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Abstract
We provide a semantic for the values given to possi-
bility measures. It is based on the semantic of the
transferable belief model, itself based on the same ap-
proach as used for subjective probabilities. Besides we
explain how the conjunctive combination of two possi-
bility measures corresponds to the hyper-cautious con-
junctive combination of the belief functions induced by
the possibility measures.

1 Introduction
Quantitative possibility theory has been proposed as
a numerical model which could represent quantified
uncertainty (Zadeh, 1978; Dubois & Prade, 1998). It
competes somehow with the probabilistic model (in its
personalistic or Bayesian forms) and the transferable
belief model (TBM) (Smets & Kennes, 1994; Smets,
1997, 1998b), both of which also intend to represent
degrees of belief. A major issue when developing mod-
els to represent a psychological quantities, and belief is
such an object, is to produce an operational definition
of what the degrees are supposed to quantify. Such
an operational definition, and the assessment meth-
ods that can be derived from it, provides a meaning,
a semantic, to the .7 encountered in statements like
‘my degree of belief is .7’. Such an operational defi-
nition has been produced long ago by the Bayesians
(see Section 6.1) and recently for the TBM (see Sec-
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tion 6.3). So the numerical values encountered in these
two models are well defined.
Quantitative epistemic possibility theory (QEPT) did
not have such an operational definition, what lead to
criticisms. One way to avoid them was to develop a
qualitative epistemic possibility theory were only or-
der relations are used (Dubois & Prade, 1998). Nev-
ertheless QEPT seems a theory worth exploring, and
rejecting it because of the lack of semantic would be
unfortunate. Finding such a semantic would solve the
problem, and this paper is just doing that.
For long, it had been realized that possibility functions
are mathematically identical to consonant plausibility
functions (Shafer, 1976), so using the TBM semantic
to produce a QEPT semantic was an obvious attitude,
even if left unjustified.
Suppose You (hereafter You is the agent who holds
the beliefs) consider what beliefs You should adopt
on what is the actual value of a variable Ω. You
have decided that Your beliefs should be those pro-
duced by a fully reliable source. Should You know the
source’s beliefs, they would be Yours. Unfortunately,
it happens You only know the value of the ‘pignisitc’
probabilities the source would use to bet on the actual
value of Ω (Smets, 1990; Smets & Kennes, 1994). The
knowledge of the values of the probabilities allocated
to the elements of Ω is not sufficient to construct the
unique underlying belief function. Many belief func-
tions can induce these probabilities. So all You know
about the belief function that represents the source’s
beliefs is that it belongs to the set of beliefs that in-
duce the collected pignistic probabilities. Obeying to
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a ‘least commitment principle’ that states that You
should never give more beliefs than justified, You can
select in that family the ‘least committed’ element. It
happens it correspond to consonant plausibility func-
tion, hence to a possibility function. So a possibility
function is the least committed belief function which
pignistic transformation is equal to the pignistic prob-
abilities collected from the source. This link had al-
ready been realized long ago. What was missing was
showing that the analogy goes further.
Indeed in possibility theory, there exist a combina-
tion rule to conjunct two possibility functions. Let
Π1 and Π2 be two possibility functions on Ω. The
most classical conjunctive combination rule to build
Π12 consists in using the minimum rule: Π12(ω) =
min(Π1(ω),Π2(ω)) for all ω ∈ Ω and Π12(A) =
maxω∈A⊆Ω Π12(ω).
It is well known that Dempster’s rule of combination
applied to two consonant plausibility functions does
not produce a consonant plausibility function. So a
blind application of Dempster’s rule of combination
on two possibility functions was not appropriate, and
the analogy between consonant plausibility functions
and possibility functions seems to collapse there.
In fact the solution comes from the fact Dempster’s
rule of combination was not the appropriate rule of
conjunctive combination. Dempster’s rule of combi-
nation requires that the involved pieces of evidence
are ‘distinct’ and this property does not have to be
satisfied in our present combination problem. Other
rules exist based on some kind of cautious approach
and where ‘correlations’ between the involved belief
functions are considered.
Suppose You build two consonant plausibility func-
tions, i.e., two possibility functions, using the method
just presented. How to combine them conjunctively,
not knowing if ‘distinctness’ is applicable. All You
know it that the result of the combination must be a
specialization of each of them (see Section 3.1). So
consider all belief functions that are specialization of
the two initial possibility functions. In that family, ap-
ply again the ‘cautious’ approach and select as Your
belief the least committed element of that family. The
result is a new consonant plausibility function and it
turns out to be exactly the result one obtains within
possibility theory when using the minimum rule. So
the direct approach developed in possibility theory and
the one derived using the TBM detour are the same.
This result restores the coherence between the two
models, and thus using the TBM operational defini-
tion to explain the meaning of the possibility values is
perfectly valid and appropriate.
Therefore, QEPT is in fact a very cautious application

of the TBM. It can use the operational definition of
the TBM as an operational definition of the values of
the possibility function. The link between possibility
functions and grade of membership has been clarified
by Zadeh (1978) and thus can be used directly here.
We thus provide a semantic for both quantitative epis-
temic possibility theory and for fuzzy set theory.
In this paper we successively present the background
material on the TBM (Section 2). Then we explain
the concepts of specializations (Section 3), cautious
combinations (Section 4) and pignistic transformation
(Section 5). Then we explain the concepts of an op-
erational definition both in probability theory and in
the TBM (Section 6). Finally we show that possibil-
ity theory is indeed a very cautious TBM (Section 7).
This implies that the semantic developed within the
TBM can be applied to the semantic of the possibil-
ity measure, and automatically to the semantic of the
grade of membership encountered in fuzzy set theory.
An example illustrates how our method can be used
(Section 7.4). Proofs can be found in the long version
of this paper.

2 The transferable belief model

2.1 The transferable belief model

The TBM is a model for the representation of quan-
tified beliefs held by a agent denoted You. The be-
liefs concern the value of the actual world, denoted
ω0, which ω0 ∈ /Omega, the set of possible worlds, or
equivalently the actual value of a variable Ω.
The TBM is based on the assumption that beliefs
manifest themselves at two mental levels: the credal
level where beliefs are entertained and the pignistic
level where beliefs are used to make decisions. At
he credal level, beliefs are represented by belief func-
tions whereas at the pignistic level, the beliefs induce a
probability function which values are used to compute
the expected utilities needed in order to take optimal
decisions. The transformation between the belief func-
tion held at the credal level and the pignistic proba-
bilities used at the pignistic level is called the pignistic
transformation (see Section 5).
The central element of the TBM is the basic belief
assignment, denoted m. For A ⊆ Ω, m(A) is the part
of Your belief that supports A (i.e. ω0 ∈ A), and that,
due to lack of information, does not support any strict
subset of A. The focal elements of a belief function are
the subsets of Ω whose basic belief masses are positive.
If some further pieces of evidence become available to
You and You accept them as valid, and if their only
impact bearing on Ω is that they imply that the actual
world ω0 does not belong to B, then the mass m(A)
initially allocated to A is transferred to A∩B. Indeed,



some of Your belief (quantified bym(A)) was allocated
to A, and now You accept that ω0 /∈ B, so that mass
m(A) is transferred to A ∩ B (hence the name of the
model). The resulting new basic belief assignment is
the one obtained by the application of Dempster’s rule
of conditioning .
The degree of belief bel(A) quantifies the total amount
of justified specific support given to A. It is obtained
by summing all basic belief masses given to subsets
X ⊆ A (and X �= ∅). Indeed a part of belief that
supports that the actual world ω0 is in B also supports
that ω0 is in A whenever B ⊆ A. So for all A ⊆ Ω,

bel(A) =
∑

∅�=B⊆A

m(B)

The degree of plausibility pl(A) for A ⊆ Ω quanti-
fies the maximum amount of potential specific support
that could be given to A. It is obtained by adding all
the basic belief masses given to subsets X compatible
with A, i.e., such that X ∩A �= ∅:

pl(A) =
∑

B∩A �=∅
m(B) = bel(Ω) − bel(A).

Other functions we use repeatedly and that are in one
to one correspondence with any of m, bel and pl are
the commonality function q with:

q : 2Ω → [0, 1], q(A) =
∑

B:A⊆B

m(B), ∀A ⊆ Ω

2.2 Notation

In order to enhance the fact that we work with non-
normalized belief functions (m(∅) can be positive), we
use the notation bel and pl, whereas Shafer uses the
notation Bel and Pl.
Besides we use the next conventions that we have
found convenient, even though it might seems cum-
bersome in some cases. The full notation for bel and
its related functions is:

belΩ,�
Y,t [ECY,t](ω0 ∈ A) = x.

It denotes that x is the value of the degree of belief
held by the agent Y (abbreviation for You) at time t
that the actual world ω0 belongs to the set A of worlds,
where A is a subset of the frame of discernment Ω and
A ∈ 	 where 	 is a Boolean algebra of subsets of Ω.
The belief is based on the evidential corpus ECY,t held
by Y at t, where ECY,t represents all what agent Y
knows at t. In practice many indices can be omitted
for simplicity sake. Here 	 is 2Ω, the power set of
Ω. ‘ω0 ∈ A’ is denoted as ‘A’. Y , t and/or Ω are
omitted when the values of the missing elements are

clearly defined from the context. So belΩ[E](A) or
even bel(A) are often used.
Note that belΩ,�

Y,t [ECY,t] (and its simplified forms) de-
notes the belief function, and can be understood as a
finite vector of length |	|, which components are the
values of belΩ,�

Y,t [ECY,t](A) for every A ∈ 	.
In the above notation, bel can be replaced by any
of m, pl, q, etc... The indices should made it clear
what the links are. So mΩ,�

Y,t [ECY,t] and plΩ,�
Y,t [ECY,t]

are the bba and the plausibility function related to
belΩ,�

Y,t [ECY,t].

2.3 Consonant belief functions

The subsets A1, A2 . . . An of Ω are said to be nested if:

A1 ⊆ A2 ⊆ . . . ⊆ An

A belief function is said to be consonant iff its focal
elements are nested (Shafer, 1976, pg 219). By exten-
sion, we will speak of consonant basic belief assign-
ments, commonality functions, plausibility functions
. . . .

Theorem 2.1 Consonant belief functions.
(Shafer, Theorem 10.1, pg 220) Let m be a bba on Ω.
Then the following assertions are all equivalent:

1. m is consonant.

2. bel(A ∩B) = min(bel(A), bel(B)), ∀A,B ⊆ Ω.

3. pl(A ∪B) = max(pl(A), pl(B)), ∀A,B ⊆ Ω.

4. pl(A) = maxω∈A pl(ω), for all non empty A ⊆
Ω.

5. q(A) = minω∈A q(ω), for all non empty A ⊆ Ω.

Items 3 and 4 shows that consonant plausibility and
belief functions are possibility and necessity functions,
respectively. The fact that we work with unnormalized
bba’s does not affect these properties, being under-
stood that we never require that possibility and neces-
sity functions be normalized. The difference between
Π(Ω) or pl(Ω) and 1, that equals m(∅)) represents the
amount of conflict between the pieces of evidence that
were used to build these functions.

2.4 Conjunctive combinations

Let E1 and E2 be two pieces of evidence and let
mΩ[E1] and mΩ[E2] be the bba’s they induce on Ω.
Remember the symbols between [ and ] denote the
pieces of evidence taken in consideration when build-
ing Your belief function. We want to build the bba
that would result form the combination of the two
pieces of evidence. There are two families of combina-
tion:



• the conjunctive combinations that build the bba
given You accept that both sources are fully reli-
able.

• the disjunctive combinations that build the bba
given You only accept that one source is fully re-
liable but You do not know which one.

Only the conjunctive case is considered here. The case
of partially reliable source is not considered in this
paper. It would result in introducing the concepts of
discounting. Besides more complex combinations exist
but they are not considered here.

2.5 Non interactive combinations

Suppose the two pieces of evidence are considered as
‘distinct’, an ill defined concept but some justifications
can be found in (Shafer & Tversky, 1985; Smets, 1992).
Mathematically, it means that the result of the combi-
nation is a function of bel[E1] and bel[E2] only. We de-
note the result of the combination by m[E1 ∩©E2] and
write m[E1 ∩©E2] = m[E1] ∩©m[E2] where the ∩© sym-
bol is used to represent both the ‘and’ between the
two pieces of evidence when they are distinct and the
operator that maps the two bba’s into a bba.
Then ∀C ⊆ Ω :

m[E1 ∩©E2](C) =
∑

A⊆Ω,B⊆Ω,A∩B=C

m[E1](A)m[E2](B)

in which case:

q[E1 ∩©E2](A) = q[E1](A)q[E2](A) ∀A ⊆ Ω.

This rule correspond to Dempster’s rule of combina-
tion, except for its normalization factor. We call it the
conjunctive combination rule.

Note on notation. Historically, the conjunctive
combination rule was the only rule introduced by
Shafer who used the ⊕ symbol to denote it. But in or-
der to cope with disjunctive rules, with correlated rules
and interactive rules, we need extra symbols, and those
proposed here seem to create some convenient coher-
ence. Later on, we will introduce other operators that
will be denoted by ∧©and �© in order to denote various
forms of cautious conjunctive combination rules.

3 Specialization

3.1 Specialization matrix

The concept of specialization is at the core of the
transferable belief model (Klawonn & Smets, 1992).
Let mΩ

Y [BK] be the basic belief assignment that repre-
sents Your belief on Ω given the background knowledge
(BK) accumulated by You. The impact of a new piece

of evidence Ev induces a change in Your beliefs charac-
terized by a redistribution of the basic belief masses of
mΩ

Y [BK] such that mΩ
Y [BK](A) is distributed among

the subsets of A. In an colloquial way, we would say
that ‘the masses flow down’
Let s(B,A) ∈ [0, 1] be the proportion of the mass given
to A that flows into B ⊆ A when You learn the new
piece of evidence Ev. In order to conserve the whole
mass given to A after this transfer, the coefficients
s(B,A) must satisfy:

∑
B⊆Ω

s(B,A) = 1 ∀A ⊆ Ω

As masses can flow only to subsets, s(B,A) = 0 ∀B �⊆
A. The matrix S of the coefficients s(B,A) for A,B ⊆
Ω is called a specialization matrix on Ω (Moral, 1985;
Yager, 1986; Dubois & Prade, 1986; Delgado & Moral,
1987; Kruse & Schwecke, 1990).
The constraints about the s(B,A)’s can also be jus-
tified by considering what would be the result of ap-
plying the specialization when mΩ

Y [BK](A) = 1. The
result of the ‘down flow’ of the unique unitary mass
is the bba m with m(B) = s(B,A) for all B ⊆ Ω. So
the sum of the s(B,A) over B must be 1. Furthermore
BK was such that You were sure that the actual world
ω0 belongs to A, the result of the combination of BK
with Ev must be such that the resulting beliefs must
satisfy pl(A) = 0. This just means that the bbm’s are
0 for all B � A, what is just the property required by
s(B,A).
So we could write the column vector s(., A) as
mΩ

Y [Ev,A], i.e., Your bba given the piece of evidence
Ev and the fact You know that the actual world be-
longs to A.
In order to simplify notation, we switch to the classical
matrix notation. By convention the lines and columns
of the matrices and the elements of the vectors are ’nu-
merically’ ordered as follow: ∅, {a}, {b}, {a, b}, {c},
{a, c}, {b, c}, {a, b, c}, {d}, {a, d}, etc . . . The vec-
tors whose components are the values of a basic belief
assignment, belief function, plausibility function, com-
monality function function are vertical vectors denoted
m, bel, pl, q, respectively.
Let S be the matrix which row B, column A element
is the coefficients s(B,A). S could also be written as
{mΩ

Y [Ev,A] : A ⊆ Ω}. Beware that we do not say that
mΩ

Y [Ev,A] results from the conditioning of mΩ
Y [Ev,Ω]

on A as obtained with Dempster’s rule of condition-
ing. The present revision process can be much more
complex.
After learningEv, the basic belief assignmentmΩ

Y [BK]
is transformed into the new basic belief assignment



mΩ
Y [BK,Ev] such that for all B ⊆ Ω:

mΩ
Y [BK,Ev](B) =

∑
A⊆Ω

s(B,A)mΩ
Y [BK](A)

or in matrix notation:

mΩ
Y [BK,Ev] = S ·mΩ

Y [BK].

The basic belief assignment mΩ
Y [BK,Ev] is called a

specialization of mΩ
Y [BK]. The ‘and’ between the BK

and Ev is voluntarily represented by a comma, to dis-
tinguish it from the ∩© used in the case where the two
pieces of evidence are distinct.

Note. The dual of the specialization is the general-
ization that corresponds to a disjunctive combination
where masses ‘flow upward’ (Klawonn & Smets, 1992).
It is not used here.

3.2 Ordering belief functions

When we will study that the beliefs induced by the
knowledge of some betting behavior of an agent, we
will find that many belief functions could satisfy the
known constraints. In that family, we will select the
‘minimal’ element as the one representing Your beliefs.
The solution will be a possibility functions. To achieve
that goal, we need to define an ordering on the set
of belief functions and to explain why the ‘minimal’
solution is adequate, i.e., what is the ‘principle of least
commitment’.
Dubois and Prade (1987) have proposed three so-
lutions to order belief functions according to the
‘strength’ of the beliefs they represent. The intuitive
idea is that the smaller the focal elements, the stronger
the beliefs. Let m1 and m2 be two bba’s on Ω. Their
proposals are:

• pl-ordering. If pl1(A) ≥ pl2(A) for all A ⊆ Ω, we
write m1 �p lm2

• q-ordering. If q1(A) ≥ q2(A) for all A ⊆ Ω, we
write m1 �q m2

• s-ordering. If m1 is a specialization of m2, we
write m1 �s m2

They prove that :

• m1 �s m2 implies m1 �p lm2 and m1 �q m2, but
the reverse is not true, and

• m1 �p lm2 and m1 �q m2 do not imply each
other.

The s-ordering is thus stronger then the other twos
as it implies them. Whenever m1 �X m2 for X ∈
{s, pl, q}, we say that m1 is X-less committed than m2

or that m2 is X-more committed than m1. The same
qualification is extended to the functions related to the
bba’s.
The concept of ‘least commitment’ permit the con-
struction of a partial order � on the set of belief func-
tions (Yager, 1986; Dubois & Prade, 1987).
In (Smets, 1983; Smets & Magrez, 1985), we study the
‘information content’ of a bba, denoted InfC(m). If
we require that InfC(m1 ∩©m2) be a function strictly
monotone in both InfC(m1) and InfC(m2), then we
show that InfC(mΩ) must satisfy (up to any strict
monotone transformation):

InfC(mΩ) = −
∑
A⊆Ω

c(A) log(qΩ(A))

where c(A) ≥ 0. InfC = 0 if m is the vacuous be-
lief function (m(Ω) = 1)and is always non negative.
The choice of c(A) is not yet settled. Nevertheless
InfC can be used for ordering belief functions. So if
InfC(m1) ≤ InfC(m2), we will write m1 �InfC m2.
We have:

• if �q then �InfC .

• If m1 �InfC m2 for any assignment of the c(A)
coefficients, then m1 �q m2

When the appropriate choice of the c(A) will be found
and justified, we feel the ordering of the bba will be
based on InfC. Meanwhile we know that m1 �s m2

implies m1 �q m2, which implies m1 �InfC m2.

3.3 The Principle of Minimal Commit-
ment

Suppose the information available to You corresponds
to a set of constraints on the belief function that
should represent Your beliefs. For instance, suppose
You fully trust Your friend John, and You have no
opinion whatsoever about the actual value of ω0 ∈ Ω.
John tells You that he believes at level .6 that ω0 ∈
A ⊆ Ω, but he tells You nothing else. What would
be Your belief on Ω? All You know is that it should
allocate a belief .6 to A. So if belY is the belief func-
tion that represents Your belief on Ω, all You know
is that belY (A) = .6. Let B.6 be the family of belief
functions on Ω that satisfy the .6 constraint. Which
belief function in B.6 will You select to represent Your
beliefs? The idea is to choose the one that is somehow
the least committed in B.6, what reflects the principle
’never allocate more beliefs than necessary’. In the
present example, the s-least committed belief function
satisfies mY (A) = .6,mY (Ω) = .4, and, of course, it is
also the pl- and the q-least committed solution.
The principle evokes here is called the Principle of
Minimal Commitment. It is really at the core of



the TBM, where degrees of belief are degrees of ‘jus-
tified’ supports.
The Principle of Minimal Commitment consists
in selecting the least committed belief function in a
set of equally justified belief functions. The principle
formalizes the idea that one should never give more
support than justified to any subset of Ω. It satisfies a
form of skepticism, of uncommitment, of conservatism
in the allocation of Your belief. In its spirit, it is not
far from what the probabilists try to achieve with the
maximum entropy principle (Dubois & Prade, 1987;
Hsia, 1991).
Which order should be used? It is obvious that the
best candidate is the s-ordering, as it implies the oth-
ers. But when there is no s-least committed solution,
the q-ordering seems to be appropriate, in particular
because of its link with the InfC-order and also be-
cause of the meaning of q.

The meaning of q(A). Although what some au-
thors states, the commonality function has a clear
meaning. When Ω = {x, y} the difference pl(x) −
bel(x) has often been proposed as a measure of the
uncertainty in bel. In fact pl(x) − bel(x) = m({x, y})
and m({x, y}), as well as m(Ω) in general, is the part
of belief free to flow anywhere, totally uncommitted.
So to consider m(Ω) as the measure of uncertainty
seems reasonable. Suppose now we know that the ac-
tual world belongs to A ⊆ Ω. Then m[A](A) obtained
by conditioning m with Dempster’s rule of condition-
ing becomes the ‘conditional measure of uncertainty’
in context A. It just happens that m[A](A) = q(A),
so the commonality function is the set of conditional
measure of uncertainty, and the fact that a measure of
information content turns out to be a function of the
q’s becomes very natural.

3.4 Specialization and Dempster’s
rules

In (Klawonn & Smets, 1992), we show that the effects
of both Dempster’s rules can be obtained by special-
ization matrices, and that Dempster’s rules can easily
be justified with commutativity requirements.

3.5 Belief revision

The specialization is the most general form of belief
revision. It is ‘interactive’ in that the result of the
conjunctive combination is not just a function of the
beliefs that would be induced by each piece of evidence
individually.
The typical ‘non interactive’ revision is Dempster’s
rule of combination, a special form of specialization.
But there are other forms of ‘non interactive’ belief
revision, like the ‘cautious’ ones considered now. We

need this concept as the result of the conjunctive com-
bination of two possibility functions is equal to the one
obtained by a cautious interactive conjunctive combi-
nation of the two corresponding consonant plausibility
functions.

4 Cautious combinations

4.1 General idea

Let m1 and m2 be two bba’s on Ω induced by the
two pieces of evidence E1 and E2, respectively. We
know that their conjunctive conjunction results in a
new bba on Ω which must be a specialization of both
m1 and m2. We do not assume that E1 and E2 are
distinct, nor that the combination must be non inter-
active. Any specialization is allowed.
Let SP(m1) and SP(m2) be the set of specializations
of m1 and m2, respectively. The result of the combina-
tion of m1 and m2 belongs then to SP(m1)∩SP(m2).
That family is never empty as m1 ∩©m2 always be-
longs to it. As far as all You know about the com-
bination of m1 and m2 is that the result must be in
SP(m1)∩SP(m2), the hyper-cautious attitude would
consist in accepting it as representing Your beliefs.
Let m1 �©2 denote this least committed element. So
m1 �©2 = min{m : m ∈ SP(m1) ∩ SP(m2). Unfortu-
nately the minimum does not always exist, but when
m1 and m2 are both consonant the minimal element
exists as shown below.
We call the last combination, the hyper-cautious con-
junctive combination rule, denoted by �©. In the spe-
cial case where the specializations must be dempste-
rian, this combination is called the cautious conjunc-
tive combination rule and denoted by ∧©.

4.2 The case of consonant belief func-
tions

As far as possibility functions are consonant plausi-
bility functions, we consider what would be m1 �©2 if
both m1 and m2 are consonant, and prove that m1 �©2

is equal to the result found when conjunctively com-
bining two possibility functions.

Theorem 4.1 Let m1 and m2 be two consonant be-
lief functions on Ω with q1 and q2 their correspond-
ing commonality functions. Let SP1 and SP2 be the
set of specializations of m1 and m2, respectively. Let
q12(A) = min(q1(A), q2(A)) for all A ⊆ Ω, and m12

its corresponding bba. Then m12 = m1 �©2 = min{m :
m ∈ SP(m1) ∩ SP(m2).

Note that if Π1 and Π2 are two possibility functions
with q1 and q2 their related commonality functions,



the commonality function q12 of their conjunctive com-
bination Π12 satisfies : q12(A) = min(q1(A), q2(A)) for
all A ⊆ Ω.

5 The pignistic probability
function for decision making

Suppose a bba mΩ that quantifies Your beliefs on Ω.
When a decision must be made that depends on the
actual value ω0 where ω0 ∈ Ω, You must construct a
probability function in order to take the optimal deci-
sion, i.e., the one that maximizes the expected utility.
This is achieved by the pignistic transformation. Its
nature and its justification are defined in (Smets, 1990;
Smets & Kennes, 1994; Smets, 1998b).
Let F be the betting frame, the set of ‘atoms’ on which
stakes will be allocated. Bets can then only be built
on the elements of the power set of that frame. Let
BetPF denote the pignistic probability function You
will use to bet of the alternatives in F . BetPF is a
function of F and mΩ,

BetPF = Γ(mΩ, F ).

We show that the only transformation from mΩ to
BetPF that satisfies some rationality requirements is
the so called pignistic transformation that satisfies:

BetPF (f) =
∑

A:f∈A⊆F

mF (A)
|A|(1 −mF (∅)) , ∀f ∈ F

(1)

where |A| is the number of elements of F in A, and
mF is the bba induced by mΩ on F , (we have assumed
that F is compatible with Ω (Shafer, 1976, pg. 114 et
seq.).
It is easy to show that the function BetPF is indeed a
probability function and the pignistic transformation
of a probability function is the probability function it-
self. We call it pignistic in order to avoid the confusion
that would consist in interpreting BetPF as a measure
representing Your beliefs on F .

6 Operational definitions of de-
grees of beliefs

Why do we need an operational definitions of degrees
of beliefs? When I write bel(A) = .67, what means
the .67. How can we give it a meaning that is some-
how objective, and that we could share. Producing an
operational definition of .67 (and all other values of
course) means producing the description of a publicly
observable experiment which would produce the value
.67 when and only when the degree of belief is in fact

.67. In probability theory, this is achieved by observ-
ing the betting behavior of the belief holder. The same
method is used in the TBM. As far as we know, none
had been produced and justified for QEPT, a gap we
fill in this paper.

6.1 An operational definition of P .

The classical definition of a subjective probability is
based on an analysis of rational betting behavior.
The (subjective) probability of a proposition is usu-
ally characterized as the value of the opportunity to
gain a unit value if the proposition is true (Ramsey,
1964). More formally, one variant of the operational
definition of a subjective probability is the following:

Definition 6.1 Operational definition of subjec-
tive probabilities. Consider a finite space Ω, a game
on the betting frame Ω, a player and a banker. We
have ‘PΩ

Y ou,t(A) = x’ iff You consider at time t and
for any M > 0 that the player must pay $xM to the
banker to enter a game where the player wins $M from
the banker if the actual world belongs to A and $0 oth-
erwise, and You are ready to be any of the player or
the banker.

We insist on the fact that You are not allowed to ‘run
away’ from the game. You must accept to be either
the banker or the player, this being settled after You
have assessed the value of x. The present definition is
based on ‘forced bets’.

6.2 The assessment of P .

In order to assess the value of a subjective probability,
one can consider the following method. Let a finite
space Ω and A ⊆ Ω. Consider two bets. In bet 1,
You bet on A versus A where You gain $M if A is
true, and $0 otherwise (with $M being any reasonable
prize like $100). In bet 2, You have an urn with a
proportion p of Black balls. You bet on Black versus
not-Black where You gain $M if the randomly selected
ball (where every ball has the same chance to be se-
lected) is Black, and $0 otherwise. Which bet do You
prefer?

• If You prefer bet 1, it means that P (A) > p.

• If You prefer bet 2, it means that P (A) < p.

• If You are indifferent between the two bets, it
means that P (A) = p.

By varying p, one can (in theory) always find a state
of indifference between the two bets. So one can assess
the value of P (A).



In practice, this method is too crude to assess proba-
bilities and more elaborated methods have been devel-
oped by psychometricians. Nevertheless many of the
methods they developed are ingenious variants of the
one we just described.

6.3 An operational definition of bel.

The pignistic transformation can be used in order to
provide both an operational definition of the degrees
of belief, and a method to assess them. The approach
is essentially identical to the one encountered in sub-
jective probability theory except we use the possibility
to construct several betting frames (see section 6.1).

Definition 6.2 Operational definition of degrees
of belief. Suppose a finite space Ω, a family of games
G = {G1, G2 . . . } built on the betting frames Fi, i =
1, 2 . . . , respectively, where each frame is compatible
with Ω. Suppose a player and a banker. Consider one
game Gi ∈ G and its betting frame Fi. Suppose A is
discerned by Fi. We have ′BetPFi

Y ou,t(A) = x′ iff You
consider at time t that the player must pay $xM to the
banker to enter the game Gi where the player wins $M
from the banker if the actual world belongs to A and $0
otherwise, and You are ready to be any of the player
or the banker. Consider then all possible games Gi on
G. Then belΩY ou,t is the belief function on Ω such that
BetPFi

Y ou,t = Γ(belΩY ou,t, Fi), ∀i = 1, 2.....

Given the finiteness of Ω, there is always a finite num-
ber of betting frames Fi which will be sufficient to
derive uniquely BetPΩ

Y ou,t, so the definition is realiz-
able.
It is important to realize that the pignistic probability
functions obtained with different frames are not neces-
sarily related between them by the laws of probability.
So you could bet on A versus B where B = A with
pignistic probabilities of 1/2 and 1/2, and on A versus
B1 versus B2 where B1 ∩ B2 = ∅ and B1 ∪ B2 = B
with pignistic probabilities of 1/3, 1/3 and 1/3 (this is
encountered in case of total ignorance on Ω = A ∪ B
(Smets & Kennes, 1994).

6.4 The assessment of bel.

In (Smets, 1998a), we explain in detail and illustrate
how the bba’s can be assessed. Here, we present only
the general procedure.
The assessment of a belief function is essentially ob-
tained through a schema based on preference between
gambles (see section 6.2).
The method proposed in probability theory extends
directly to belief functions. It is based on using sev-
eral betting frames. Let a finite set Ω and a family of
compatible betting frames F1, F2... For each Fi, we

assess BetPFi using the preference ordering between
two bets as done in section 6.2. We then determine the
set BFΩ

i of belief function on Ω which pignistic trans-
formation on Fi is BetPFi . We repeat the procedure
with each Fi’s. Then belΩ belongs to the intersection
of all the BFΩ

i . If the intersection is empty, then it
means the pignistic probability functions are inconsis-
tent, what ideally should not occur, but it happens of
course in practice, just as in probability theory where
people assess probabilities that usually violate Kol-
mogorof axioms. It essentially translates the impreci-
sion of the assessment tool. Thanks to the fact that a
belief function is defined by a finite number of values
and the possibility to build as many betting frames as
one needs, the intersection can be such that it contains
only one belief function.

7 From the TBM to QEPT

7.1 The q-least committed belief func-
tion induced by the knowledge of
the pignistic probabilities on the
singletons of Ω

Suppose a source S (an agent) held some beliefs over
Ω, and You would adopt these beliefs if You come
to know them. It happens that the only information
available to You about these beliefs are the pignistic
probabilities that S would use to bet on the single-
tons of Ω, denoted BetPΩ

S . So all You know it that
the belief function that represents S’s beliefs, denoted
belΩS , belongs to the set of belief functions that share
the same pignistic probabilities on Ω (we call this set
the set of ‘isopignistic’ belief functions). Not knowing
which belief function in that set is the one held by the
agent, and being cautious, Your beliefs should be rep-
resented somehow by the least committed element of
that set of belief functions.
We successively define the set of isopignistic belief
functions, show that its q-least committed element is
unique and is a consonant belief function, hence a pos-
sibility function.

Definition 7.1 The set of isopignistic belief
functions. Let mΩ

0 be a bba defined on Ω and
BetPΩ

0 = Γ(mΩ
0 ,Ω) be its related pignistic probability

function. The set of belief functions on Ω which pig-
nistic transformation equals BetPΩ

0 is called the set
of isopignistic belief functions induced by BetPΩ

0 and
denoted BisoP (BetPΩ

0 ). More formaly:

BisoP (BetPΩ) = {mΩ : Γ(mΩ,Ω) = BetPΩ}.

Theorem 7.1 Let BetPΩ be a pignistic probability
function defined on Ω with the elements ωi of Ω so



labeled that :

BetPΩ(ω1) ≥ BetPΩ(ω2) ≥ . . . ≥ BetPΩ(ωn)

where n = |Ω|. Let BisoP (BetPΩ) be the set of isopig-
nistic belief functions induced by BetPΩ. The q-least
committed bba in BisoP (BetPΩ) is the consonant bba
m̂ which non zero bbm are, with A = {ω1, ω2 . . . ωi}:

m̂(A) = |A| · (BetPΩ(ωi) −BetPΩ(ωi+1))

where BetPΩ(ωn+1) is 0 by definition.

Therefore we know what is the q-least committed bba
among all the bba’s that share the same pignistic prob-
abilities. It is unique and corresponds to the bba re-
lated to a consonant plausibility function, thus a pos-
sibility function. Nevertheless this element is neither
the s- nor the pl-least committed element, as these do
not necessarily exist.

7.2 Conjunctive combinations

Suppose all You know about the value of some actual
world in Ω are the pignistic probabilities on Ω held
by two agents, denoted BetPΩ

1 and BetPΩ
2 , respec-

tively. From each pignistic probability function, You
build the q-least committed belief function that rep-
resent Your beliefs according to the information You
collected from the corresponding agents. Then You
conjunctively combined these two belief functions. All
You know is that the result of the combination must
be a specialization of the two belief functions You had
built. Being ‘hyper’ cautious, You will select in the
set of possible solutions, the s-least committed one.
As shown in Section 4.2, the solution is unique and
well defined.
If q1 and q2 ere the commonality functions derived
from Your knowledge of the pignistic probabilities of
the two agents, then the commonality function of the
combination satisfies:

q1 �©2(A) = min(q1(A), q2(A)) ∀A ⊆ Ω.

This commonality function is consonant, and thus cor-
respond to the commonality function related to a pos-
sibility function.
This is exactly the possibility function that is ob-
tained within quantitative epistemic possibility theory
(QEPT).
So QEPT corresponds to a hyper cautious usage of
the TBM theory. The importance of the result is that
the assessment of the numerical values of a possibility
function is realized by the same method of described
in Section 6.4. Our development thus produces an
operational definition of the values of the possibility

function used in QEPT, providing thus an answer to
a classical criticism that claims that QEPT lacks a se-
mantic, i.e., that the numerical values allocated to de-
grees of possibilities seems more or less arbitrary. We
just show that they correspond to the least committed
solution induced by the knowledge of the betting be-
havior on the elements of Ω. This situation seems quite
classical, and should often been encountered. Getting
only the betting behavior on Ω seems quite natural,
people will hardly tell You spontaneously how they
would bet on several frames. So it seems natural to
expect the present situation as very common. This
might explain the interest of QEPT.

7.3 The possibility functions induced
by two fuzzy constraints

We present now an example where we use the whole
procedure developed so far. Suppose Ω is a set of n
individuals, denoted ω1, . . . ωn. One of them has been
selected (I have not said randomly selected, I just say
’selected’) and put in a given room, denoted R.
There are two agents, John and Tom. John knows
the height of each individuals, and Tom knows their
weights. A third agent looks at the selected individual
and states to John ’he is tall’ and to Tom ’he is obese’,
these two terms being of course ’fuzzy’. John and Tom
communicate to You what are their personal opinions
about who is the individual in room R.
According to possibility theory, each of John and
Tom would produce a possibility distribution on Ω
given ’tall’ and given ’obese’, respectively. Let us
denote them πΩ[tall] and πΩ[obese]. Then You
would combine these two possibility distributions with
the conjunctive rule into πΩ[tall and obese](ωi) =
min(πΩ[tall](ωi), πΩ[obese](ωi)) for i = 1 . . . n. This
is exactly what we get if we take the TBM detour.
The only problem with the present approach is that
the ‘meaning’ of the values of the two initial possibility
distributions is unclear (they lack a semantic).
In the TBM, You first consider John. You ask him
how he would bet on which of the individual of Ω is
in the R room, now that he knows he is tall. Using
the method developed in Section 6.2, You generate the
probabilities John would use to bet on Ω. Suppose You
can only obtain these pignistic probabilities for the
singletons of Ω and cannot run the whole assessment
procedure described in Section 6.4. So all You know
from John is BetPΩ

J . From it You build the underlying
q-least committed belief function, that is a consonant
plausibility function (a possibility function) as shown
in Section 7.1. You do the same with Tom, once he
knows the individual in R-room is obese. So You end
up with two consonant plausibility functions.



Ω height weight BetP [Tall] BetP [Obese]
a 185 95 .4 .3
b 190 90 .5 .2
c 160 110 .1 .5

Table 1: Height and weight of three individuals, and
the pignistic probabilities given by John (on height)
and Tom (on height) when they know only that the
selected individual is ‘Tall’ and ‘Obese’, respectively.

2Ω m[T ] Π[T ] q[T ] m[O] Π[O] q[O]
∅ 0 1 0 1

{a} .9 .9 .8 .8
{b} .1 1. 1. .6 .6
{a,b} .6 1. .9 .8 .6
{c} .3 .3 .3 1. 1.
{a,c} .9 .3 .2 1. .8
{b,c} 1. .3 1. .6
{a,b,c} .3 1. .3 .6 1. .6

Table 2: Values of the bba’s and their related Π = pl
and q functions derived from the two pignistic proba-
bility functions of Table 1

Now You combine them, but being ignorant about the
relation between ‘tall’ and ‘obese’, and about any re-
lation that might exist between what John and Tom
said, You apply the hyper cautious combination rule
and build mΩ

Y [Tall, Obese] = mΩ
J [Tall] �©mΩ

T [Obese]
as described in Section 7.2. The result is a belief func-
tion which is the same as the one obtained by the con-
junctive combination of the two possibility functions
derived from the pignistic probabilities. But at least,
thanks to the TBM detour, we have been able to jus-
tify the origin of the values used for the two possibility
functions.

7.4 A numerical example

The next numerical example illustrates the procedure
followed through the TBM detour. Let Ω = {a, b, c}.
Tables 1 to 4 summarize most numerical results.

8 Conclusions
A major criticism addressed at quantitative epistemic
possibility theory (QEPT) concerns its lack of seman-
tic, i.e., the meaning of the numbers used to represent
the degrees of possibility are not justified by an opera-
tional definition. Such a definition consists in describ-
ing a publicly observable experiment where the value
of the possibility could be measured in a non ad hoc
way. Such definitions exist for subjective probability

2Ω q[T ] ∧ q[0] m[T ] �©m[O] Π[T ∧O]
∅ 1. .2 0

{a} .8 .2 .8
{b} .6 .6
{a,b} .6 .2 .8
{c} .3 .3
{a,c} .3 .8
{b,c} .3 .6
{a,b,c} .3 .3 .8

Table 3: Construction of the very cautious combina-
tion of the two bba’s of Table 2 and its related m and
Π function.

Ω height weight µT (.) µO(.) µT & O(.)

a 185 95 .9 .8 .8
b 190 90 1. .6 .6
c 160 110 .3 1. .3

Table 4: Height and weight of the three individuals of
Table 1, and the grades of membership of each indi-
vidual in the sets of ‘Tall’ men, of ‘Obese’ men and
of ‘Tall & Obese’ men. Note the values in the last
column can be derived from the two on its left or as
well from the Π column in Table 3

theory and for the transferable belief model (TBM).
We show that the operational definition developed for
the TBM can be used as well for QEPT, providing it
with the requested operational definition.
This definition is based on the idea that the user has
only been able to collect the probabilities used to bet
on the elements of the frame Ω on which the possibility
must be assessed. From these probabilities, You build
the least committed plausibility function compatible
with the collected probabilities. The least commit-
ment principle that underlies this choice just states
that You should never allocate more beliefs than jus-
tified by what You know. The least committed plau-
sibility function happens to be consonant, hence it is
a possibility function. We thus propose to define the
possibility value as the one derived by the previous ap-
proach based on the knowledge of the pignistic prob-
abilities on Ω and the least commitment principle.
To be satisfactory, the solution must also satisfied the
major combination rule. In possibility theory the con-
junction is obtained by applying the minimum rule
on the possibility distribution functions. In the TBM
detour, it consists in combining the two consonant
plausibility functions by the hyper cautious interactive
conjunction combination, i.e., considering that the re-
sult of the combination must be the least committed



specialization of the two consonant plausibility func-
tions. We just prove that the result of the minimum
rule applied in possibility theory is the one obtained
by the hyper cautious conjunctive combination used
in the TBM. If it had not been the case, the seman-
tic of possibility theory based on the TBM would not
have been adequate as the resulting functions would
not share the same behavior once combination is con-
sidered.
In conclusion, we have produced a semantic for QEPT,
hoping to solve the criticism addressed by those who
require such a definition before using a model that
without it seems too much ad hoc.

References
Delgado, M., & Moral, S. (1987). On the concept of

possibility-probabilty consistency. Fuzzy Sets and
Systems, 21, 311–3018.

Dubois, D., & Prade, H. (1986). A set-theoretic view of
belief functions: logical operations and approxima-
tions by fuzzy sets. International Journal of General
Systems, 12, 193-226.

Dubois, D., & Prade, H. (1987). The principle of mini-
mum specificity as a basis for evidential reasoning.
In B. Bouchon & R. R. Yager (Eds.), Uncertainty
in knowledge-based systems (pp. 75–84). Springer
Verlag, Berlin.

Dubois, D., & Prade, H. (1998). Possibility theory: qual-
itative and quantitative aspects. In D. M. Gabbay
& P. Smets (Eds.), Handbook of defeasible reasoning
and uncertainty management systems (Vol. 1, pp.
169–226). Kluwer, Doordrecht, The Netherlands.

Gabbay, D. M., & Smets, P. (Eds.). (1998). Handbook
of defeasible reasoning and uncertainty management
systems. Kluwer, Doordrecht, The Netherlands.

Hsia, Y. T. (1991). Characterizing belief with minimum
commitment. In IJCAI-91 (Ed.), Intern. joint conf.
on artificial intelligence (pp. 1184–1189). Morgan
Kaufman, San Mateo, Ca.

Klawonn, F., & Smets, P. (1992). The dynammic of belief
in the transferable belief model and specialization-
generalization matrices. In D. Dubois, M. P. Well-
man, B. D’Ambrosio, & P. Smets (Eds.), Uncer-
tainty in artificial intelligence 92 (pp. 130–137).
Morgan Kaufman, San Mateo, Ca.

Kruse, R., & Schwecke, E. (1990). Specialization: a new
concept for uncertainty handling with belief func-
tions. Int. J. Gen. Systems, 18, 49–60.

Moral, S. (1985). Informacion difusa. relationes entre
probabilidad y possibilidad. Unpublished doctoral
dissertation, Universidad de Granada.

Ramsey, F. P. (1964). Truth and probability. In H. E.
Kyburg, Jr. & H. E. Smokler (Eds.), Studies in sub-
jective probability (pp. 61–92). Wiley, New York.

Shafer, G. (1976). A mathematical theory of evidence.
Princeton Univ. Press. Princeton, NJ.

Shafer, G., & Tversky, A. (1985). Languages and designs
for probability. Cognitive Sc., 9, 309–339.

Smets, P. (1983). Information content of an evidence.
International Journal of Machine Studies, 19, 33-43.

Smets, P. (1990). Constructing the pignistic probability
function in a context of uncertainty. In M. Henrion,
R. D. Shachter, L. N. Kanal, & J. F. Lemmer (Eds.),
Uncertainty in artificial intelligence 5 (pp. 29–40).
North Holland, Amsteram.

Smets, P. (1992). The concept of distinct evidence. In
IPMU-92 (Ed.), Information processing and man-
agement of uncertainty (pp. 89–94).

Smets, P. (1997). The normative representation of quanti-
fied beliefs by belief functions. Artificial Intelligence,
92, 229–242.

Smets, P. (1998a). The application of the transferable be-
lief model to diagnostic problems. Int. J. Intelligent
Systems, 13, 127–157.

Smets, P. (1998b). The transferable belief model for
quantified belief representation. In D. M. Gabbay
& P. Smets (Eds.), Handbook of defeasible reasoning
and uncertainty management systems (Vol. 1, pp.
267–301). Kluwer, Doordrecht, The Netherlands.

Smets, P., & Kennes, R. (1994). The transferable belief
model. Artificial Intelligence, 66, 191–234.

Smets, P., & Magrez, P. (1985). Additive structure of
the measure of information content. In M. Gupta,
A. Kandel, W. Bandler, & J. Kiszkaed (Eds.), Ap-
proximate reasoning in expert systems. (pp. 195–
197).

Yager, R. (1986). The entailment principle for Dempster-
Shafer granules. Int. J. Intell. Systems, 1, 247–262.

Zadeh, L. (1978). Fuzzy sets as a basis for a theory of
possibility. Fuzzy Sets and Systems, 1, 3–28.


