
Variable Neighbourhood Descent

I recall: Local minima are relative to neighbourhood relation.

I key idea: To escape from local minimum of given
neighbourhood relation, switch to di↵erent
neighbhourhood relation.

I use k neighbourhood relations N1, . . . ,N
k

, (typically)
ordered according to increasing neighbourhood size.

I always use smallest neighbourhood that facilitates
improving steps.

I upon termination, candidate solution is locally
optimal w.r.t. all neighbourhoods
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Variable Neighbourhood Descent (VND):

determine initial candidate solution s
i := 1
Repeat:
|| choose a most improving neighbour s 0 of s in N

i|| If g(s 0) < g(s):
|| s := s 0

|| i := 1
|| Else:
| i := i + 1
Until i > k
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piped VND

I di↵erent iterative improvement algorithms II1 . . . II
k

available

I key idea: build a chain of iterative improvement algorithms

I di↵erent orders of algorithms often reasonable, typically same
as would be done in standard VND

I substantial performance improvements possible without
modifying code of existing iterative improvement algorithms
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piped VND for single-machine total weighted tardiness
problem (SMTWTP)

I given:
I single machine, continuously available
I n jobs, for each job j is given its processing time p

j

, its due
date d

j

and its importance w
j

I lateness L
j

= C
j

� d
j

, C
j

: completion time of job j

I tardiness T
j

= max{L
j

, 0}
I goal:

I minimise the sum of the weighted tardinesses of all jobs

I SMTWTP NP-hard.

I candidate solutions are permutations of job indices
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Neighbourhoods for SMTWTP

A B C D E F

A C B D E F

φ

φ'

A B C D E F

A E C D B F

φ

transpose neighbourhood

φ'

A B C D E F

A C D B E F

φ

exchange neighbourhood

insert neighbourhood

φ'
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SMTWTP example:

computational results for three di↵erent starting solutions
�

avg

: deviation from best-known solutions, averaged over 125 instances
t

avg

: average computation time on a Pentium II 266MHz

initial exchange insert exchange+insert insert+exchange
solution �

avg

t

avg

�
avg

t

avg

�
avg

t

avg

�
avg

t

avg

EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

AU 0.92 0.040 0.56 0.26 0.59 0.10 0.21 0.27
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Note:

I VND often performs substantially better than simple II
or II in large neighbourhoods [Hansen and Mladenović, 1999]

I many variants exist that switch between neighbhourhoods
in di↵erent ways.

I more general framework for SLS algorithms that switch
between multiple neighbourhoods: Variable Neighbourhood
Search (VNS) [Mladenović and Hansen, 1997].
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Very large scale neighborhood search (VLSN)

I VLSN algorithms are iterative improvement algorithms that
make use of very large neighborhoods, often
exponentially-sized ones

I very large scale neighborhoods require e�cient neighborhood
search algorithms, which is facilitated through special-purpose
neighborhood structures

I two main classes
I explore heuristically very large scale neighborhoods

example: variable depth search
I define special neighborhood structures that allow for e�cient

search (often in polynomial time)
example: Dynasearch
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Variable Depth Search

I Key idea: Complex steps in large neighbourhoods =
variable-length sequences of simple steps in small
neighbourhood.

I the number of solution components that is exchanged in the
complex step is variable and changes from one complex step
to another.

I Use various feasibility restrictions on selection of simple search
steps to limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.
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Variable Depth Search (VDS):

determine initial candidate solution s
t̂ := s
While s is not locally optimal:
|| Repeat:
|| || select best feasible neighbour t
|| | If g(t) < g(t̂): t̂ := t
|| Until construction of complex step has been completed
b s := t̂
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Example: The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 1-exchange steps and are constructed from
sequences of Hamiltonian paths

I �-path: Hamiltonian path p + 1 edge connecting one end of p
to interior node of p (‘lasso’ structure):

u

a)

v

u

b)

vw
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Basic LK exchange step:

I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain �-path by adding an edge (v ,w):

u

b)

vw

I Break cycle by removing edge (w , v 0):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v 0, u):

u

c)

vv'w
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Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t⇤ := s; set p := s

2. obtain �-path p0 by replacing one edge in p

3. consider Hamiltonian cycle t obtained from p by
(uniquely) defined edge exchange

4. if w(t) < w(t⇤) then set t⇤ := t; p := p0

5. if termination criteria of LK step construction not met, go to
step 2

6. accept t⇤ as new current candidate solution s if w(t⇤) < w(s)

Note: This can be interpreted as sequence of 1-exchange steps
that alternate between �-paths and Hamiltonian cycles.
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Additional mechanisms used by LK algorithm:

I Tabu restriction: Any edge that has been added cannot be
removed and any edge that has been removed cannot be
added in the same LK step.

Note: This limits the number of simple steps in a complex
LK step.

I Limited form of backtracking ensures that local minimum
found by the algorithm is optimal w.r.t. standard 3-exchange
neighbourhood

Heuristic Optimization 2013 43



Lin-Kernighan (LK) Algorithm for the TSP

I k–exchange neighbours with k > 3 can reach better solution
quality, but require significantly increased computation times

I LK constructs complex search steps by iteratively
concatenating 2-exchange steps

I in each complex step, a set of edges X = {x1, . . . xr} is
deleted from a current tour p and replaced by a set of edges
Y = {y1, . . . yr} to form a new tour p0

I the number of edges that are exchanged in the complex step
is variable and changes from one complex step to another

I termination of the construction process is guaranteed through
a gain criterion and additional conditions on the simple moves
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Construction of complex step

I the two sets X and Y are constructed iteratively

I edges x
i

and y
i

as well as y
i

and x
i+1 need to share an

endpoint; this results in sequential moves

I at any point during the construction process, there needs to
be an alternative edge y 0

i

such that complex step defined by
X = {x1, . . . xi} and Y = {y1, . . . y 0

i

} yields a valid tour
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Gain criterion

I at each step compute length of tour defined through
X = {x1, . . . xi} and Y = {y1, . . . y 0

i

}
I also compute gain g

i

:=
P

i

j=1(w(y
j

)� w(x
j

)) for
X = {x1, . . . xi} and Y = {y1, . . . yi}

I terminate construction if w(p)� g
i

< w(p
i⇤), where p is

current tour and p
i⇤ best tour found during construction

I p
i⇤ becomes new tour if w(p

i⇤) < w(p)
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Search guidance in LK

I search for improving move starts with selecting a vertex u1
I the sets X and Y are required to be disjoint and, hence,

bounds the depth of moves to n

I at each step try to include a least costly possible edge y
i

I if no improved complex move is found

I apply backtracking on the first and second level of the
construction steps (choices for x1, x2, y1, y2)

I consider alternative edges in order of increasing weight w(y
i

)
I at last backtrack level consider alternative starting nodes u1
I backtracking ensures that final tours are at least 2–opt and

3–opt

I some few additional cases receive special treatment

I important are techniques for pruning the search
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Variants of LK

I details of LK implementations can vary in many details
I depth of backtracking
I width of backtracking
I rules for guiding the search
I bounds on length of complex LK steps
I type and length of candidate lists
I search initialisation

I essential for good performance on large TSP instances are
fine-tuned data structures

I wide range of performance trade-o↵s of available
implementations (Helsgaun’s LK, Neto’s LK, LK
implementation in concorde)

I noteworthy advancement through Helsgaun’s LK
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Solution Quality distributions for LK-H, LK-ABCC, and 3-opt
on TSPLIB instance pcb3038:
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Example:

Computational results for LK-ABCC, LK-H, and 3-opt
averages across 1 000 trials; times in ms on Athlon 1.2 GHz CPU, 1 GB RAM

LK-ABCC LK-H 3-opt-fr + c l

Instance �
avg

t

avg

�
avg

t

avg

�
avg

t

avg

rat783 1.85 21.0 0.04 61.8 3.7 34.6
pcb1173 2.25 45.3 0.24 238.3 4.6 66.5
d1291 5.11 63.0 0.62 444.4 4.9 76.4
fl1577 9.95 114.1 5.30 1 513.6 22.4 93.4
pr2392 2.39 84.9 0.19 1 080.7 4.5 188.7
pcb3038 2.14 134.3 0.19 1 437.9 4.4 277.7
fnl4461 1.74 239.3 0.09 1 442.2 3.7 811.6
pla7397 4.05 625.8 0.40 8 468.6 6.0 2 260.6
rl11849 6.00 1 072.3 0.38 9 681.9 4.6 8 628.6
usa13509 3.23 1 299.5 0.19 13 041.9 4.4 7 807.5
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Note:

Variable depth search algorithms have been very successful
for other problems, including:

I the Graph Partitioning Problem [Kernigan and Lin, 1970];

I the Unconstrained Binary Quadratic Programming Problem
[Merz and Freisleben, 2002];

I the Generalised Assignment Problem [Yagiura et al., 1999].

Heuristic Optimization 2013 51



Dynasearch (1)

I Iterative improvement method based on building complex
search steps from combinations of simple search steps.

I Simple search steps constituting any given complex step
are required to be mutually independent,
i.e., do not interfere with each other w.r.t. e↵ect on
evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall e↵ect of complex search step = sum of
e↵ects of constituting simple steps; complex search steps
maintain feasibility of candidate solutions.Heuristic Optimization 2013 52

Dynasearch (2)

I Key idea: E�ciently find optimal combination of mutually
independent simple search steps using Dynamic Programming.

I Successful applications to various combinatorial optimisation
problems, including:

I the TSP and the Linear Ordering Problem [Congram, 2000]

I the Single Machine Total Weighted Tardiness Problem
(scheduling) [Congram et al., 2002]
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The methods we have seen so far are iterative improvement
methods, that is, they get stuck in local optima.

Simple mechanisms for escaping from local optima:

I Restart: re-initialise search whenever a local optimum
is encountered.

I Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function
value, e.g., using minimally worsening steps.

Note: Neither of these mechanisms is guaranteed to always
escape e↵ectively from local optima.
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Diversification vs Intensification

I Goal-directed and randomised components of SLS strategy
need to be balanced carefully.

I Intensification: aims to greedily increase solution quality or
probability, e.g., by exploiting the evaluation function.

I Diversification: aim to prevent search stagnation by preventing
search process from getting trapped in confined regions.

Examples:

I Iterative Improvement (II): intensification strategy.

I Uninformed Random Walk (URW): diversification strategy.

Balanced combination of intensification and diversification
mechanisms forms the basis for advanced SLS methods.
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‘Simple’ SLS Methods

Goal:

E↵ectively escape from local minima of given evaluation function.

General approach:

For fixed neighbourhood, use step function that permits
worsening search steps.

Specific methods:

I Randomised Iterative Improvement

I Probabilistic Iterative Improvement

I Simulated Annealing

I Tabu Search

I Dynamic Local Search
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Randomised Iterative Improvement

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomised Iterative Improvement (RII):

determine initial candidate solution s
While termination condition is not satisfied:
|| With probability wp:
|| choose a neighbour s 0 of s uniformly at random
|| Otherwise:
|| choose a neighbour s 0 of s such that g(s 0) < g(s) or,
|| if no such s 0 exists, choose s 0 such that g(s 0) is minimal
b s := s 0
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Note:

I No need to terminate search when local minimum is
encountered

Instead: Bound number of search steps or CPU time
from beginning of search or after last improvement.

I Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run su�ciently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

I A variant of RII has successfully been applied to SAT
(GWSAT algorithm), but generally, RII is often outperformed
by more complex SLS methods.
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Example: Randomised Iterative Best Improvement for SAT

procedure GUWSAT(F ,wp,maxSteps)
input: propositional formula F , probability wp, integer maxSteps

output: model of F or ;
choose assignment a of truth values to all variables in F

uniformly at random;
steps := 0;
while not(a satisfies F ) and (steps < maxSteps) do

with probability wp do
select x uniformly at random from set of all variables in F ;

otherwise
select x uniformly at random from {x 0 | x 0 is a variable in F and

changing value of x 0 in a max. decreases number of unsat. clauses};
change value of x in a;
steps := steps+1;

end
if a satisfies F then return a

else return ;
end

end GUWSAT
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Note:

I A variant of GUWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT

I Generally, RII is often outperformed by more complex
SLS methods

I Very easy to implement

I Very few parameters
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Probabilistic Iterative Improvement

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ⇠= smaller probability

Realisation:

I Function p(g , s): determines probability distribution
over neighbours of s based on their values under
evaluation function g .

I Let step(s)(s 0) := p(g , s)(s 0).

Note:

I Behaviour of PII crucially depends on choice of p.

I II and RII are special cases of PII.
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Example: Metropolis PII for the TSP (1)

I Search space: set of all Hamiltonian cycles in given graph G .

I Solution set: same as search space (i.e., all candidate
solutions are considered feasible).

I Neighbourhood relation: reflexive variant of 2-exchange
neighbourhood relation (includes s in N(s), i.e., allows for
steps that do not change search position).
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Example: Metropolis PII for the TSP (2)

I Initialisation: pick Hamiltonian cycle uniformly at random.

I Step function: implemented as 2-stage process:

1. select neighbour s 0 2 N(s) uniformly at random;

2. accept as new search position with probability:

p(T , s, s 0) :=

8
<

:

1 if f (s 0)  f (s)

exp( f (s)�f (s0)
T

) otherwise

(Metropolis condition), where temperature parameter T
controls likelihood of accepting worsening steps.

I Termination: upon exceeding given bound on run-time.
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