Variable Neighbourhood Descent

- recall: Local minima are relative to neighbourhood relation.
- key idea: To escape from local minimum of given neighbourhood relation, switch to different neighbhourhood relation.
- use k neighbourhood relations N₁,..., N_k, (typically) ordered according to increasing neighbourhood size.
- always use smallest neighbourhood that facilitates improving steps.
- upon termination, candidate solution is locally optimal w.r.t. all neighbourhoods

Heuristic Optimization 2013

Variable Neighbourhood Descent (VND):

```
determine initial candidate solution s

i := 1

Repeat:

| \begin{array}{c} \text{choose a most improving neighbour } s' \text{ of } s \text{ in } N_i \\ \text{If } g(s') < g(s): \\ s := s' \\ i := 1 \\ \text{Else:} \\ i := i + 1 \\ \text{Until } i > k \end{array}
```

piped VND

- different iterative improvement algorithms $II_1 \ldots II_k$ available
- **key idea:** build a chain of iterative improvement algorithms
- different orders of algorithms often reasonable, typically same as would be done in standard VND
- substantial performance improvements possible without modifying code of existing iterative improvement algorithms

32

piped VND for single-machine total weighted tardiness problem (SMTWTP)

- **given**:
 - single machine, continuously available
 - n jobs, for each job j is given its processing time p_j, its due date d_j and its importance w_j
- ► lateness $L_j = C_j d_j$, C_j : completion time of job j
- tardiness $T_j = \max\{L_j, 0\}$
- goal:
 - minimise the sum of the weighted tardinesses of all jobs
- **SMTWTP** \mathcal{NP} -hard.
- candidate solutions are permutations of job indices

Neighbourhoods for SMTWTP

Heuristic Optimization 2013

34

SMTWTP example:

computational results for three different starting solutions

 Δ_{avg} : deviation from best-known solutions, averaged over 125 instances t_{avg} : average computation time on a Pentium II 266MHz

initial	exchange		insert		exchange+insert		insert+exchange	
solution	Δ_{avg}	t_{avg}	Δ_{avg}	t _{avg}	Δ_{avg}	t _{avg}	Δ_{avg}	t _{avg}
EDD	0.62	0.140	1.19	0.64	0.24	0.20	0.47	0.67
MDD	0.65	0.078	1.31	0.77	0.40	0.14	0.44	0.79
AU	0.92	0.040	0.56	0.26	0.59	0.10	0.21	0.27

Note:

- VND often performs substantially better than simple II or II in large neighbourhoods [Hansen and Mladenović, 1999]
- many variants exist that switch between neighbhourhoods in different ways.
- more general framework for SLS algorithms that switch between multiple neighbourhoods: Variable Neighbourhood Search (VNS) [Mladenović and Hansen, 1997].

Heuristic Optimization 2013

36

Very large scale neighborhood search (VLSN)

- VLSN algorithms are iterative improvement algorithms that make use of very large neighborhoods, often exponentially-sized ones
- very large scale neighborhoods require efficient neighborhood search algorithms, which is facilitated through special-purpose neighborhood structures
- two main classes
 - explore heuristically very large scale neighborhoods example: variable depth search
 - define special neighborhood structures that allow for efficient search (often in polynomial time) example: *Dynasearch*

Variable Depth Search

- Key idea: Complex steps in large neighbourhoods = variable-length sequences of simple steps in small neighbourhood.
- the number of solution components that is exchanged in the complex step is variable and changes from one complex step to another.
- Use various *feasibility restrictions* on selection of simple search steps to limit time complexity of constructing complex steps.
- Perform Iterative Improvement w.r.t. complex steps.

Heuristic Optimization 2013

38

Variable Depth Search (VDS):

determine initial candidate solution s $\hat{t} := s$ While s is not locally optimal: Repeat: | select best feasible neighbour t $| If g(t) < g(\hat{t}): \hat{t} := t$ Until construction of complex step has been completed $s := \hat{t}$

Example: The Lin-Kernighan (LK) Algorithm for the TSP (1)

- Complex search steps correspond to sequences of 1-exchange steps and are constructed from sequences of Hamiltonian paths
- δ -path: Hamiltonian path p + 1 edge connecting one end of p to interior node of *p* ('lasso' structure):

Heuristic Optimization 2013

40

Basic LK exchange step:

₩`><`V'

Start with Hamiltonian path (u, \ldots, v) :

Construction of complex LK steps:

- start with current candidate solution (Hamiltonian cycle) s; set t* := s; set p := s
- 2. obtain δ -path p' by replacing one edge in p
- 3. consider Hamiltonian cycle *t* obtained from *p* by (uniquely) defined edge exchange
- 4. if $w(t) < w(t^*)$ then set $t^* := t$; p := p'
- 5. if termination criteria of LK step construction not met, go to step 2
- 6. accept t^* as new current candidate solution s if $w(t^*) < w(s)$

Note: This can be interpreted as sequence of 1-exchange steps that alternate between δ -paths and Hamiltonian cycles.

Heuristic Optimization 2013

Additional mechanisms used by LK algorithm:

 Tabu restriction: Any edge that has been added cannot be removed and any edge that has been removed cannot be added in the same LK step.

Note: This limits the number of simple steps in a complex LK step.

 Limited form of backtracking ensures that local minimum found by the algorithm is optimal w.r.t. standard 3-exchange neighbourhood

Lin-Kernighan (LK) Algorithm for the TSP

- k-exchange neighbours with k > 3 can reach better solution quality, but require significantly increased computation times
- LK constructs complex search steps by iteratively concatenating 2-exchange steps
- in each complex step, a set of edges X = {x₁,...x_r} is deleted from a current tour p and replaced by a set of edges Y = {y₁,...y_r} to form a new tour p'
- the number of edges that are exchanged in the complex step is variable and changes from one complex step to another
- termination of the construction process is guaranteed through a gain criterion and additional conditions on the simple moves

Heuristic Optimization 2013

Construction of complex step

- ▶ the two sets *X* and *Y* are constructed iteratively
- edges x_i and y_i as well as y_i and x_{i+1} need to share an endpoint; this results in *sequential moves*
- at any point during the construction process, there needs to be an alternative edge y'_i such that complex step defined by X = {x₁,...x_i} and Y = {y₁,...y'_i} yields a valid tour

Gain criterion

- ► at each step compute length of tour defined through X = {x₁,...x_i} and Y = {y₁,...y'_i}
- also compute gain $g_i := \sum_{j=1}^i (w(y_j) w(x_j))$ for $X = \{x_1, \dots, x_i\}$ and $Y = \{y_1, \dots, y_i\}$
- ▶ terminate construction if w(p) g_i < w(p_{i*}), where p is current tour and p_{i*} best tour found during construction
- p_{i*} becomes new tour if $w(p_{i*}) < w(p)$

Heuristic Optimization 2013

Search guidance in LK

- \triangleright search for improving move starts with selecting a vertex u_1
- the sets X and Y are required to be disjoint and, hence, bounds the depth of moves to n
- at each step try to include a least costly possible edge y_i
- if no improved complex move is found
 - apply backtracking on the first and second level of the construction steps (choices for x₁, x₂, y₁, y₂)
 - consider alternative edges in order of increasing weight $w(y_i)$
 - at last backtrack level consider alternative starting nodes u_1
 - backtracking ensures that final tours are at least 2-opt and 3-opt
- some few additional cases receive special treatment
- important are techniques for pruning the search

Variants of LK

- details of LK implementations can vary in many details
 - depth of backtracking
 - width of backtracking
 - rules for guiding the search
 - bounds on length of complex LK steps
 - type and length of candidate lists
 - search initialisation
- essential for good performance on large TSP instances are fine-tuned data structures
- wide range of performance trade-offs of available implementations (Helsgaun's LK, Neto's LK, LK implementation in concorde)
- noteworthy advancement through Helsgaun's LK

Heuristic Optimization 2013

Solution Quality distributions for LK-H, LK-ABCC, and 3-opt on TSPLIB instance pcb3038:

49

Example:

Computational results for LK-ABCC, LK-H, and 3-opt averages across 1000 trials; times in ms on Athlon 1.2 GHz CPU, 1 GB RAM

	<i>L</i> K-	ABCC	L	.K-H	3-opt-fr+cl	
Instance	Δ_{avg}	tavg	Δ_{avg}	tavg	Δ_{avg}	tavg
rat783	1.85	21.0	0.04	61.8	3.7	34.6
pcb1173	2.25	45.3	0.24	238.3	4.6	66.5
d1291	5.11	63.0	0.62	444.4	4.9	76.4
fl1577	9.95	114.1	5.30	1513.6	22.4	93.4
pr2392	2.39	84.9	0.19	1 080.7	4.5	188.7
pcb3038	2.14	134.3	0.19	1 437.9	4.4	277.7
fn14461	1.74	239.3	0.09	1442.2	3.7	811.6
pla7397	4.05	625.8	0.40	8468.6	6.0	2 260.6
rl11849	6.00	1072.3	0.38	9681.9	4.6	8628.6
usa13509	3.23	1 299.5	0.19	13041.9	4.4	7 807.5

Heuristic Optimization 2013

Note:

Variable depth search algorithms have been very successful for other problems, including:

- the Graph Partitioning Problem [Kernigan and Lin, 1970];
- the Unconstrained Binary Quadratic Programming Problem [Merz and Freisleben, 2002];
- ▶ the Generalised Assignment Problem [Yagiura *et al.*, 1999].

Dynasearch (1)

- Iterative improvement method based on building complex search steps from combinations of simple search steps.
- Simple search steps constituting any given complex step are required to be *mutually independent*, *i.e.*, do not interfere with each other w.r.t. effect on evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

Therefore: Overall effect of complex search step = sum of effects of constituting simple steps; complex search steps Heuristic maintain 2 feasibility of candidate solutions.

Dynasearch (2)

- Key idea: Efficiently find optimal combination of mutually independent simple search steps using *Dynamic Programming*.
- Successful applications to various combinatorial optimisation problems, including:
 - the TSP and the Linear Ordering Problem [Congram, 2000]
 - the Single Machine Total Weighted Tardiness Problem (scheduling) [Congram et al., 2002]

The methods we have seen so far are iterative **improvement** methods, that is, they get stuck in local optima.

Simple mechanisms for escaping from local optima:

- Restart: re-initialise search whenever a local optimum is encountered.
- Non-improving steps: in local optima, allow selection of candidate solutions with equal or worse evaluation function value, *e.g.*, using minimally worsening steps.

Note: Neither of these mechanisms is guaranteed to always escape effectively from local optima.

Heuristic Optimization 2013

Diversification vs Intensification

- Goal-directed and randomised components of SLS strategy need to be balanced carefully.
- Intensification: aims to greedily increase solution quality or probability, e.g., by exploiting the evaluation function.
- Diversification: aim to prevent search stagnation by preventing search process from getting trapped in confined regions.

Examples:

- Iterative Improvement (II): intensification strategy.
- Uninformed Random Walk (URW): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms the basis for advanced SLS methods.

'Simple' SLS Methods

Goal:

Effectively escape from local minima of given evaluation function.

General approach:

For fixed neighbourhood, use step function that permits *worsening search steps*.

Specific methods:

- Randomised Iterative Improvement
- Probabilistic Iterative Improvement
- Simulated Annealing
- Tabu Search
- Dynamic Local Search

Heuristic Optimization 2013

56

Randomised Iterative Improvement

Key idea: In each search step, with a fixed probability perform an uninformed random walk step instead of an iterative improvement step.

Randomised Iterative Improvement (RII):

determine initial candidate solution *s* While termination condition is not satisfied:

```
With probability wp:
choose a neighbour s' of s uniformly at random
Otherwise:
choose a neighbour s' of s such that g(s') < g(s) or,
if no such s' exists, choose s' such that g(s') is minimal
s := s'
```

Note:

No need to terminate search when local minimum is encountered

Instead: Bound number of search steps or CPU time from beginning of search or after last improvement.

Probabilistic mechanism permits arbitrary long sequences of random walk steps

Therefore: When run sufficiently long, RII is guaranteed to find (optimal) solution to any problem instance with arbitrarily high probability.

A variant of RII has successfully been applied to SAT (GWSAT algorithm), but generally, RII is often outperformed by more complex SLS methods.

Heuristic Optimization 2013

58

Example: Randomised Iterative Best Improvement for SAT

```
procedure GUWSAT(F, wp, maxSteps)
   input: propositional formula F, probability wp, integer maxSteps
   output: model of F or \emptyset
   choose assignment a of truth values to all variables in F
      uniformly at random;
   steps := 0;
   while not(a satisfies F) and (steps < maxSteps) do
      with probability wp do
         select x uniformly at random from set of all variables in F;
      otherwise
          select x uniformly at random from \{x' \mid x' \text{ is a variable in } F and
             changing value of x' in a max. decreases number of unsat. clauses};
      change value of x in a;
      steps := steps + 1;
   end
   if a satisfies F then return a
   else return \emptyset
   end
end GUWSAT
Heuristic Optimization 2013
```

Note:

- A variant of GUWSAT, GWSAT [Selman et al., 1994], was at some point state-of-the-art for SAT
- Generally, RII is often outperformed by more complex SLS methods
- Very easy to implement
- Very few parameters

Heuristic Optimization 2013

60

Probabilistic Iterative Improvement

Key idea: Accept worsening steps with probability that depends on respective deterioration in evaluation function value: bigger deterioration \cong smaller probability

Realisation:

- Function p(g, s): determines probability distribution over neighbours of s based on their values under evaluation function g.
- Let step(s)(s') := p(g, s)(s').

Note:

- Behaviour of PII crucially depends on choice of *p*.
- ▶ II and RII are special cases of PII.

Example: Metropolis PII for the TSP (1)

- **Search space:** set of all Hamiltonian cycles in given graph G.
- Solution set: same as search space (*i.e.*, all candidate solutions are considered feasible).
- Neighbourhood relation: reflexive variant of 2-exchange neighbourhood relation (includes s in N(s), *i.e.*, allows for steps that do not change search position).

Heuristic Optimization 2013

Example: Metropolis PII for the TSP (2)

- **Initialisation:** pick Hamiltonian cycle uniformly at random.
- **Step function:** implemented as 2-stage process:
 - 1. select neighbour $s' \in N(s)$ uniformly at random;
 - 2. accept as new search position with probability:

(*Metropolis condition*), where *temperature* parameter T controls likelihood of accepting worsening steps.

Termination: upon exceeding given bound on run-time.