the design problem is cast into an optimization problem: The solution
space comprises instances of control software that conform to a predefined parametric archi-
tecture. An optimization algorithm is employed to search the solution space, which amounts
to tuning the free parameters of the architecture. Several studies have shown that effective
control software for robot swarms can be produced via an optimization process—see Sect. 2.
However, these studies owe their success to task-specific expedients, while the problem of
creating a general-purpose design method remains open (Trianni and Nolfi 2011).

The focus of our research is on developing a general-purpose, automatic design method
capable of producing control software for robot swarms. By “general-purpose” method we
mean a method that proves to be effective for a sufficiently large class of tasks, without
requiring task-specific modifications.

In our research,we consider the simplest life-cyclemodel for a robot swarm: specification–
development–deployment. In particular, we consider the case in which the three phases can
be instantiated as follows.

– Specification: The task to be performedby the swarm is defined and a performancemeasure
is specified.

123



Swarm Intell

– Development: The control software of the robots is designed and implemented with the
support of computer-based simulations.

– Deployment: The control software is uploaded onto the robots and the swarm is deployed
to perform the assigned task.

More complex life cycles can be conceived. Nonetheless, as the engineering of robot swarms
is at its dawn, we think that focusing on a basic life cycle is more appropriate and avoids
unnecessary complications. Stated in the termsof the specification–development–deployment
life cycle, the goal of our research is to define amethod that is able to perform the development
step in an automatic way. Once the requirements are given in the form of an objective function
to maximize or minimize, the method must be able to produce the desired control software
without any human intervention. To define an effective design method, a critical issue that
one has to address concerns the transition between development and deployment. In this
transition, the control software is required to overcome the so-called reality gap (Jakobi
et al. 1995)—the unavoidable difference between the models used in the computer-based
simulations of the development step and the real world to be faced in the deployment step.

In Francesca et al. (2014c), we introduced AutoMoDe, as a first step in the definition
of general-purpose automatic design methods. AutoMoDe is an approach in which con-
trol software is automatically designed in the form of a probabilistic finite state machine,
by combining and fine-tuning preexisting parametric modules. Moreover, we defined
AutoMoDe-Vanilla (hereafter Vanilla), a first method that complies with the Auto-
MoDe approach. More precisely, Vanilla is a specialization of AutoMoDe for a version of
the e-puck robot (Mondada et al. 2009).WecomparedVanillawithEvoStick (Francesca
et al. 2014c), a design method that uses an evolutionary algorithm to optimize a neural net-
work. The comparison was based on two classic swarm robotics tasks: aggregation and
foraging. The results show that on both tasks Vanilla outperforms EvoStick.

In this paper, our aim is to (i) perform an objective comparison of some automatic and
manual design methods and (ii) present the first automatic design method that is shown to
outperform human designers, at least under specific experimental conditions.

We compare Vanilla, EvoStick, and two manual design methods that we call
U-Human and C-Human. In U-Human, the human designer is unconstrained and imple-
ments the control software without any restriction on the structure of the design. U-Human
closely mimics the way in which most control software for robot swarms is currently pro-
duced (Brambilla et al. 2013). In C-Human, the human designer is constrained to implement
control software by combining the same parametric modules on which Vanilla operates.
A detailed description of the four methods under analysis is given in Sect. 3. We perform
the study on five tasks defined by researchers that, at the moment of defining the tasks,
were neither aware of the functioning of Vanilla and EvoStick, nor informed on which
design methods were included in the study. This ensures that the definition of the tasks is
neutral and that no a priori advantage is granted to any method. The versions of Vanilla
and EvoStick that we adopt are exactly the same that were described in Francesca et al.
(2014c). In other words, Vanilla and EvoStick were developed before the five tasks
were defined and did not undergo any modification to adapt them to these five tasks. This is
consistent with our quest for a true general-purpose automatic design method.

In the following, we refer to this study as StudyA. StudyA answers two questions: (i)
Whether Vanilla performs better than EvoStick also on the new tasks, and (ii) whether
Vanilla performs better than the manual design methods U-Human and C-Human.
StudyA is reported in Sect. 4. The results show that also on the five new tasks, Vanilla
outperforms EvoStick. Moreover, Vanilla outperforms U-Human. However, Vanil-

123



Swarm Intell

la performs worse than C-Human. As Vanilla and C-Human operate on the same set
of modules, the difference in performance is to be ascribed to the mechanism adopted by
Vanilla to combine and fine-tune the modules: the optimization algorithm.

In the light of this conclusion, in Sect. 5 we introduce Chocolate, an improved version
of Vanilla that is based on a more effective optimization algorithm. To assess Choco-
late, we perform a second empirical study: StudyB. The goal of this study is to confirm
the following working hypotheses: (i) by adopting a more advanced optimization algorithm,
Chocolate improves over Vanilla; and, most importantly, (ii) the improvement is such
that, under the experimental conditions considered, Chocolate outperforms C-Human.
StudyB is reported in Sect. 6. The results confirm both working hypotheses.

The research presented in this paper advances the state of the art in the automatic design
of robot swarms in two main respects: (i) We introduce Chocolate, the first automatic
design method for robot swarms that is shown to outperform a human designer, albeit under
specific experimental conditions. (ii)Wepresent the first comparison of automatic andmanual
methods for the design of control software for robot swarms. This is the first comparison
performed on multiple tasks without any task-specific modification of the methods under
analysis. The experimental protocol we adopt is a contribution per se and can easily be
extended/adapted to any study that aims to compare automatic and manual design methods.
The empirical studies presented in the paper are unprecedented in the domain of the automatic
design of control software for robot swarms—they comprise 350 runs with a swarm of 20
robots; a total of five methods are tested on five tasks. This paper is an extended version of
Francesca et al. (2014b), which was presented at ANTS 2014. The results of StudyA were
already contained in Francesca et al. (2014b), while the ones of StudyB are presented here
for the first time.

2 Related work

In this section, we discuss studies that propose or support principled manual design methods
and automatic or semiautomatic design methods for swarm robotics. We focus on studies
that prove the viability of the proposed method through robot experiments—as we do in this
paper—although we mention also some promising ideas that have not been yet validated via
robot experiments.

Principled manual design methods. The core issue with the trial-and-error approach is that it
does not explicitly address the problem of deriving the individual behavior from the desired
collective one. Some works have proposed ideas to address this issue. Unfortunately, most
of them rely on strong assumptions and are not of general applicability as they have been
conceived for specific tasks. The following is a brief overview of some of the most promising
ideas. For a comprehensive review, we refer the reader to Brambilla et al. (2013).

Martinoli et al. (1999) used rate equations to model a collective clustering behavior and
to guide the implementation of the control software of the individual robots. The method
was assessed both in simulation and with up to ten Khepera robots (Mondada et al. 1993).
Lerman et al. (2001) and Martinoli et al. (2004) applied rate equations to a cooperative stick
pulling task. The control software produced was tested with up to six Kheperas. Lerman
and Galstyan (2002) used rate equations to model a foraging behavior under the effect of
interference.

Kazadi et al. (2007) used a method based on artificial vector fields to develop a pattern
formation behavior. The method is illustrated with simulations and appears to be limited

123



Swarm Intell

to spatially organizing behaviors. Hsieh et al. (2007) proposed an approach based on arti-
ficial potentials to obtain control software for coordinated motion along predefined orbital
trajectories. The authors provided convergence proofs and simulated experiments. Similarly,
Sartoretti et al. (2014) proposed an approach based on stochastic differential equations driven
by white Gaussian noise to tackle coordinated motion. In this case, the orbital trajectory is
derived via collective consensus among the robots of the swarm. The approach has been
validated with a swarm of eight e-puck robots.

Hamann andWörn (2008) usedLangevin equations tomodel the behavior of the individual
robots, and analytically derived a Fokker-Planck equation that models the collective behavior
of the swarm. Berman et al. (2011) adopted a similar approach based on a set of advection-
diffusion-reaction partial differential equations to design control software for task allocation.
None of the two approaches has been assessed in robot experiments yet.

Lopes et al. (2014) introduced an approach based on supervisory control theory. The
approach has been demonstrated by designing a segregation behavior. The assessment has
been performed with a swarm of 26 e-pucks and one of 42 kilobots (Rubenstein et al. 2014).
The main drawback of this approach is that it requires extensive domain knowledge.

Brambilla et al. (2014) introduced an approach based on prescriptive modeling and model
checking. The approach has been demonstrated by designing control software for two tasks:
aggregation and foraging. The assessment has been performed with swarms of up to 20
e-pucks. Also in this case, the approach requires extensive domain knowledge.

Automatic and semiautomatic design methods. The automatic design of control software for
robot swarms has been pursued mainly within the evolutionary robotics domain, in which the
standard methodologies employed in the single robot case have been extended toward multi-
robot systems (Trianni 2008). Following the main tradition of evolutionary robotics, several
studies demonstrated the possibility of designing control software in the form of a neural net-
work (Quinn et al. 2003; Baldassarre et al. 2007; Trianni and Nolfi 2009; Hauert et al. 2008;
Groß and Dorigo 2009; Izzo et al. 2014). Research studies often sway between providing an
engineering solution and modeling biological systems (Trianni 2014). Notwithstanding the
large number of robot swarms successfully designed via an evolutionary process, an engi-
neering methodology for the application of evolutionary robotics is still unavailable (Trianni
and Nolfi 2011). In the following, we discuss three techniques that have been proposed as
contributions to the definition of an engineering methodology in evolutionary robotics (for a
recent review, see Doncieux and Mouret 2014).

Multi-objectivization has been proposed as a general way to guide the evolutionary
search in rugged fitness landscapes and avoid bootstrap problems, both problems severely
affecting the evolution of control software for robot swarms (Trianni andLópez-Ibáñez 2014).
However, no test with robots has been performed to date, and multi-objective evolution could
be affected by the reality gap problem as much as single-objective evolution. The possibility
to deal with the reality gap by adding a specific objective—as demonstrated by Koos et al.
(2013)—makes the approach promising in the general case.

Novelty search has been proposed by Lehman and Stanley (2011) as a technique for
promoting diversity among possible behaviors and improving the exploration of the search
space. Gomes et al. (2013) extended the technique to swarm robotics and provided also a
solution that combines novelty search and fitness-based techniques through scalarization of
the respective scores. No quantitative results with robots have been provided to date.

Hierarchical decomposition has been proposed byDuarte et al. (2014b) as an approach to
scale in task complexity. The design problem is tackled by decomposing the control software
intomodules that are either evolved ormanually developed. The hierarchical decomposition is

123



Swarm Intell

performed manually by the designer and is task-specific. The approach has been successfully
extended to multi-robot systems (Duarte et al. 2014a), but no test with robots has been
performed yet. The transfer to reality of the control software in the single robot case (Duarte
et al. 2014b) makes the proposed technique promising also for robot swarms.
A number of studies on online adaptation in multi-robot systems are related to evolution-
ary robotics. In these studies, population-based optimization algorithms are implemented
in a decentralized way exploiting the robots as computational nodes. Watson et al. (2002)
introduced embodied evolution as a technique to distribute an evolutionary algorithm over
a group of robots. Since its introduction, several studies have tested the feasibility of the
approach, proposing algorithms for open-ended and task-dependent evolution (Bredeche
et al. 2012; Haasdijk et al. 2014). König and Mostaghim (2009) proposed the usage of finite
state machines within embodied evolution. However, the problems studied are rather simple
and no test with robots has been performed.

Further studies about online adaptation depart from the implementation of distributed
evolutionary algorithms. Winfield and Erbas (2011) exploited an imitation-based algorithm
to explore the idea of cultural evolution within robot swarms. Pugh and Martinoli (2009)
implemented a distributed version of particle swarmoptimization, andDiMario andMartinoli
(2014) extended the approach to a hybrid simulate-and-transfer setup.

Related to automatic design are those studies in swarm robotics in which the control
architecture is fixed and only a small set of parameters is tuned. Hecker et al. (2012) used
a genetic algorithm to optimize the parameters of a finite state machine for a cooperative
foraging task. Gauci et al. (2014a) used evolutionary strategies to optimize the six parameters
of the control software for an object clustering task. The same authors used exhaustive search
to tune the parameters of similar control software for self-organized aggregation (Gauci et al.
2014b). In these studies, the distinction between manual design with some parameter tuning
and a truly automatic design is somewhat blurred.
Empirical assessments of automatic design methods for robot swarms that have been con-
ducted with swarms of a reasonably large size are rare in the literature. To the best of our
knowledge, the only automatic design methods that have been empirically tested in experi-
ments involving swarms of at least ten robots are the ones presented by Gauci et al. (2014a, b)
and Francesca et al. (2014c). Those presented by Francesca et al. (2014c), that is, Vanilla
and EvoStick, are the only automatic design methods that have been tested on more than
one task without undergoing any task-specific modification. No automatic design method for
robot swarms has been so far compared against a human designer in a controlled experiment.

3 Four design methods for a swarm of e-pucks

In this section, we describe four methods that design control software for a swarm of e-puck
robots: Vanilla, EvoStick, C-Human, and U-Human. To be precise, these methods
operate with a subset of the capabilities of the e-puck platform that are formally described
by the reference model introduced by Francesca et al. (2014c). In this paper, we call this
reference model RM1.

The e-puckmaneuvers by actuating its two wheels, which constitute a differential steering
system (Mondada et al. 2009). The version of the e-puck adopted in our research is shown in
Fig. 1. This version of the e-puck is equipped with eight infrared transceivers, three ground
sensors, and a range-and-bearing board. The infrared transceivers are placed around the body
of the e-puck and are used as light and proximity sensors. The ground sensors are placed
under the front of the e-puck and measure the reflectance of the floor, which allows the

123



Swarm Intell

Fig. 1 Front and side view of an e-puck robot and a tag used to localize the robot via a ceiling-mounted
camera

Table 1 Reference model RM1

Input variable Values Description

proxi∈{1,2,...,8} [0, 1] Reading of proximity sensor i

lighti∈{1,2,...,8} [0, 1] Reading of light sensor i

gnd j∈{1,2,3} {black, gray,white} Reading of ground sensor j

n {0, . . . , 20} Number of neighboring e-pucks

rm∈{1,2,...,n} [0, 0.70]m Distance of neighbor m
� bm∈{1,2,...,n} [0, 2π ] rad Angle of neighbor m

Output variable Values Description

vk∈{l,r} [−0.16, 0.16]m/s Target linear wheel velocity

Period of the control cycle: 100ms

e-puck to distinguish at least three levels of gray. The range-and-bearing board (Gutiérrez
et al. 2009) allows the e-puck to perceive the presence of other e-pucks in a 0.70m range.
For each perceived e-puck, the range-and-bearing board computes the distance (range) and
the relative angle (bearing).1

Referencemodel RM1 is a formalization of the capabilities of the e-puck that are described
above: RM1 abstracts sensors and actuators by defining the input and the output variables that
are made available to the control software at each control step. Sensors are defined as input
variables: The control software can only read them. Actuators are defined as output variables:
The control software can only write them. Input and output variables are updated with a
period of 100ms. The reference model RM1 is summarized in Table 1. According to RM1,
the reading of a proximity sensor i is stored in the variable proxi , which ranges between 0
and 1. When sensor i does not perceive any obstacle in a 0.03m range, proxi = 0; while
when sensor i perceives an obstacle closer than 0.01m, proxi = 1. Similarly, the reading of
a light sensor i is stored in the variable lighti , which ranges between 0, when no light source

1 The range-and-bearing board also allows the e-pucks to exchange messages. However, this functionality is
not included in RM1.

123



Swarm Intell

is perceived, and 1, when the sensor i saturates. The readings of the three ground sensors are
stored in the variables gnd1, gnd2, and gnd3. These variables can take three different values:
black, gray, and white. The e-puck uses the range-and-bearing board to perceive other e-
pucks in its neighborhood. The variable n stores the number of the neighboring e-pucks. For
each neighboring e-puck m ∈ {1, 2, . . . , n}, the variables rm and � bm indicate the range and
the bearing, respectively. The wheel actuators are operated by the control software through
the variables vl and vr , in which the control software writes the target linear velocity for the
left and right wheel, respectively. The linear wheel velocity ranges between −0.16m/s and
0.16m/s.
In the rest of this section, we describe the four design methods: Vanilla, EvoStick,
U-Human, and C-Human.

3.1 Vanilla

Vanilla produces robot control software by assembling preexisting modules into a proba-
bilistic finite state machine. The modules operate on the variables defined in RM1. Modules
might have parameters that regulate their internal functioning. The parameters, along with
the topology of the probabilistic finite state machine, are optimized in order to maximize a
task-dependent performance measure.

Vanilla assembles and tunes the parameters of two kinds of modules: behaviors and
transitions. A behavior is an activity that the robot can perform,while a transition is a criterion
to regulate the change of behavior in response to a particular condition or event experienced
by the robot. In practice, a behavior is a parametric procedure that sets the output variables
defined in RM1 on the basis of the value of (a subset of) the input variables. A transition is
a parametric procedure that returns either true or false on the basis of the value of (a subset
of) the input variables. In the parlance of probabilistic finite state machines, states and edges
are instances of behaviors and transitions, respectively. More precisely, a state (edge) is an
instance of a behavior (transition) in which the parameters, if any, are given a valid value.
Different states (edges) might be instances of the same behavior (transition), possibly with
different values of the parameters.

An execution of the control software is a series of control steps of 100 ms each. At any
given control step, the probabilistic finite state machine is in one and only one state, which
we refer to as the active state. The instance of the behavior associated with the active state is
executed, that is, output variables are set, on the basis of the input variables, as prescribed by
the behavior. Subsequently, if at least one outgoing transition returns true, the control software
changes state: One transition among the ones that returned true is randomly selected and the
state pointed by the selected transition becomes the active state for the following control step.
If no transition returns true, the active state remains unchanged. The execution of the control
software then moves on to the following control step.

In Vanilla, twelve modules are available for being assembled into a probabilistic finite
state machine: six behaviors and six transitions. The six behaviors are: exploration, stop, pho-
totaxis, anti-phototaxis, attraction, and repulsion. With the exception of stop, these behaviors
include an obstacle avoidance mechanism. The six transitions are: black-floor, gray-floor,
white-floor, neighbor-count, inverted-neighbor-count, and fixed-probability. We refer the
reader to Vanilla’s original paper for a detailed description of the modules (Francesca
et al. 2014c).

Thefinite statemachine and the parameters of themodules are obtained via an optimization
process. The space of feasible solutions searched byVanilla is the space of the probabilistic
finite state machines that comprise up to four states and up to four outgoing edges from each

123



Swarm Intell

state; the behaviors and the transitions to be associated with states and edges, respectively,
are sampled with replacement from the available modules.

The goal of the optimization is to maximize the expected value of a task-specific perfor-
mance measure; where the expectation is taken with respect to the initial conditions and the
contingencies of task execution. Each different initial condition starting from which the task
has to be performed is reproduced through a different test case on which solutions are evalu-
ated. The contingencies of task execution are accounted for through realistic computer-based
simulations that reproduce sensor and actuator noise. Specifically, a solution is evaluated on
a test case by means of ARGoS (Pinciroli et al. 2012), a physics-based simulator of swarm
robotics systems that includes a detailed model of the e-puck robot.

The optimization algorithm adopted byVanilla is F-Race (Birattari et al. 2002; Birattari
2009). In F-Race, a set of candidate solutions are sequentially evaluated over different test
cases in a process that is reminiscent of a race. The aim of the process is to select the best
candidate solution. The set of candidate solutions is sampled in a uniformly random way
from the space of feasible solutions. The F-Race algorithm comprises a series of steps. At
each step, a different test case is sampled and is used to evaluate the candidate solution. At
the end of each step, a Friedman test is performed on the basis of the results obtained by the
candidate solutions on the test cases sampled so far. All candidate solutions that appear to
perform significantly worse than at least another one are dropped from the set of candidate
solutions and are not evaluated further in the subsequent steps. The process stops either
when a single candidate remains or when a predefined budget of evaluations has been spent.
By discarding as early as possible the candidates that are statistically dominated by at least
another candidate, the evaluation process implemented by the F-Race algorithm allows for a
rational and efficient use of the available evaluation budget (Birattari 2009).

The implementation of F-Race that is adopted in Vanilla is the one provided by the
irace package (López-Ibáñez et al. 2011) for R (R Core Team 2014). Vanilla uses the
default parameters of F-Race provided by the irace package and samples the design space
using the built-in sampling procedure of irace.

3.2 EvoStick

EvoStick is an automatic design method that implements a typical evolutionary robotics
setup.We introduced EvoStick in Francesca et al. (2014c) with the goal of defining a yard-
stick against which we could compare Vanilla. By giving this automatic design method
a name, we wish to define a specific and fully characterized evolutionary robotics setup for
robots conforming to RM1, in which all parameters are given a precise and immutable value.

EvoStick generates control software in the form of a fully connected, feed-forward
neural network without hidden nodes. Inputs and outputs of the network are defined on the
basis of the variables given in RM1. The neural network has 24 inputs and 2 outputs. The
inputs are 8 proximity sensors, 8 light sensors, 3 ground sensors, and 5 values computed
from the messages received by the range-and-bearing board. The two outputs act on the two
wheels by setting the target speed velocity. The neural network is described by 50 parameters.
Each parameter is a real value in the range [−5, 5]. In EvoStick, the parameters of the
neural network are encoded in a real-valued vector and are optimized via an evolutionary
algorithm that involves mutation and elitism. At the beginning, a population of 100 neural
networks is randomly generated. Each neural network of the population is evaluated via 10
runs in simulation usingARGoS. To constitute the new population of neural networks, elitism
and mutation are applied. The elite—that is, the 20 best performing neural networks—are
included unmodified in the new population. The remaining 80 neural networks of the new

123



Swarm Intell

population are obtained by mutating the individuals of the elite. Mutations are performed by
adding a random value drawn from a normal distribution (with mean 0 and variance 1) to
each parameter of the neural network. The evolutionary algorithm stops when a predefined
number of iterations is reached. The final population is then evaluated again in order to select
the best neural network, that is, the one with the highest mean performance.

EvoStick is similar to some previously published methods in a number of respects. For
example, EvoStick shares the control architecture, the encoding of the parameters, and
the optimization algorithm (albeit with different parameters) with the evolutionary robotics
method described in Francesca et al. (2012). The two methods differ in the inputs that are fed
to the neural network. EvoStick is also similar to the methods proposed by Ampatzis et al.
(2009) and Tuci et al. (2011). The three methods share the encoding of the parameters and the
optimization algorithm (albeit with different parameters). Themain difference is the structure
of the control architecture: The methods proposed by Ampatzis et al. (2009) and Tuci et al.
(2011) adopt a neural network that includes hidden nodes. To the best of our knowledge,
EvoStick is the only evolutionary robotics method that has been tested on more than one
task without undergoing any task-specific modification (Francesca et al. 2014c).

3.3 U-Human

U-Human is a manual design method in which a human designer implements the control
software in the way (s)he deems appropriate, without any kind of restriction regarding the
design to produce. The designer realizes a trial-and-error process: The control software is
iteratively improved and tested until the desired behavior is obtained.Within this process, the
designer assesses the quality of the control software by computing the value of the objective
function and by observing the resulting behavior via the simulator’s visual interface. As in
the case of Vanilla and EvoStick, during the development of the control software,
the designer is allowed to perform tests in simulation using ARGoS, but is not allowed to
perform tests with the robots. In the implementation of the control software, the designer
is free to access all the resources (s)he deems appropriate including the internet and her/his
own previously developed code.

The control software is implemented as a C++ class that operates on the input and output
variables defined in RM1. These variables are manipulated by the control software via an
API. The designer is provided with a complete programming and simulation environment
based on ARGoS. Moreover, the designer is provided with the description of the task to be
solved, a control software skeleton to be used as a starting point, the task-specific objective
function to be optimized, and all the scripts that initialize ARGoS for the task at hand. The
control software skeleton is an empty C++ class that complies with the specification of a
valid control software for ARGoS. In other terms, the skeleton is a valid control software
that compiles and runs correctly but that leaves the robot motionless in its initial position.
The designer is required to fill in the skeleton with the appropriate logic for solving the given
task. To reduce the burden on the designer, the skeleton contains commented instructions
to access the variables of RM1 via the API. The task-specific objective function computes
the performance of the swarm within the simulation. It is implemented via loop functions,
which in ARGoS parlance are callback functions executed at each step of the simulation
(Pinciroli et al. 2012). The objective function is computed automatically by the simulation
environment in a way that is completely transparent to the designer. To ease the assessment
of the control software being implemented, a utility script is provided. The script compiles
the control software, starts ARGoS, generates the simulated arena, runs and visualizes the

123



Swarm Intell

simulation, and prints the value of the objective function. The designer is allowed to use
debugging tools including gdb2 and valgrind.3

3.4 C-Human

C-Human is a manual method in which the human designer is constrained to use Va-
nilla’s control architecture and modules. In other words, the human designer takes the
role of Vanilla’s optimization algorithm and searches the same design space searched
by Vanilla. As in Vanilla, the human is constrained to create finite state machines
comprised of at most four states, each with at most four outgoing transitions—see Sect. 3.1
for the details on the restrictions on the finite state machines produced by Vanilla. As in
U-Human, in C-Human the designer iteratively improves the control software in a trial-and-
error process that comprises implementation phases interleaved with testing via simulation.
The only difference between U-Human and C-Human is that in the case of C-Human,
the designer implements the control software by combining the modules of Vanilla and
setting their parameters, rather than directly writing C++ source code. To allow the designer
to implement the control software in this fashion, a user interface is provided. The user
interface allows the designer to specify the probabilistic finite state machine using a simple
finite language. The user interface also graphically visualizes the probabilistic finite state
machine specified by the designer. An example of a statement in this language is given
in Fig. 2, together with the graphical visualization produced by the user interface. The user
interface also startsARGoS, generates the simulated arena, runs and visualizes the simulation,
and prints the value of the objective function.

4 StudyA: comparison of four design methods for RM1

The goal of this study is to compare the design methods described in Sect. 3.

4.1 Experimental protocol

In both studies proposed in the paper, a central role is played by five researchers, hereinafter
referred to as experts.4 The experts are Ph.D. candidates with about 2years of experience
in the domain of swarm robotics. They have previously worked with the e-puck platform
or with similar platforms. They are familiar with the ARGoS simulator and programming
environment.5 Within the protocol, each expert plays a threefold role: (i) define a task, (ii)
solve a task via U-Human, and (iii) solve a task via C-Human. The tasks solved by an expert
via U-Human and C-Human are different from each other and from the one proposed by
the expert himself. Experts are not allowed to exchange information throughout the duration
of the empirical study. The roles of each expert is summarized in Table 2.

2 https://www.gnu.org/software/gdb/.
3 http://valgrind.org/.
4 With the goal of establishing accountability and credit, the five experts are included among the authors of
this paper.
5 We think that PhD candidates are ideal subjects for this study. Indeed, it is our understanding that a large
share of the robot swarms described in the domain literature have been programmed by PhD candidates. See
Francesca et al. (2014a) for data extracted from the publication record of our research laboratory.

123

https://www.gnu.org/software/gdb/
http://valgrind.org/


Swarm Intell

(a)

(b)
Fig. 2 Example of a probabilistic finite state machine specified in the simple finite language adopted in
C-Human (a) and its graphical visualization (b). a A finite state machine described by a statement in the
language adopted byC-Human. The probabilistic finite statemachine comprises 2 states. State 0 is “attraction,”
with parameter α = 5, and has outdegree 1: Edge 0 is connected to state 1, the condition for the transition
is “black-floor,” with parameter β = 1. State 1 is “stop” and has outdegree 2: Edge 0 is connected to state
0, the transition is activated with fixed-probability 0.25; edge 1 is connected to state 0, the condition for the
transition is “gray-floor,” with parameter β =1. b The resulting probabilistic finite state machine

Table 2 Role of the experts, anonymously indicated here by the labels E1– E5

Task Defined by U-Human C-Human

SCA–shelter with constrained access E1 E5 E4

LCN– largest covering network E2 E1 E5

CFA–coverage with forbidden areas E3 E2 E1

SPC–surface and perimeter coverage E4 E3 E2

AAC–aggregation with ambient cues E5 E4 E3

For each row, the column “task” gives the name of the task; the column “defined by” identifies the expert that
has defined the task; the columns “U-Human” and “C-Human” identify the experts that have solved the task
acting as U-Human and C-Human, respectively. The tasks defined by the experts are described in Sect. 4.1.2

4.1.1 Definition of the tasks

In the definition of the tasks, the experts are kept unaware of the design methods included in
the empirical study, in order to avoid any influence in the experts’ choices that could favor one
method over the others. Experts are asked to define tasks that, according to their judgment,
could be performed by a swarm of 20 robots conforming to RM1. The experts are given a set
of constraints that the tasks must satisfy: The time available to the robots for performing a
task is T = 120 s. The robots operate in a dodecagonal area of 4.91m2 surrounded by walls.
The floor of the arena is gray. Up to three circular or rectangular patches may be present
on the floor. The patches may be either white or black. The diameter of the circular patches

123



Swarm Intell

and the sides of the rectangular patches cannot exceed 0.6m. The environmental setup may
include a light source placed outside the south side of the arena. Up to 5 obstacles may be
present in the arena. Obstacles are wooden cuboids of size 0.05m× 0.05m× L , where L is
in the range [0.05, 0.80]m.

As part of the task definition, the experts are asked to define the task-specific performance
measure that will be used to assess task execution. The performance measure should be
computable on the basis of the position and orientation of the robots, evaluated every 100
ms.

The procedure through which an expert defines a task can be interpreted as a sampling
according to an unknown distribution defined over the space of tasks that can be performed by
a swarm of 20 robots conforming to RM1 and that satisfy the given environmental constraints.
The tasks that are relevant to our study can be defined in terms of the sampling procedure:
The higher the probability that a task is sampled, the higher the relevance of the task.

4.1.2 Description of the tasks defined by the experts

The following are the tasks defined by the experts according to the procedure given in
Sect. 4.1.1. Overhead shots of the arenas are given in Fig. 3.

SCA–shelter with constrained access. The arena contains a rectangular white region of
0.15m×0.6m. This region is closed on three sides by obstacles: Only the south side is open
for the robots to enter. In the arena, there are also two black circular patches, positioned aside
the white region. The two circular patches have the same diameter of 0.6m. The setup also
includes a light source placed on the south side of the arena. The task for the robots is to
aggregate on the white region: the shelter. The robots can use the light source and the black
circular patches to orientate themselves. The performance measure is defined in terms of an
objective function to maximize: FSCA = ∑T

t=1 N (t), where N (t) is the number of robots in
the shelter at time t and T is the time available to the robots for performing the task.

LCN–largest covering network. The arena does not contain any obstacle, floor patch, or
light source. The robots are required to create a connected network that covers the largest
area possible. Each robot covers a circular area of 0.35m radius. Two robots are considered
to be connected if their distance is less than 0.25m. The performance measure is defined
in terms of an objective function to maximize: FLCN = AC(T ), where C(T ) is the largest
network of connected robots at the end T of the time available for performing the task and
AC(T ) is the area covered by C(T ).

CFA–coverage with forbidden areas.The arena contains three circular black regions, each
with a diameter of 0.6m. The robots are required to cover the arena, avoiding the forbidden
areas denoted by the black-floor. The performancemeasure is defined in terms of an objective
function to minimize: FCFA = E[d(T )], where E[d(T )] is the expected distance, at the end
T of the time available for performing the task, between a generic point of the arena and
the closest robot that is not in the forbidden area. This objective function is measured in
meters.

SPC–surface and perimeter coverage. The arena contains a circular black region with
a diameter of 0.6m and a square white region with sides of 0.6m. The robots are required
to aggregate on the perimeter of the black circle and to cover the area of the white square.
The performance measure is defined in terms of an objective function to minimize: FSPC =
E[da(T )]/ca + E[dp(T )]/cp , where E[da(T )] is the expected distance, at the end T of the
time available for performing the task, between a generic point in the square region and the
closest robot that is in the square region and E[dp(T )] is the expected distance between a

123



Swarm Intell

Fig. 3 Overhead shots of the arenas used for the five tasks defined by the experts. The pictures show also
the 20 e-puck robots. a SCA–shelter with constrained access: robots must aggregate in the white region, the
shelter. b LCN–largest covering network: robots must create a connected network that covers the largest area
possible. c CFA–coverage with forbidden areas: robots must cover all the arena except the forbidden black
regions. d surface and perimeter coverage: robots must cover the area of the white square and the perimeter
of the black circle. e AAC–aggregation with ambient cues: robots must aggregate on the black circle

generic point on the circumference of the circular region and the closest robot that intersects
the circumference. ca = 0.08 and cb = 0.06 are scaling factors that correspond to the values
of E[da] and E[dp], respectively, under the ideal condition in which 9 robots are regularly

123



Swarm Intell

and equally spaced on the surface of the white square and 9 on the perimeter of the black
circle. See Francesca et al. (2014a) for more details. If no robot is on the surface of the
square region and/or on the perimeter of the circular region, E[da(T )] and/or E[dp(T )] are
undefined and we thus assign an arbitrarily large value to FSPC. We consider this a major
failure.

AAC–aggregation with ambient cues. The arena contains two circular regions, one black
and one white, each with a diameter of 0.6m. The black region is placed closer to the light
source, which is on the south side of the arena. The robots have to aggregate on the black
region and can use the light and the white region to orientate themselves. The performance
measure is defined in terms of an objective function tomaximize: FAAC = ∑T

t=1 N (t), where
N (t) is the number of robots on the black region at time t .

4.1.3 Design methods under analysis and experimental setup

We compare Vanilla, EvoStick, U-Human, and C-Human. These four designmethods
are tested under the same conditions:

– Same platform: All methods target the same robotic platform: the specific version of the
e-puck formally defined by RM1.

– Same simulator: All methods employ ARGoS as a simulation software to evaluate design
candidates.

– Same performance measures: All methods base the evaluation of a design candidate on
the same task-specific performance measures.

– Same resources: To design the control software, the four methods are given a similar
amount of time, with a slight advantage to human designers. U-Human and C-Human
are given 4h per task. Time starts when the human designer receives the descrip-
tion of the task. Vanilla and EvoStick are given a budget of 200,000 executions
of ARGoS per task. Vanilla and EvoStick are executed on a computer cluster
that comprises 400 opteron6272 cores. Under this setting, Vanilla and EvoStick
are able to complete a design session in approximately 2h and 20min, wall-clock
time.

It is important to notice that simulation plays a different role in automatic and manual
design. Vanilla and EvoStick utilize simulation only to compute the value of the objec-
tive function. This value is then used by the optimization algorithm to steer the search process.
Beside the value of the objective function, no other piece of information is retained from the
simulation. A graphical visualization of the simulation is not needed and is not therefore
performed. When a graphical visualization is not performed, ARGoS is much faster than real
time. As a consequence, the main benefit that Vanilla and EvoStick obtain from not
requiring a graphical visualization is the fact that the objective function can be computed in
a relatively short amount of time.

In contrast, human designers greatly benefit from observing the whole evolution of the
simulation: The human designer observes the resulting behavior of the swarm and gets
insights on how to improve the control software. Arguably, for a human designer visual
observation is more informative than the value of the objective function. Both in U-Human
and C-Human, the designer can choose to speed up the visualization with respect to real
time or even to disable visualization altogether. By performing simulations with visualization
(at some appropriate speedup level), the human designer trades simulation speed for useful
information.

123



Swarm Intell

4.1.4 Assessment on a swarm of e-pucks

The control software produced by Vanilla, EvoStick, U-Human, and C-Human for
each task is assessed via test runs with a swarm of 20 e-puck robots.

In this study we adopt a hands-off approach that reduces human intervention to a bare
minimum. The control software is directly cross-compiled by the ARGoS simulator, and it
is uploaded onto each e-puck of the swarm without any modification. To reduce the risk
that the negative effects of battery discharge and other environmental contingencies affect
one method more than another, the order of the test runs is randomly generated so that runs
with the control software produced by the four design methods are interleaved. The initial
position of the e-pucks is generated by placing the e-pucks in known positions and letting
them perform a randomwalk for 20 s. This effectively yields a randomized starting condition
for each run.

To compute the task-dependent performance measure we use a tracking system (Stranieri
et al. 2013) that gathers data via a ceiling-mounted camera. The tracking system logs position
and orientation of each e-puck every 100 ms.

4.1.5 Objective of the study and statistical tools

The objective of the study is to compare the four design methods. We wish to answer two
questions: (i) Whether Vanilla performs better than EvoStick on the tasks proposed by
the experts; and (ii) whether Vanilla performs better than a human designer, represented
here by the U-Human and C-Human methods.

As discussed in Sect. 4.1.1, the selected tasks can be seen as a sample extracted from a class
of tasks. As such, these tasks allow one to draw conclusions that generalize, in a statistical
sense, to the class of tasks fromwhich they have been sampled. For this reason,we concentrate
our attention on the aggregate performance of the methods over the tasks considered. For the
sake of completeness, we report also a boxplot of the per-task performance and the results
obtained in simulation by the control software produced by the methods under analysis.
Nonetheless, the focus of our study remains the aggregate analysis.

For each task, we perform 40 independent runs: 10 for the control software generated
by each of the four methods under analysis. We analyze the results using the Friedman
test (Conover 1999), with the task as a blocking factor. As the Friedman test is a rank-based
nonparametric test, it does not require scaling the performance measure computed for each
of the tasks nor formulating any restrictive hypothesis on the underlying distribution of the
different performance measures. This test requires only to convert the objective functions
of all tasks into the objective functions of the equivalent minimization problems. Given the
rank-based nature of the Friedman test, this operation is trivial: It can be performed via any
function that inverts the rank order. Specifically, to obtain a minimization problem from a
maximization one, we use as objective function the inverse of the original one. We represent
the result of the Friedman test in a graphical way: a plot that shows the expected rank
obtained by each design method, together with a 95% confidence interval. If the confidence
intervals of two methods do not overlap, the difference between the expected rank of the two
is statistically significant.

Concerning the per-task results of the four design methods, we present five notched box-
and-whisker boxplots: one for each task. A notched box-and-whisker boxplot gives a visual
representation of a sample. The horizontal thick line denotes the median. The lower and
upper sides of the box are called upper and lower hinges and represent the 25th and 75th
percentile of the observations, respectively. The upper whisker extends either up to the largest

123



Swarm Intell

observation or up to 1.5 times the difference between upper hinge and median—whichever is
smaller. The lower whisker is defined analogously. Small circles represent outliers (if any),
that is, observations that fall beyond the whiskers. Notches extend to ±1.58 IQR/

√
n, where

IQR is the interquartile range and n = 10 is the number of observations. Notches indicate
the 95% confidence interval on the position of the median. If the notches of two boxes do
not overlap, the observed difference between the respective medians is significant (Chambers
et al. 1983).

In the boxplots, we include also the results obtained in simulation in order to appraise
the impact of the reality gap on the four design methods. Results obtained with robots are
represented by wide boxes and those obtained in simulation by narrow boxes. As with the
assessment performed with the e-puck robots, also in simulation we perform 10 independent
runs for the control software instance generated by each of the four design methods under
analysis.

4.2 Per-task results

We report in the following the results obtained by the methods under analysis on each of
the five tasks. The notched box-and-whisker boxplots are given in Fig. 4. Videos of the test
runs and the complete data are available as online supplementary material (Francesca et al.
2014a).

SCA–shelter with constrained access. C-Human and Vanilla perform better than
U-Human and EvoStick. In particular, Vanilla is significantly better than EvoStick.
EvoStick is unable to overcome the reality gap. This holds true also for U-Human, but to
a far minor extent. C-Human and Vanilla overcome the reality gap satisfactorily.

LCN–largest covering network. C-Human and EvoStick perform better than other
methods, with Vanilla performing significantly better than U-Human. Vanilla and
U-Human do not successfully overcome the reality gap.

CFA–coveragewith forbidden areas.The performance of the fourmethods is comparable:
Differences are within a range of few centimeters, that is, less than half of the e-puck’s
diameter. Regarding the reality gap, all methods display differences between simulation and
reality, but these differences are small in absolute terms—they are all within few centimeters.

SPC–surface and perimeter coverage. EvoStick is visibly unable to overcome the
reality gap and performs significantly worse than the other methods. In the boxplot, the four
X indicate four runs that resulted in a major failure. Vanilla, U-Human, and C-Human
perform comparably well.

AAC–aggregation with ambient cues. Vanilla’s results are slightly better than those
of U-Human and C-Human, and significantly better than those of EvoStick. The four
methods greatly differ in their ability to overcome the reality gap: EvoStick has the most
severe difficulties, followed byU-Human; alsoVanilla and C-Human display difficulties,
but to a minor extent.

4.3 Aggregate analysis and discussion

The aggregate analysis is given in Fig. 5: C-Human performs significantly better than Va-
nilla, and both C-Human and Vanilla perform significantly better than EvoStick
and U-Human. The comparison between Vanilla and EvoStick confirms the results
obtained by Francesca et al. (2014c).

123



Swarm Intell

Fig. 4 StudyA—notched box-and-whisker boxplots of the results obtained by Vanilla, EvoStick,
U-Human, and C-Human on the five tasks. In each boxplot, the vertical axis reports the values of the task-
specific performance measure. Wide boxes represent the results obtained with the robots and narrow boxes
those obtained in simulation. See Sect. 4.1.5 for a guide on how to read notched box-and-whisker boxplots

Fig. 5 StudyA—Friedman test on aggregate data from the five tasks. Vanilla performs significantly better
than EvoStick and U-Human, but significantly worse than C-Human. See Sect. 4.1.5 for an explanation
of how to read the plot

123



Swarm Intell

Concerning manual design, some interesting facts can be observed. The results show
that, at least under the specification–development–deployment life cycle, also manual design
suffers from the reality gap. It is interesting to notice that C-Human appears to be more
effective than U-Human at overcoming the reality gap. This confirms the reasoning based on
the notion of bias-variance trade-off (Geman et al. 1992) that we presented in Francesca et al.
(2014c): The reality gap problem is an instance of a wider problem related to generalization.
Methods that are more constrained and therefore have a reduced representational power also
have a reduced variance. As a result, they appear to have better generalization properties.

A second interesting fact is that, under the protocol adopted, human designers produce
more effective control software when constrained to use the few and relatively simple pre-
defined modules of Vanilla. This result was unexpected—particularly by the experts
themselves—and appears counterintuitive. We were convinced that human designers would
have obtained the best results when left free to structure the control software following their
intuition and understanding. Also, we expected that the constraint to limit the design activ-
ity to assembling 12 predefined modules would have hindered their creativity and would
have limited their effectiveness. The results proved us wrong: C-Human clearly outperforms
U-Human. Apparently, the aforementioned reduction in the variance that is obtained by
introducing constraints more than compensates for the disadvantages that derive from the
introduction of a bias.

Concerning the comparison between manual and automatic design, the results show that
Vanilla performs significantly better than U-Human but worse than C-Human. This is a
promising result but indicates that we have not attained our goal yet: Vanilla cannot be
claimed to be more effective than a human designer.

The results obtained by C-Human and Vanilla corroborate the hypothesis that Va-
nilla’s set of modules are generally appropriate for tackling relevant tasks with robots
conforming to RM1. The results also highlight a major issue with Vanilla: The optimiza-
tion algorithm F-Race appears to be unable to fully exploit the potential of the modules. This
is clearly indicated by the fact that C-Human, which adopts the same modules adopted by
Vanilla, performs significantly better.

5 Chocolate

Chocolate is an improved version of Vanilla. As Vanilla, Chocolate designs
control software for RM1. Chocolate differs from Vanilla in a single aspect: the
optimization algorithm used to explore the design space. Chocolate adopts Iterated
F-Race (Balaprakash et al. 2007; Birattari et al. 2010; López-Ibáñez et al. 2011), an algorithm
for automatic configuration originally devised to fine-tune the parameters of metaheuristics.
Iterated F-Race is based on F-Race (Birattari et al. 2002; Birattari 2009), the optimization
algorithm adopted in Vanilla.

In Iterated F-Race, the optimization process goes through a series of iterations each of
which is an execution of the F-Race algorithm. In the first iteration, an initial set of candidate
solutions is generated by sampling the space of feasible solutions in a uniformly random
way. The initial candidates undergo a first execution of the F-Race algorithm. When the
F-Race algorithm terminates, the surviving solutions—that is, the candidate solutions that
have not been discarded—are used as a seed to generate a new set of candidate solutions on
which the following iteration will operate. The new set of candidates is obtained by sampling
the space of feasible solutions according to a distribution that gives a higher probability of

123



Swarm Intell

being selected to solutions that are close to the surviving solutions. See López-Ibáñez et al.
(2011) for the details. The new set of candidates undergoes a further execution of the F-Race
algorithm. The process is iterated and stops when a predefined budget of evaluations have
been performed.

The implementation of Iterated F-Race that is adopted in Chocolate is the one provided
by the irace package (López-Ibáñez et al. 2011) for R (R Core Team 2014). Chocolate
uses the default parameters of irace and samples the design space using the built-in sampling
procedure of irace (López-Ibáñez et al. 2011).

Our working hypotheses are that, by adopting a more effective optimization algorithm, (i)
Chocolate improves over Vanilla and, most importantly, (ii) the improvement is such
that Chocolate outperforms C-Human.

6 StudyB: assessment of Chocolate

The goal of this study is to empirically assess Chocolate and corroborate the working
hypotheses formulated in Sect. 5.

6.1 Experimental protocol

The experimental protocol that we adopt to evaluate Chocolate shares its main features
with the one defined in Sect. 4.1. The only differences concern (i) the way in which the tasks
are defined/selected and (ii) the design methods under analysis.

6.1.1 Tasks and design methods under analysis

The study is performed on the five swarm robotics tasks considered in Sect. 4. We do not
perform again the procedure described in Sect. 4.1.1, but we directly adopt the task defined
by the experts for StudyA and already described in Sect. 4.1.2

We compare Chocolate, with Vanilla, and C-Human. EvoStick and U-Human
have been excluded from this study because they were clearly outperformed by C-Human
and Vanilla in StudyA. Concerning Vanilla and C-Human, we adopt the same control
software generated in StudyA.

Chocolate, Vanilla, and C-Human share a number of key characteristics: (i) They
all produce robot control software in the form of a probabilistic finite state machine; (ii) they
operate on the same set of modules; and (iii) they all adopt the same simulator to compare
and select candidate designs.

The three design methods under analysis are tested under the same conditions adopted in
StudyA: same platform, same simulator, same performance measures, same resources. See
Sect. 4.1.3 for the details.

6.1.2 Assessment on a swarm of e-pucks

As in StudyA, the control software produced by the design methods are assessed via test
runs with a swarm of 20 e-puck robots.

Although in Sect. 4 we have already performed an assessment of the control software
generated byVanilla and C-Human on the five tasks considered, we repeat the assessment
here. This allows us to compare the three methods under the exact same conditions. It would
be indeed practically impossible to reproduce the same conditions under which StudyA

123



Swarm Intell

was performed: Robots, batteries, and light sources have been subject to wear and their
properties have possibly changed. Moreover, we have updated the firmware of the e-pucks
and the software we use to manage the e-pucks and to track their position over time. Finally,
the arena has been disassembled and later reassembled in a different position.

We adopt here the same hands-off approach we adopted in StudyA: The control software
is cross-compiled by ARGoS and it is uploaded onto each e-puck of the swarm without any
modification. Moreover, the order of the test runs is randomly generated so that runs with the
control software produced by themethods under analysis are interleaved. The initial positions
of the e-pucks are randomly generated as in StudyA. Also the performance measures are
computed via the tracking system as in StudyA.

6.1.3 Objective of the study and statistical tools

The objective of the study is to compare the three design methods. In particular, we wish to
confirm our working hypotheses: (i) Chocolate improves over Vanilla; and, most of
all, (ii) the improvement is such that Chocolate outperforms C-Human. As in StudyA,
we are interested in the aggregate performance of the methods over the five tasks. Therefore,
the main statistical tool we use is the Friedman test. For completeness, we report also the
per-task notched box-and-whisker boxplots.

6.2 Per-task results

The results obtained by the three methods under analysis on each of the five tasks are repre-
sented by the notched box-and-whisker boxplots reported in Fig. 6. Videos of the test runs and
the complete data are available as online supplementary material (Francesca et al. 2014a).

SCA–shelter with constrained access. The control software instance designed by Choc-
olate performs better than the ones designed by Vanilla and C-Human. The differences
in performance between Chocolate and C-Human and between Chocolate and Va-
nilla are significant. Moreover, C-Human performs significantly better than Vanilla.
Regarding the difference between simulation and reality,Chocolate and C-Human appear
to overcome the reality gap successfully: They have similar performance in simulation and
in reality. On the contrary, Vanilla shows a significant mismatch.

LCN–largest covering network. Chocolate and C-Human have qualitatively the same
performance. On the other hand, Vanilla performs significantly worse than both Choc-
olate and C-Human. For what concerns the effects of the reality gap, all three design
methods present a rather noticeable difference between simulation and reality. C-Human
displays the smallest mismatch. The mismatch between the performance in simulation and
reality is possibly due to the fact that, to solve this task, the e-pucks rely on their ability to
measure the distance of the neighboring robots. The measurement of the distance is obtained
via the range-and-bearing board, which is imprecise and highly dependent on uncontrolled
factors such as battery levels and light conditions.

CFA–coverage with forbidden areas. Chocolate and C-Human have similar perfor-
mance. Vanilla is slightly worse. Differences are small: Medians are all within a range
of less than two centimeters. Regarding the reality gap, the three methods present a similar
difference between simulation and reality. The flattening of the results with small differ-
ences that have no practical implications is possibly due to the imprecision of the distances
measured via the range-and-bearing board.

123



Swarm Intell

Fig. 6 StudyB—notched box-and-whisker boxplots of the results obtained by Vanilla, Chocolate,
and C-Human on the five tasks. In each boxplot, the vertical axis reports the values of the task-specific
performance measure. Wide boxes represent the results obtained with the robots and narrow boxes those
obtained in simulation. See Sect. 4.1.5 for a guide on how to read notched box-and-whisker boxplots

SPC–surface and perimeter coverage. The median performance recorded for Choco-
late is better than the one recorded for C-Human and Vanilla. The difference between
Chocolate and Vanilla is significant. Concerning the difference between the perfor-
mance observed in simulation and on the robots, all three the methods show some mismatch.
Like in the case of SCA–shelter with constrained access, this difference is possibly due to
the fact that part of the task relies on the imprecise estimation of the distance provided by
the range-and-bearing board.

AAC–aggregation with ambient cues. Both Chocolate and Vanilla perform sig-
nificantly better than C-Human. The median recorded for Chocolate is slightly better
than the one recorded for Vanilla. Concerning the difference between the performance

123



Swarm Intell

Fig. 7 StudyB—Friedman test on aggregate data from the five tasks. Chocolate performs significantly
better than both Vanilla and C-Human. See Sect. 4.1.5 for an explanation of how to read the plot

observed in simulation and on the robots, Vanilla shows a smaller difference with respect
to Chocolate and C-Human.

6.3 Aggregate analysis and discussion

The results of the aggregate analysis are reported in Fig. 7. These results confirm those
presented in Sect. 4:C-HumanoutperformsVanilla. The better performance of C-Human
over Vanilla corroborates the hypothesis formulated in Sect. 4.3: As C-Human and Va-
nilla design control software combining the same modules, the failure of Vanilla to
match C-Human’s performance is to be ascribed to Vanilla’s optimization algorithm.
The hypothesis is confirmed by the fact that Chocolate, which adopts a more advanced
optimization algorithm, outperforms Vanilla. This improvement of Chocolate is such
that, under the experimental conditions considered in the study, Chocolate outperforms
also C-Human. In other words, under the experimental conditions defined by the protocol
presented in Sect. 6.1, Chocolate produces better control software than the one produced
by a human designer that operates on the same set of modules as Chocolate.

The results presented in Sect. 4 show that C-Human outperforms U-Human, that is,
the human designer that produces control software without any restriction on the structure
of the control software. Together, the results presented in Sect. 4 and those presented here
lead to a stronger statement: Under the experimental conditions defined in Sect. 4.1 and
Sect. 6.1, Chocolate designs control software that outperforms the one produced by a
human designer, whether the human is constrained to use Chocolate’s (and Vanilla’s)
modules or not.

7 Conclusions

In this paper, we presented two empirical studies on the design of control software for robot
swarms in which automatic andmanual methods are compared. In StudyA, we compared two
automatic methods—Vanilla and EvoStick—with two manual methods—U-Human
and C-Human.Vanilla produces control software by assembling preexistingmodules into
a finite state machine. EvoStick is a rather standard evolutionary robotics method. The two
automatic methods have been already published in Francesca et al. (2014c) and have been
applied in this paper without any modification whatsoever. We carried out the comparison on
five new tasks, different from those onwhich Vanilla and EvoStick had been previously
tested. The tasks have been defined by human experts that, at the time of the definition of the
tasks, were unaware of the functioning of Vanilla and EvoStick. The results showed
that Vanilla produces better control software than EvoStick, which confirms the results

123



Swarm Intell

previously obtained on other tasks.Moreover, the results showed that Vanilla outperforms
U-Human but is outperformed by C-Human. As C-Human is a method in which a human
manually synthesizes finite state machines by assembling the same modules on which Va-
nilla operates, we concluded that the difference in performance between Vanilla and
C-Human has to be ascribed to shortcomings in Vanilla’s optimization algorithm.

To confirm our hypothesis, we defined a new automatic designmethod, Chocolate, that
differs from Vanilla only in the optimization algorithm adopted. We assessed Choco-
late inStudyB:Our results show that, under the specific experimental conditions considered
in the study, Chocolate outperforms both Vanilla and C-Human. Chocolate is the
first automatic designmethod for robot swarms that is shown to outperform a human designer,
albeit under specific experimental conditions.

Beside proposing and assessing Chocolate, in this paper we make an important con-
tribution to the literature on the automatic design methods for robot swarms. We proposed
and demonstrated an experimental protocol to compare automatic and manual design meth-
ods. The protocol has been developed for use with up to four methods and five experts.
Nonetheless, the protocol can be straightforwardly extended to a larger number of methods
and experts.

A notable trait of the empirical studies presented in the paper is the fact that all the
design methods under analysis adopt the same reference model RM1. It is our contention
that the definition of a reference model of the robotic platform at hand is a fundamental and
necessary step to enable the fair and meaningful comparison of multiple design methods,
whether manual or automatic. We argue that the lack of scientifically sound comparisons
between different design methods in the swarm robotics literature is to some extent related
to the fact that the important role of reference models has been so far overlooked.

An interesting question that naturally arises concerns the generality of the automatic design
methods discussed in the paper. The question should be addressed at two different levels: (i)
the generality of Vanilla and Chocolate, as specializations of AutoMoDe to a given
reference model; and (ii) the generality of AutoMoDe as an approach. In Francesca et al.
(2014c), we have already conceptually framed the notion of specialization of AutoMoDe
and the generality of a specialization. In the following, we focus on original remarks that
can be made on the basis of the results presented in this paper. Regarding the generality of
Vanilla and Chocolate, the results presented in this paper corroborate the hypothesis
that underlies the definition of Vanilla (Francesca et al. 2014c): The modules originally
proposed for Vanilla and then adopted by Chocolate and C-Human are sufficiently
general to produce control software for tasks that can be accomplished by a swarm of robots
conforming toRM1.The hypothesis is corroborated by the results because of theway inwhich
the tasks have been defined: As already noted, they can be considered as sampled according
to an unknown distribution defined over the space of tasks that can be accomplished by
a swarm of robots conforming to RM1. Regarding AutoMoDe, statements on the general
applicability of the approach can be made only by specializing AutoMoDe to a large number
of different reference models (of the same or different robots) and then assessing these
specializations on multiple tasks via studies similar to those presented in this paper. This is
clearly a research program that requires a large amount of empirical work and that goes far
beyond the possibilities of a single paper.

A similar reasoning applies to the adoption of Iterated F-Race within AutoMoDe. As the
results obtained by Iterated F-Race in Chocolate are fully satisfactory, Iterated F-Race
will likely be the first optimization algorithm that we will consider in the specialization of
AutoMoDe for new referencemodels.Nonetheless, it is perfectly possible that a new reference
model (and therefore a new set ofmodules) requires adopting another optimization algorithm.

123



Swarm Intell

It should be noted that the optimization algorithm to be used is not part of the definition of
AutoMoDe, but rather of its specializations. Whether Iterated F-Race scales satisfactorily
with the number ofmodules andwhether some characteristics of themodules create particular
problems to IteratedF-Race is an empirical question that canbe addressedonly by specializing
AutoMoDe to a large number of reference models that require an increasingly larger set of
modules. Also in this case, this research program clearly goes beyond the possibility of a
single paper.

A limitation of the study presented in the paper is related to the size and the composition of
the group of experts. Five researchers, all affiliated with the same research group, cannot be
considered as a sufficiently large and representative sample of the entire population of swarm
robotics experts. As a consequence, the results presented in the paper do not generalize to
the entire population of swarm robotics experts. These results show only that Chocolate
was able, under the specific experimental conditions considered in the paper, to outperform a
group of qualified domain experts, although these experts are not representative of the whole
population. Nonetheless, this paper presents the first empirical study in which an automatic
method for the design of control software for robot swarms has been shown to outperform
human designers under controlled experimental conditions.

Future work will be devoted to the development of a new specialization of AutoMoDe to
target a reference model that is more complex than RM1. In particular, we wish to explore
the possibility of specializing AutoMoDe for a reference model that includes communication
capabilities. We also plan on assessing the new specialization of AutoMoDe in an empirical
study that involves a large number of human experts from different research groups. We will
consider also the possibility of having teams of designers working on a task. Finally, we will
study the impact of the amount of design time on the quality of the solutions obtained both
by humans and by automatic methods.

Acknowledgments The authors thank Maria Zampetti and Maxime Bussios for their help with the robots,
and Marco Chiarandini for his implementation of the Friedman test. This research was partially funded by
the ERC Advanced Grant “E-SWARM” (Grant Agreement No. 246939). It was also partially supported by
the COMEX project within the Interuniversity Attraction Poles Program of the Belgian Science Policy Office.
Vito Trianni acknowledges support from the Italian CNR. Arne Brutschy, Franco Mascia, and Mauro Birattari
acknowledge support from the Belgian F.R.S.–FNRS. The authors thank the anonymous reviewers for their
useful comments.

References

Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., & Dorigo, M. (2009). Evolving self-assembly in
autonomous homogeneous robots: Experiments with two physical robots. Artificial Life, 15(4), 465–
484.

Balaprakash, P., Birattari,M., & Stützle, T. (2007). Improvement strategies for the F-Race algorithm: Sampling
design and iterative refinement.Hybridmetaheuristics,HM2007, LNCS (Vol. 4771, pp. 108–122). Berlin:
Springer.

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organised coor-
dinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man and
Cybernetics-Part B, 37(1), 224–239.

Berman, S., Kumar, V., & Nagpal, R. (2011). Design of control policies for spatially inhomogeneous robot
swarmswith application to commercial pollination. International conference on robotics and automation,
ICRA 2011 (pp. 378–385). Piscataway, NJ: IEEE Press.

Birattari, M. (2009). Tuning metaheuristics. Berlin: Springer.
Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring meta-

heuristics. In W. B. Langdon, et al. (Eds.), Genetic and evolutionary computation, GECCO (pp. 11–18).
San Francisco, CA: Morgan Kaufmann.

123



Swarm Intell

Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In T.
Bartz-Beielstein, et al. (Eds.), Experimental methods for the analysis of optimization algorithms (pp.
311–336). Berlin: Springer.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm
engineering perspective. Swarm Intelligence, 7(1), 1–41.

Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for swarm robotics: A
design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous
and Adaptive Systems, 9(4), 17.1–28.

Bredeche, N.,Montanier, J.M., Liu,W.,&Winfield, A. F. (2012). Environment-driven distributed evolutionary
adaptation in a population of autonomous robotic agents. Mathematical and Computer Modelling of
Dynamical Systems, 18(1), 101–129.

Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data analysis.
Pacific Grove, CA: Wadsworth & Brooks/Cole.

Conover, W. J. (1999). Practical nonparametric statistics. New York: Wiley.
DiMario, E., &Martinoli, A. (2014). Distributed particle swarm optimization for limited-time adaptation with

real robots. Robotica, 32(2), 193–208.
Doncieux, S., & Mouret, J. B. (2014). Beyond black-box optimization: A review of selective pressures for

evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.
Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.
Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014a). Evolution of hierarchical controllers for multirobot

systems. In H. Sayama, et al. (Eds.), Artificial life 14: Proceedings of the international conference on
the synthesis and simulation of living systems (pp. 657–664). Cambridge, MA: MIT Press.

Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014b). Evolution of hybrid robotic controllers for complex
tasks. Journal of Intelligent & Robotic Systems, 78(3–4), 463–484.

Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., & Birattari, M. (2012). Analysing an evolved robotic
behaviour using a biological model of collegial decision making. In From animals to animats 12, LNAI
(Vol. 7426, pp. 381–390). Berlin: Springer.

Francesca,G.,Brambilla,M.,Brutschy,A.,Garattoni, L.,Miletitch,R., Podevijn,G., et al. (2014a).AutoMoDe-
chocolate: Automatic design of control software for robot swarms. Supplementary material. http://iridia.
ulb.ac.be/supp/IridiaSupp2014-011.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014b). An
experiment in automatic design of robot swarms. In M. Dorigo, et al. (Eds.), Swarm intelligence, ANTS
2014, LNCS (Vol. 8667, pp. 25–37). Berlin: Springer.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014c). AutoMoDe: A novel approach
to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.

Gauci,M., Chen, J., Li,W., Dodd, T. J., &Groß, R. (2014a). Clustering objects with robots that do not compute.
In A. Lomuscio, et al. (Eds.), Autonomous agents and multiagent systems, AAMAS 2014 (pp. 421–428).
SC: IFAAMAS, Richland.

Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014b). Self-organized aggregation without computation.
International Journal of Robotics Research, 33(8), 1145–1161.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural
Computation, 4(1), 1–58.

Gomes, J., Urbano, P., & Christensen, A. L. (2013). Evolution of swarm robotics systems with novelty search.
Swarm Intelligence, 7(2–3), 115–144.

Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-
Inspired Computation, 1(1–2), 1–13.

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009). Open e-
puck range and bearing miniaturized board for local communication in swarm robotics. In International
conference on robotics and automation, ICRA 2009 (pp. 3111–3116). Piscataway, NJ: IEEE Press.

Haasdijk, E., Bredeche, N., & Eiben, A. E. (2014). Combining environment-driven adaptation and task-driven
optimisation in evolutionary robotics. PLoS ONE, 9(6), e98,466.

Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in
swarm robotics. Swarm Intelligence, 2(2), 209–239.

Hauert, S., Zufferey, J. C., & Floreano, D. (2008). Evolved swarming without positioning information: An
application in aerial communication relay. Autonomous Robots, 26(1), 21–32.

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., & Moses, M. E. (2012) Formica ex machina: Ant
swarm foraging from physical to virtual and back again. In Dorigo M, et al. (Eds.), Swarm intelligence,
ANTS 2012, LNCS (Vol. 7461, pp. 252–259). Berlin: Springer.

123

http://iridia.ulb.ac.be/supp/IridiaSupp2014-011
http://iridia.ulb.ac.be/supp/IridiaSupp2014-011


Swarm Intell

Hsieh, M., Loizou, S., & Kumar, V. (2007). Stabilization of multiple robots on stable orbits via local sensing.
In International conference on robotics and automation, ICRA 2007 (pp. 2312–2317). Piscataway, NJ:
IEEE Press.

Izzo, D., Simões, L. F., & de Croon, G. C. H. E. (2014). An evolutionary robotics approach for the distributed
control of satellite formations. Evolutionary Intelligence, 7(2), 107–118.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary
robotics. In Advances in artificial life, ECAL’95, LNCS (Vol. 929, pp. 704–720). Berlin: Springer.

Kazadi, S., Lee, J. R., & Lee, J. (2007). Artificial physics, swarm engineering, and the Hamiltonian method.
InWorld congress on engineering and computer science (pp. 623–632). Hong Kong: Newswood.

König, L., & Mostaghim, S. (2009). Decentralized evolution of robotic behavior using finite state machines.
International Journal of Intelligent Computing and Cybernetics, 2(4), 695–723.

Koos, S., Mouret, J., & Doncieux, S. (2013). The transferability approach: Crossing the reality gap in evolu-
tionary robotics. IEEE Transactions on Evolutionary Computation, 17(1), 122–145.

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone.
Evolutionary Computation, 19(2), 189–223.

Lerman,K.,&Galstyan,A. (2002).Mathematicalmodel of foraging in a group of robots: Effect of interference.
Autonomous Robots, 13(2), 127–141.

Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model of collabo-
ration in distributed robotic systems. Artificial Life, 7(4), 375–393.

Lopes, Y., Leal, A., Dodd, T. J., & Groß, R. (2014). Application of supervisory control theory to swarms of
e-puck and kilobot robots. In M. Dorigo, et al. (Eds.), Swarm Intelligence, ANTS 2014, LNCS (Vol. 8667,
pp. 62–73). Berlin: Springer.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The irace package, iterated race for
automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de
Bruxelles, Belgium.

Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From
probabilisticmodelling to experimentswith real robots.Robotics andAutonomous Systems, 29(1), 51–63.

Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in
collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–
436.

Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for investigation in control
algorithms. In T. Yoshikawa & F. Miyazaki (Eds.), Experimental robotics III (pp. 501–513). Berlin,
Germany: Springer.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot
designed for education in engineering. In 9th Conference on autonomous robot systems and competitions,
Instituto Politécnico de Castelo Branco, Portugal, (pp. 59–65).

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: Amodular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

Pugh, J., & Martinoli, A. (2009). Distributed scalable multi-robot learning using particle swarm optimization.
Swarm Intelligence, 3(3), 203–222.

Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003). Evolving controllers for a homogeneous system of
physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal
Society of London, Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2321–2343.

R Core Team. (2014).R: A language and environment for statistical computing. Vienna, Austria: R Foundation
for Statistical Computing.

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014). Kilobot: A low cost robot with scalable
operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.

Sartoretti, G., Hongler,M. O., de Oliveira,M. E., &Mondada, F. (2014). Decentralized self-selection of swarm
trajectories: From dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4), 329–
351.

Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A., et al. (2013). IRIDIA’s arena
tracking system. Technical report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Bel-
gium.

Trianni, V. (2008). Evolutionary swarm robotics. Berlin: Springer.
Trianni, V. (2014). Evolutionary robotics: Model or design? Frontiers in Robotics and AI, 1(13), 1–6.
Trianni, V., & López-Ibáñez, M. (2014). Advantages of multi-objective optimisation in evolutionary robotics:

Survey and case studies. Technical report TR/IRIDIA/2014-014, IRIDIA, Université Libre de Bruxelles,
Belgium.

Trianni, V., & Nolfi, S. (2009). Self-organising sync in a robotic swarm. A dynamical system view. IEEE
Transactions on Evolutionary Computation, 13(4), 722–741.

123



Swarm Intell

Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors in swarm robotics: A
case study. Artificial Life, 17(3), 183–202.

Tuci, E., Ferrauto, T., Zeschel, A., Massera, G., & Nolfi, S. (2011). An experiment on behavior generalization
and the emergence of linguistic compositionality in evolving robots. IEEE Transactions on Autonomous
Mental Development, 3(2), 176–189.

Watson, R., Ficici, S. G., & Pollack, J. (2002). Embodied evolution: Distributing an evolutionary algorithm in
a population of robots. Robotics and Autonomous Systems, 39(1), 1–18.

Winfield, A. F. T., & Erbas, M. D. (2011). On embodied memetic evolution and the emergence of behavioural
traditions in robots. Memetic Computing, 3(4), 261–270.

123


	AutoMoDe-Chocolate: automatic design of control software for robot swarms
	Abstract
	1 Introduction
	2 Related work
	3 Four design methods for a swarm of e-pucks
	3.1 Vanilla
	3.2 EvoStick
	3.3 U-Human
	3.4 C-Human

	4 StudyA: comparison of four design methods for RM1
	4.1 Experimental protocol
	4.1.1 Definition of the tasks
	4.1.2 Description of the tasks defined by the experts
	4.1.3 Design methods under analysis and experimental setup
	4.1.4 Assessment on a swarm of e-pucks
	4.1.5 Objective of the study and statistical tools

	4.2 Per-task results
	4.3 Aggregate analysis and discussion

	5 Chocolate
	6 StudyB: assessment of Chocolate
	6.1 Experimental protocol
	6.1.1 Tasks and design methods under analysis
	6.1.2 Assessment on a swarm of e-pucks
	6.1.3 Objective of the study and statistical tools

	6.2 Per-task results
	6.3 Aggregate analysis and discussion

	7 Conclusions
	Acknowledgments
	References




