
Variable Neighbourhood Descent

I recall: Local minima are relative to neighbourhood relation.

I key idea: To escape from local minimum of given
neighbourhood relation, switch to di↵erent
neighbhourhood relation.

I use k neighbourhood relations N1, . . . ,N
k

, (typically)
ordered according to increasing neighbourhood size.

I always use smallest neighbourhood that facilitates
improving steps.

I upon termination, candidate solution is locally
optimal w.r.t. all neighbourhoods

Heuristic Optimization 2013 30

Variable Neighbourhood Descent (VND):

determine initial candidate solution s
i := 1
Repeat:
|| choose a most improving neighbour s 0 of s in N

i|| If g(s 0) < g(s):
|| s := s 0

|| i := 1
|| Else:
| i := i + 1
Until i > k

Heuristic Optimization 2013 31

piped VND

I di↵erent iterative improvement algorithms II1 . . . II
k

available

I key idea: build a chain of iterative improvement algorithms

I di↵erent orders of algorithms often reasonable, typically same
as would be done in standard VND

I substantial performance improvements possible without
modifying code of existing iterative improvement algorithms

Heuristic Optimization 2013 32

piped VND for single-machine total weighted tardiness
problem (SMTWTP)

I given:
I single machine, continuously available
I n jobs, for each job j is given its processing time p

j

, its due
date d

j

and its importance w
j

I lateness L
j

= C
j

� d
j

, C
j

: completion time of job j

I tardiness T
j

= max{L
j

, 0}
I goal:

I minimise the sum of the weighted tardinesses of all jobs

I SMTWTP NP-hard.

I candidate solutions are permutations of job indices

Heuristic Optimization 2013 33

Neighbourhoods for SMTWTP

A B C D E F

A C B D E F

φ

φ'

A B C D E F

A E C D B F

φ

transpose neighbourhood

φ'

A B C D E F

A C D B E F

φ

exchange neighbourhood

insert neighbourhood

φ'

Heuristic Optimization 2013 34

SMTWTP example:

computational results for three di↵erent starting solutions
�

avg

: deviation from best-known solutions, averaged over 125 instances
t

avg

: average computation time on a Pentium II 266MHz

initial exchange insert exchange+insert insert+exchange
solution �

avg

t

avg

�
avg

t

avg

�
avg

t

avg

�
avg

t

avg

EDD 0.62 0.140 1.19 0.64 0.24 0.20 0.47 0.67
MDD 0.65 0.078 1.31 0.77 0.40 0.14 0.44 0.79

AU 0.92 0.040 0.56 0.26 0.59 0.10 0.21 0.27

Heuristic Optimization 2013 35

Note:

I VND often performs substantially better than simple II
or II in large neighbourhoods [Hansen and Mladenović, 1999]

I many variants exist that switch between neighbhourhoods
in di↵erent ways.

I more general framework for SLS algorithms that switch
between multiple neighbourhoods: Variable Neighbourhood
Search (VNS) [Mladenović and Hansen, 1997].

Heuristic Optimization 2013 36

Very large scale neighborhood search (VLSN)

I VLSN algorithms are iterative improvement algorithms that
make use of very large neighborhoods, often
exponentially-sized ones

I very large scale neighborhoods require e�cient neighborhood
search algorithms, which is facilitated through special-purpose
neighborhood structures

I two main classes
I explore heuristically very large scale neighborhoods

example: variable depth search
I define special neighborhood structures that allow for e�cient

search (often in polynomial time)
example: Dynasearch

Heuristic Optimization 2013 37

Variable Depth Search

I Key idea: Complex steps in large neighbourhoods =
variable-length sequences of simple steps in small
neighbourhood.

I the number of solution components that is exchanged in the
complex step is variable and changes from one complex step
to another.

I Use various feasibility restrictions on selection of simple search
steps to limit time complexity of constructing complex steps.

I Perform Iterative Improvement w.r.t. complex steps.

Heuristic Optimization 2013 38

Variable Depth Search (VDS):

determine initial candidate solution s
t̂ := s
While s is not locally optimal:
|| Repeat:
|| || select best feasible neighbour t
|| | If g(t) < g(t̂): t̂ := t
|| Until construction of complex step has been completed
b s := t̂

Heuristic Optimization 2013 39

Example: The Lin-Kernighan (LK) Algorithm for the TSP (1)

I Complex search steps correspond to sequences
of 1-exchange steps and are constructed from
sequences of Hamiltonian paths

I �-path: Hamiltonian path p + 1 edge connecting one end of p
to interior node of p (‘lasso’ structure):

u

a)

v

u

b)

vw

Heuristic Optimization 2013 40

Basic LK exchange step:

I Start with Hamiltonian path (u, . . . , v):

u

a)

v

I Obtain �-path by adding an edge (v ,w):

u

b)

vw

I Break cycle by removing edge (w , v 0):

u

c)

vv'w

I Note: Hamiltonian path can be completed
into Hamiltonian cycle by adding edge (v 0, u):

u

c)

vv'w

Heuristic Optimization 2013 41

Construction of complex LK steps:

1. start with current candidate solution (Hamiltonian cycle) s;
set t⇤ := s; set p := s

2. obtain �-path p0 by replacing one edge in p

3. consider Hamiltonian cycle t obtained from p by
(uniquely) defined edge exchange

4. if w(t) < w(t⇤) then set t⇤ := t; p := p0

5. if termination criteria of LK step construction not met, go to
step 2

6. accept t⇤ as new current candidate solution s if w(t⇤) < w(s)

Note: This can be interpreted as sequence of 1-exchange steps
that alternate between �-paths and Hamiltonian cycles.

Heuristic Optimization 2013 42

Additional mechanisms used by LK algorithm:

I Tabu restriction: Any edge that has been added cannot be
removed and any edge that has been removed cannot be
added in the same LK step.

Note: This limits the number of simple steps in a complex
LK step.

I Limited form of backtracking ensures that local minimum
found by the algorithm is optimal w.r.t. standard 3-exchange
neighbourhood

Heuristic Optimization 2013 43

Lin-Kernighan (LK) Algorithm for the TSP

I k–exchange neighbours with k > 3 can reach better solution
quality, but require significantly increased computation times

I LK constructs complex search steps by iteratively
concatenating 2-exchange steps

I in each complex step, a set of edges X = {x1, . . . xr} is
deleted from a current tour p and replaced by a set of edges
Y = {y1, . . . yr} to form a new tour p0

I the number of edges that are exchanged in the complex step
is variable and changes from one complex step to another

I termination of the construction process is guaranteed through
a gain criterion and additional conditions on the simple moves

Heuristic Optimization 2013 44

Construction of complex step

I the two sets X and Y are constructed iteratively

I edges x
i

and y
i

as well as y
i

and x
i+1 need to share an

endpoint; this results in sequential moves

I at any point during the construction process, there needs to
be an alternative edge y 0

i

such that complex step defined by
X = {x1, . . . xi} and Y = {y1, . . . y 0

i

} yields a valid tour

Heuristic Optimization 2013 45

Gain criterion

I at each step compute length of tour defined through
X = {x1, . . . xi} and Y = {y1, . . . y 0

i

}
I also compute gain g

i

:=
P

i

j=1(w(y
j

)� w(x
j

)) for
X = {x1, . . . xi} and Y = {y1, . . . yi}

I terminate construction if w(p)� g
i

< w(p
i⇤), where p is

current tour and p
i⇤ best tour found during construction

I p
i⇤ becomes new tour if w(p

i⇤) < w(p)

Heuristic Optimization 2013 46

Search guidance in LK

I search for improving move starts with selecting a vertex u1
I the sets X and Y are required to be disjoint and, hence,

bounds the depth of moves to n

I at each step try to include a least costly possible edge y
i

I if no improved complex move is found

I apply backtracking on the first and second level of the
construction steps (choices for x1, x2, y1, y2)

I consider alternative edges in order of increasing weight w(y
i

)
I at last backtrack level consider alternative starting nodes u1
I backtracking ensures that final tours are at least 2–opt and

3–opt

I some few additional cases receive special treatment

I important are techniques for pruning the search

Heuristic Optimization 2013 47

Variants of LK

I details of LK implementations can vary in many details
I depth of backtracking
I width of backtracking
I rules for guiding the search
I bounds on length of complex LK steps
I type and length of candidate lists
I search initialisation

I essential for good performance on large TSP instances are
fine-tuned data structures

I wide range of performance trade-o↵s of available
implementations (Helsgaun’s LK, Neto’s LK, LK
implementation in concorde)

I noteworthy advancement through Helsgaun’s LK

Heuristic Optimization 2013 48

Solution Quality distributions for LK-H, LK-ABCC, and 3-opt
on TSPLIB instance pcb3038:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3

P

run-time [CPU sec]

LK-H
LK-ABCC

3opt-S
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6

P

relative solution quality [%]

LK-H
LK-ABCC

3opt-S

Heuristic Optimization 2013 49

Example:

Computational results for LK-ABCC, LK-H, and 3-opt
averages across 1 000 trials; times in ms on Athlon 1.2 GHz CPU, 1 GB RAM

LK-ABCC LK-H 3-opt-fr + c l

Instance �
avg

t

avg

�
avg

t

avg

�
avg

t

avg

rat783 1.85 21.0 0.04 61.8 3.7 34.6
pcb1173 2.25 45.3 0.24 238.3 4.6 66.5
d1291 5.11 63.0 0.62 444.4 4.9 76.4
fl1577 9.95 114.1 5.30 1 513.6 22.4 93.4
pr2392 2.39 84.9 0.19 1 080.7 4.5 188.7
pcb3038 2.14 134.3 0.19 1 437.9 4.4 277.7
fnl4461 1.74 239.3 0.09 1 442.2 3.7 811.6
pla7397 4.05 625.8 0.40 8 468.6 6.0 2 260.6
rl11849 6.00 1 072.3 0.38 9 681.9 4.6 8 628.6
usa13509 3.23 1 299.5 0.19 13 041.9 4.4 7 807.5

Heuristic Optimization 2013 50

Note:

Variable depth search algorithms have been very successful
for other problems, including:

I the Graph Partitioning Problem [Kernigan and Lin, 1970];

I the Unconstrained Binary Quadratic Programming Problem
[Merz and Freisleben, 2002];

I the Generalised Assignment Problem [Yagiura et al., 1999].

Heuristic Optimization 2013 51

Dynasearch (1)

I Iterative improvement method based on building complex
search steps from combinations of simple search steps.

I Simple search steps constituting any given complex step
are required to be mutually independent,
i.e., do not interfere with each other w.r.t. e↵ect on
evaluation function and feasibility of candidate solutions.

Example: Independent 2-exchange steps for the TSP:

u1 ui ui+1 uj uj+1 uk uk+1 ul ul+1 un un+1

Therefore: Overall e↵ect of complex search step = sum of
e↵ects of constituting simple steps; complex search steps
maintain feasibility of candidate solutions.Heuristic Optimization 2013 52

Dynasearch (2)

I Key idea: E�ciently find optimal combination of mutually
independent simple search steps using Dynamic Programming.

I Successful applications to various combinatorial optimisation
problems, including:

I the TSP and the Linear Ordering Problem [Congram, 2000]

I the Single Machine Total Weighted Tardiness Problem
(scheduling) [Congram et al., 2002]

Heuristic Optimization 2013 53

The methods we have seen so far are iterative improvement
methods, that is, they get stuck in local optima.

Simple mechanisms for escaping from local optima:

I Restart: re-initialise search whenever a local optimum
is encountered.

I Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function
value, e.g., using minimally worsening steps.

Note: Neither of these mechanisms is guaranteed to always
escape e↵ectively from local optima.

Heuristic Optimization 2013 54

Diversification vs Intensification

I Goal-directed and randomised components of SLS strategy
need to be balanced carefully.

I Intensification: aims to greedily increase solution quality or
probability, e.g., by exploiting the evaluation function.

I Diversification: aim to prevent search stagnation by preventing
search process from getting trapped in confined regions.

Examples:

I Iterative Improvement (II): intensification strategy.

I Uninformed Random Walk (URW): diversification strategy.

Balanced combination of intensification and diversification
mechanisms forms the basis for advanced SLS methods.

Heuristic Optimization 2013 55

‘Simple’ SLS Methods

Goal:

E↵ectively escape from local minima of given evaluation function.

General approach:

For fixed neighbourhood, use step function that permits
worsening search steps.

Specific methods:

I Randomised Iterative Improvement

I Probabilistic Iterative Improvement

I Simulated Annealing

I Tabu Search

I Dynamic Local Search

Heuristic Optimization 2013 56

Randomised Iterative Improvement

Key idea: In each search step, with a fixed probability
perform an uninformed random walk step instead of
an iterative improvement step.

Randomised Iterative Improvement (RII):

determine initial candidate solution s
While termination condition is not satisfied:
|| With probability wp:
|| choose a neighbour s 0 of s uniformly at random
|| Otherwise:
|| choose a neighbour s 0 of s such that g(s 0) < g(s) or,
|| if no such s 0 exists, choose s 0 such that g(s 0) is minimal
b s := s 0

Heuristic Optimization 2013 57

Note:

I No need to terminate search when local minimum is
encountered

Instead: Bound number of search steps or CPU time
from beginning of search or after last improvement.

I Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run su�ciently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

I A variant of RII has successfully been applied to SAT
(GWSAT algorithm), but generally, RII is often outperformed
by more complex SLS methods.

Heuristic Optimization 2013 58

Example: Randomised Iterative Best Improvement for SAT

procedure GUWSAT(F ,wp,maxSteps)
input: propositional formula F , probability wp, integer maxSteps

output: model of F or ;
choose assignment a of truth values to all variables in F

uniformly at random;
steps := 0;
while not(a satisfies F) and (steps < maxSteps) do

with probability wp do
select x uniformly at random from set of all variables in F ;

otherwise
select x uniformly at random from {x 0 | x 0 is a variable in F and

changing value of x 0 in a max. decreases number of unsat. clauses};
change value of x in a;
steps := steps+1;

end
if a satisfies F then return a

else return ;
end

end GUWSAT

Heuristic Optimization 2013 59

Note:

I A variant of GUWSAT, GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT

I Generally, RII is often outperformed by more complex
SLS methods

I Very easy to implement

I Very few parameters

Heuristic Optimization 2013 60

Probabilistic Iterative Improvement

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ⇠= smaller probability

Realisation:

I Function p(g , s): determines probability distribution
over neighbours of s based on their values under
evaluation function g .

I Let step(s)(s 0) := p(g , s)(s 0).

Note:

I Behaviour of PII crucially depends on choice of p.

I II and RII are special cases of PII.

Heuristic Optimization 2013 61

Example: Metropolis PII for the TSP (1)

I Search space: set of all Hamiltonian cycles in given graph G .

I Solution set: same as search space (i.e., all candidate
solutions are considered feasible).

I Neighbourhood relation: reflexive variant of 2-exchange
neighbourhood relation (includes s in N(s), i.e., allows for
steps that do not change search position).

Heuristic Optimization 2013 62

Example: Metropolis PII for the TSP (2)

I Initialisation: pick Hamiltonian cycle uniformly at random.

I Step function: implemented as 2-stage process:

1. select neighbour s 0 2 N(s) uniformly at random;

2. accept as new search position with probability:

p(T , s, s 0) :=

8
<

:

1 if f (s 0) f (s)

exp(f (s)�f (s0)
T

) otherwise

(Metropolis condition), where temperature parameter T
controls likelihood of accepting worsening steps.

I Termination: upon exceeding given bound on run-time.

Heuristic Optimization 2013 63

