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Abstract

In this paper, we study the notion of marginal independence between
two sets of variables when uncertainty is expressed by belief functions as
understood in the context of the transferable belief model. We define
the concepts of non-interactivity and irrelevance, that are not equivalent.
Doxastic independence for belief functions is defined as irrelevance and
irrelevance preservation under Dempster’s rule of combination. We prove
that doxastic independence and non-interactivity are equivalent.
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1 Introduction

An important requirement, for uncertainty reasoning system management, is
to specify the conditions under which one item of information is considered in-
dependent from another, given what we know, and to represent knowledge in
structures that display these conditions. In the probabilistic framework, these
conditions are identified with the notion of independence, also called irrelevance
or informational irrelevance [16].
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The notion of informational irrelevance has been extensively studied in prob-
ability theory [7], [8], [15], [16], where it is identified with independence. The
concept of independence has also been studied in other non-probabilistic frame-
works such that Spohn’s theory of ordinal conditional functions [22], Zadeh’s
possibility theory [1], [4], [9], [11], [24], [28], upper and lower probabilities theory
[3], [5], [6], [25], and in an abstract framework that unifies different uncertainty
calculi called valuation-based system [19]. However, the concept of indepen-
dence has not been widely treated in belief functions theory.

The aim of this paper is to investigate some ways to define independence
relationships between variables when uncertainty is expressed under the form of
belief functions. Some other researches studying this topic are [3], [17], and [23].
We focus on belief functions in the context of the transferable belief model [21],
[20], a model to represent quantified beliefs where the beliefs are represented
by belief functions. In order to avoid possible confusion, we insist on the fact
that the TBM is unrelated to lower probability models. We concentrate on the
intuitive meaning of each definition of independence and we discuss the possible
links between them. In this paper, we consider only the marginal case, leaving
the conditional case for the second part.

In addition to the obvious theoretical reasons for the study of independence,
there are also practical interests. Indeed, thanks to independence, many com-
putational tasks can be simplified. Complex evidential problem can be modu-
larized into simpler components in such a way that we only treat the pieces of
information having relevance to the question we are interested in.

Furthermore, the practical importance of independence is captured in three
processes supported by expert systems: elicitation, inference, and explanation
[10]. For instance in the phase of eliciting probabilistic models from human
experts, qualitative independencies among variables can often be easily and
confidently asserted whereas numerical assessments can be very imprecise.

The main question is the definition of independence. In the literature there
are two main approaches to define independence:

• Irrelevance approach: Two variables are said to be independent if no
piece of information that can be learned about one of them can change our
state of knowledge about the other. This form of independence is called
irrelevance. It can be expressed by experts.

• Decomposition approach: Two variables are said to be independent
if the global information about the two variables can be expressed as
a combination of two pieces of knowledge, one for each variable. This
form of independence is called here non-interactivity. It permits efficient
computation by local computations without loosing any information.

In the case of probability theory, both approaches are equivalent, so the
distinction is not essential. However, these approaches do not have identical
meaning in belief function theory.
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The rest of this paper is organized as follows. In section 2, we present some
useful definitions and notations needed for belief function context. Next, in
section 3, we present the definitions of irrelevance, non-interactivity and inde-
pendence in probability theory. To extend these definitions to belief function
case, we recall, in section 4, two definitions proposed by Shafer [17] called cogni-
tive and evidential independence. After this, we define the concepts of marginal
non-interactivity (section 5), irrelevance (section 6) and independence (section
7) for belief functions, making clear the links between them. Finally, in section
8, we make some concluding remarks.

2 Belief Function Theory

2.1 The Transferable Belief Model

The theory of belief functions, also known as Dempster-Shafer theory and the-
ory of evidence, aims to model someone’s degree of belief. It is regarded as a
generalization of the Bayesian approach. Since this theory was developed by
Shafer [17], many interpretations have been proposed. Among them, we can
distinguish:

• a lower probability model where beliefs are represented by families
of probability functions and the belief functions are the lower envelop of
these families. This model is considered as a special case of imprecise
probabilities [26].

• Dempster’s model derived from probability theory where a probabil-
ity space is mapped by a one-to-many mapping on another space. It is
essentially at the core of the hint theory [13].

• the transferable belief model (TBM) where beliefs are represented
by belief functions [21] [20]. This model is unrelated to probability models
whereas the other two are generalization of them.

In this paper, we are only concerned with the TBM, so we will use the
concepts as defined in it.

Definition 1 Let Ω be a finite set of elements, called the frame of discernment.
The mapping bel : 2Ω → [0, 1] is an (unnormalized) belief function if and only
if there exists a basic belief assignment (bba) m : 2Ω → [0, 1] such that:

(i)
∑

A⊆Ω

m(A) = 1,

(ii) bel(A) =
∑

∅�=B⊆A

m(B),

(iii) bel(∅) = 0.
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The value m(A) represents the degree of belief that is exactly committed
to A. Due to the lack of information, m(A) cannot support any more specific
event. The value bel(A) quantifies the strength of the belief that the event A
occurs. A subset A such that m(A) > 0 is called a focal element of bel. bel is
vacuous if the only focal element is Ω. In the TBM, we accept that m(Ø) can
be positive. It reflects either the fact that the actual value of Ω might not be
in Ω (open-world assumptions, [21]) or the conflict that underlies the pieces of
evidence used to build m.

Given a belief function bel, we can define a plausibility function pl: 2Ω →
[0,1] and a commonality function q: 2Ω → [0,1] as follows: for A ⊆ Ω,

pl(A) = bel(Ω) − bel(A) =
∑

B∩A�=∅
m(B),

pl(∅) = 0,

q(A) =
∑

A⊆B⊆Ω

m(B).

The value pl(A) quantifies the maximum amount of potential specific support
that could be given to A. The commonality function q(A) represents a measure
of uncertainty in the context where A holds and it is useful for simplifying some
computations. It is proved thatm, bel, pl and q are in one-to-one correspondence
with each other [17].

2.2 Notations and Properties of Belief Functions

In this section, we present some notations and properties necessary when belief
functions are used.

2.2.1 Variables.

Let U = {X,Y, Z, ...} be a set of finite variables, ΘX = {x1, ..., xn} be the
domain relative to the variable X (with a finite cardinality n), and x represents
any instance of X. For simplicity sake, we denote ΘX by X, ΘY by Y ... Let
Ω be a frame of discernment [17] (or universe of discourse). It is the Cartesian
product of the domains of the variables in U. For example, X × Y represents
the product space of variables X and Y , and when there is no ambiguity, it is
simply denoted by XY . The elements of X (Y . . . ) are represented by indexed
variables like xi (yj . . . ) whereas x (y . . . ) denote subsets of X (Y . . . ).

For x ⊆ X and y ⊆ Y , (x, y) is defined by (x, y) = {(xi, yj) : xi ∈ x, yj ∈ y},
and similarly for (x, y, z) . . .

By construction, Ω is a common refinement ofX,Y, Z... ([17], page 121). The
variables X,Y, Z.... are themselves independent coarsenings of Ω ([17], page 127)
where, for instance when Ω = XY Z, the ”independence” means that:

(xi, Y, Z) ∩ (X, yj , Z) ∩ (X,Y, zk) �= ∅, ∀xi ∈ X, yj ∈ Y, zk ∈ Z.
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While studying marginal independence, all we need is two disjoint subsets
of variables in U. We can as well redefine two new variables X and Y which
domains are the Cartesian product of those variables considered in each set,
respectively. This simplifies the notation as we may consider only two variables
X and Y , and Ω = XY .

We also often use the set RectXY which is the set of subsets of XY that can
be represented as (x, y) for some x ⊆ X and some y ⊆ Y .

2.2.2 Belief functions.

Let BK denotes the background knowledge that holds and that underlies the
beliefs. In BK, we find the classical conditioning events. We introduce the
following notations and their related properties:

• belΩ↓X is the marginal of belΩ on X. The Ω superscript will not be men-
tioned when there is no risk of confusion. In particular, we have:

belXY ↓X(x) = belXY (x, Y ),

plXY ↓X(x) = plXY (x, Y ).

• belΩ[BK] denotes the belief function on Ω when BK holds. It can be
seen as a vector in a 2|Ω| dimensional space. Classically, it was denoted as
belΩ(. | BK), but the bracket notation turns out to be more convenient.

• belΩ[BK](A) denotes the value of belΩ[BK] at A ⊆ Ω. When BK is the
proposition that states that the actual value of Ω belongs to B ⊆ Ω, its
value is given by:

belΩ[B](A) = belΩ(A ∪B) − belΩ(B)

plΩ[B](A) = plΩ(A ∩B)

qΩ[B](A) = qΩ(A) if A ⊆ B,
= 0 otherwise.

These are the so called Dempster’s rule of conditioning (except for the
normalization factor).

• The ⊕ symbol represents Dempster’s rule of combination in its normalized
form and ∩© represents the conjunctive combination, i.e., the same oper-
ation as Dempster’s rule of combination except the normalization (the
division by 1−m(∅)) is not performed. The conjunctive combination rule
can be written equivalently as:

m1 ∩©2(A) = m1 ∩©m2(A) =
∑

B,C⊆Ω,B∩C=A

m1(B)m2(C)

q1 ∩©2(A) = q1(A)q2(A).
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• Note that conditioning and marginalization do not commute, so the order
of the symbols is important. belXY [y]↓X is the belief function obtained by
conditioning belXY on y and the result is then marginalized on X.

In order to distinguish between normalized belief functions as those defined
by Shafer and the unnormalized ones used in the transferable belief model, we
use the following convention. Normalized functions have their first letter in
upper-cases, whereas the unnormalized ones have theirs in lower cases. So M,
Bel, Pl and Q denote the normalized forms, whereas m, bel, pl and q denote
the unnormalized forms. To get the normalized forms, one just divide the un-
normalized ones by the factor 1 − m(∅) (putting M(∅) = 0) or identically by
bel(Ω) or pl(Ω).

Notations. The following notations are used repeatedly:
N1. fXY (A,B) = fXY ({(x, y) : x ∈ A, y ∈ B}) ∀A ⊆ X,B ⊆ Y and
f ∈ {m, bel, pl, q}.

A particular Ω is often used. Its elements are defined as follows:
N2. LetX = {x1, x2} and Y = {y1, y2}. We define Ω = X×Y = {w1, w2, w3, w4}
with:

w1 = (x1, y1)
w2 = (x1, y2)
w3 = (x2, y1)
w4 = (x2, y2)

We next prove two useful lemmas and then we present several classical prop-
erties of belief functions theory for the reader’s convenience.

Lemma 1 For any plausibility function plXY defined on XY , we have

plXY [y]↓X(x) = plXY (x, y), ∀x ⊆ X, ∀y ⊆ Y

Proof. Consider mXY (w) for w ⊆ XY .
Case 1: w ∩ y = ∅ then mXY (w) will be included in mXY [y]↓X(∅). Thus it

will neither be included in plXY [y]↓X(x) nor in plXY (x, y). So it is absent from
both terms of the lemma.

Case 2: w ∩ y �= ∅ then either w ∩ y ∩ x = ∅ and mXY (w) is not included in
the two pl of the lemma, or w ∩ y ∩ x �= ∅ and mXY (w) is included in both pl
of the lemma.

This holds for any w ⊆ XY and any y ⊆ Y . Therefore, both pl of the lemma
contain the same bbm and they are thus equal. ✷

Lemma 2 For any plausibility function plXY defined on XY , we have

plXY ↓X(x) = plXY (x, Y )

6



Proof. ConsidermXY (w) for w ⊆ XY . Either w∩x = ∅ in which casemXY (w)
is neither included in plXY (x, Y ) nor in plXY ↓Y (x), or w ∩ x �= ∅ in which case
it is included in both pl of the lemma. So, both pl of the lemma contain the
same bbm and they are thus equal. ✷

Some useful properties. We list some relations that will be used in the future
and are classical in belief function theory.

P1. qΩ(A) = plΩ(A) when |A| = 1, A ⊆ Ω.

P2. mΩ(∅) =
∑

A⊆Ω

(−1)|A|qΩ(A).

P3. qΩ(A) =
∑

B⊆A

(−1)|B|+1plΩ(B), ∀A, ∅ �= A ⊆ Ω , qΩ(∅) = 1.

P4. qΩ(A) ≥ qΩ(A ∪B), ∀A,B ⊆ Ω.

3 Independence in Probability Theory

First, we recall the definition of probabilistic independence. We say that two
random variables X and Y are (marginally) independent with respect to a dis-
tribution P on the space XY , denoted by X ⊥⊥P Y , if and only if one of the
following conditions is satisfied: for all x ⊆ X, all y ⊆ Y ,

• PXY (x, y) = PXY ↓X(x)PXY ↓Y (y)

where PXY ↓X and PXY ↓Y are the marginal probabilities of PXY on X
and Y , respectively.

• PXY [y]↓X(x) = PXY ↓X(x)

where PXY [y]↓X is the conditional probability on X given y.

In fact, thanks to the additivity of probability measures, it is sufficient that
the property holds for all xi ∈ X, yj ∈ Y .

Remark. Our notation is more cumbersome than the usual one (i.e. such as
in [8], [16]), but it helps when belief functions are involved as it avoids confusion.

The first definition of independence is presented in terms of the factorization
of the joint probability distribution through its marginal distributions on X and
Y , respectively (a mathematical property). It is also called separability or non-
interactivity [28] (see section 5). We will use the last name.

The second definition can be interpreted in terms of irrelevance of informa-
tion, it means that any information about Y is irrelevant to the uncertainty
about X (an epistemic property).

In probability context, irrelevance and independence imply each other, hence
the distinction is usually left aside.
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4 Cognitive and Evidential Independence

To extend these definitions of independence to the case of belief functions, Shafer
([17], page 147 et seq.) proposes two definitions of independence. After recalling
these definitions, we introduce our definitions of (marginal) non-interactivity,
irrelevance and doxastic independence for variables and we study the links be-
tween them. Shafer’s definitions are based on normalized belief functions.

4.1 Cognitive Independence: Weak Independence

Following Shafer [17], two variables are ”cognitively independent” with respect
to a belief function if new evidence that bears on only one of them does not
change the degree of belief for propositions discerned by the other. This notion
of ”cognitive independence” is also called weak independence by Kong [14]. The
formal definition of ”cognitive independence” is the following:

Definition 2 ([17], page 149): The variables X and Y are ”cognitively inde-
pendent” with respect to MXY if and only if: for all x ⊆ X, all y ⊆ Y ,

PlXY (x, y) = PlXY ↓X(x) PlXY ↓Y (y) (1)

4.2 Evidential Independence: Strong Independence

Shafer [17] proposed another notion of independence called ”evidential indepen-
dence”: two variables are ”evidentially independent” if their joint belief function
is represented by the combination of their marginals using Dempster’s rule of
combination. This notion of ”evidential independence” is also called strong in-
dependence by Kong [14]. The formal definition of ”evidential independence” is
as follows:

Definition 3 ([17], page 147): The variables X and Y are ”evidentially inde-
pendent” with respect to MXY if and only if: for all x ⊆ X, all y ⊆ Y ,

PlXY (x, y) = PlXY ↓X(x) PlXY ↓Y (y) (2)

BelXY (x, y) = BelXY ↓X(x) BelXY ↓Y (y) (3)

”Cognitive independence” is a weaker condition than ”evidential indepen-
dence”: if two variables are ”evidentially independent” with respect to a belief
function, then they will be ”cognitively independent” with respect to it. In-
deed, ”evidential independence” requires constraints on Bel and on Pl whereas
”cognitive independence” requires only constraints on Pl.

Based on the definition of ”evidential independence”, let us state the follow-
ing theorems:
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Theorem 1 The variables X and Y are ”evidentially independent” with respect
to MXY if and only if:

MXY (w) = MXY ↓X(x) MXY ↓Y (y), if w = (x, y) (4)
= 0, otherwise.

where x is the projection of w on X, and y is the projection of w on Y .

Proof. See Shafer [17] page 149 and page 166 . ✷

This theorem just states that the focal elements of MXY , i.e., those subsets
w of XY where MXY (w) > 0, belong to RectXY .

Theorem 2 The variables X and Y are ”evidentially independent” with respect
to MXY if and only if:

QXY (w) = QXY ↓X(x) QXY ↓Y (y), ∀w ⊆ XY (5)

where x is the projection of w on X, and y is the projection of w on Y .

Proof. Let ω ⊆ XY with x(ω) and y(ω) its projections on X and Y , respec-
tively. Relation (5) can be rewritten, for all ω ⊆ XY , as:

QXY (ω) = QXY ↓X(x(ω)) QXY ↓Y (y(ω))
∑

ω′: ω⊆ω′⊆XY

MXY (ω′) =
∑

x⊆X:x(ω)⊆x

MXY ↓X(x)
∑

y⊆Y :y(ω)⊆y

MXY ↓Y (y)

=
∑

x⊆X,y⊆Y :(x(ω),y(ω))⊆(x,y)

MXY ↓X(x) MXY ↓Y (y)

The sum of all masses MXY ↓X(x) MXY ↓Y (y) over all x ⊆ X and y ⊆ Y is
1 as it corresponds to QXY (∅) which is always 1. As far as the relation between
Q and M is one-to-one, the only non zero masses MXY (ω) are those that admit
the representation asMXY ↓X(x)MXY ↓Y (y), i.e., all focal elements ofMXY be-
long to RectXY . So that relation (5) holds is equivalent to the fact that relation
(4) holds, and thus it is equivalent toX and Y being evidentially independent. ✷

Remarks.

• ”Cognitive independence” may hold whereas ”evidential independence”
fails, so ”cognitive independence” does not imply theorem 1. In addition,
neither (2) nor (3) implies the other. This is shown in the example 7.3 of
Shafer ([17], page 151) and in [2].

• All definitions by Shafer and Kong assume normalized belief functions
(m(∅) = 0).
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• Shafer [17] does not explain the signification of the two adjectives: cogni-
tive and evidential.

• Shafer speaks of ”independence” but we will prefer the expression ‘non-
interactivity’ as this definition is essentially a mathematical one and we
keep the word ‘independence’ for the common sense property (see section
5).

• One could wonder why a definition based on only

BelXY (x, y) = BelXY ↓X(x) BelXY ↓Y (y)

was not proposed?. It is probably because it is useless.

5 Belief Function Non-Interactivity

In this section, we propose the definition of decompositional independence for
belief functions. In possibility theory, there is an analogous definition introduced
by Zadeh [28] where the decompositional independence between two variables
is represented by the non-interactivity relation. We use this last terminol-
ogy. The non-interactivity is a mathematical property useful for computations
considerations when propagating beliefs in evidential networks [27].

Intuitively, the non-interactivity of two variables X and Y with respect to
mXY means that the joint mass can be reconstructed from its marginals. The
purpose is that for any functions f ∈ {m, bel, pl, q}, we have that fXY is some
function of fX and fY . As far as once it is true for m, it is true for all of them,
we propose the following definition of non-interactivity.

Definition 4 Non-interactivity. Given two variables X and Y, and m =
mXY on XY . X and Y are non-interactive with respect to m, denoted by X ⊥m

Y , if and only if:

plXY (X,Y ) mXY = mXY ↓X ∩©mXY ↓Y (6)

The scalar plXY (X,Y ) is introduced because we tolerate unnormalized belief
functions. We could (almost) identically propose the definition as:

MXY =MXY ↓X ⊕MXY ↓Y

which is equal to:

mXY

plXY (X,Y )
=

mXY ↓X

plXY ↓X(X)
⊕ mXY ↓Y

plXY ↓Y (Y )

These definitions are all equal once plXY (X,Y ) > 0. The ‘almost’ qualification
covers the highly degenerated case where plXY (X,Y ) = 0, relation (6) being
still valid, whereas the others become undefined.
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One might also ask why we use the ∩© operator in definition 4. Its origin
comes from the concept of specialization detailed in Klawonn and Smets [12].
The ∩© is the only specialization that is associative and covers conditioning.
Details can be found in [12].

Theorem 3 Let mXY be a bba on XY and X ⊥mXY Y . Then the focal ele-
ments of mXY belong to RectXY .

Proof. Notice that a non-normalized belief function on Ω can be normalized by
just dividing it by pl(Ω). So if we divide both terms of relation (6) by (plXY )2,
we get:

MXY =MXY ↓X ⊕MXY ↓Y ,

where M denotes normalized bba. In that case non-interactivity and Shafer’s
evidential independence definitions are equivalent, therefore, by theorem 1, the
focal elements of MXY belong to RectXY . As far as mXY is proportional to
MXY , its focal elements are those of MXY and the empty set which belongs
also to RectXY . ✷

¿From theorem 1, non-interactivity and Shafer’s evidential independence
definitions are equivalent when we consider normalized belief functions.

Thus relations (2) and (3) can be directly generalized into:

plXY (X,Y ) plXY (x, y) = plXY ↓X(x) plXY ↓Y (y) (7)

plXY (X,Y ) plXY (x, y) = plXY (x, Y ) plXY (X, y) (8)

plXY (X,Y ) belXY (x, y) = belXY ↓X(x) belXY ↓Y (y) (9)

where relation (8) is obtained from relation (7) and lemma 2.

Non-interactive belief functions can easily be build by using any pair of belief
functions, one being defined on X, the other on Y , provided they give the same
bba to the empty set.

Theorem 4 Let mX and mY be two bba defined on X and Y where X and Y
are independent coarsenings of Ω with mX(∅) = mY (∅) = α with α ∈ [0, 1].
Then the bba mXY defined on XY by:

(1 − α) mXY = mX ∩©mY

with mXY (∅) = 1 if α = 1, satisfies non-interactivity: X ⊥mXY Y .

Proof. The proof consists in showing that mX and mY are the marginals of
mXY and that plXY (X,Y ) = 1 − α.

If α = 1, we have mX(∅) = mY (∅) = mXY (∅) = 1, so both mX and mY are
the marginals of mXY on X and Y , respectively.
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If α > 0, thenmXY = 1
1−α m

X ∩©mY . Marginalization ofmXY on X satisfies
axiom M1 of Shenoy ([19], page 209), so mXY ↓X = 1

1−αm
X ∩©mY ↓X . mY ↓X is a

bba with mY ↓X(∅) = α and mY ↓X(X) = 1−α. So the ∩© results only in a mul-
tiplication of every term by mY ↓X(X), i.e., by 1−α. Therefore mXY ↓X = mX .
By symmetry the same holds for mXY ↓Y = mY . Finally, using lemma 2, we
get plXY (X,Y ) = plXY ↓X(X) = plX(X) = 1−α, hence the theorem is proved.✷

6 Belief Function Irrelevance

In probability theory, the notion of independence can be defined in term of
irrelevance. This kind of independence is based on conditioning. The intuitive
meaning of irrelevance is that knowing the value yj of Y does not affect the
beliefs on X. In belief functions theory, we propose the following definition of
irrelevance:

Definition 5 Irrelevance. Given two variables X and Y , and m= mXY on
XY , Y is irrelevant to X with respect to m, denoted by IRm(X,Y ), if and only
if:
∀y ⊆ Y such that plXY (X, y) > 0

mXY [y]↓X(x) ∝ mXY ↓X(x), ∀x ⊆ X,x �= ∅ (10)

and ∀y ⊆ Y such that plXY (X, y) = 0

mXY [y]↓X(x) = 0, ∀x ⊆ X,x �= ∅, and mXY [y]↓X(∅) = 1.

In relation (10), we need ∝ because in the TBM context we do not nor-
malize when applying Dempster’s rule of conditioning. Under normalization,
proportionality becomes equality.

Theorem 5 Given two variables X and Y , and m= mXY on XY , IRm(X,Y )
if and only if plXY [y]↓X = αy pl

XY ↓X , ∀y ⊆ Y, where

αy =
plXY (X, y)
plXY (X,Y )

.

Proof. We prove that the proportionality between the plausibility functions is
equivalent to the proportionality between the bba’s.

Let P be the 2|Ω|× 2|Ω| matrix operator that transforms a bba defined on Ω
into its related plausibility function. The elements PA,B of P for A ⊆ Ω, B ⊆ Ω
are given by:

PA,B = 1 if and only if A ∩B �= ∅
= 0 otherwise.

Then for any bba on Ω, plΩ = PmΩ where plΩ and mΩ denote here the
vectors corresponding to the plausibility function and the bba, respectively.
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Let Ω = X. The multiplication by the matrix P of the two bba encountered
in IRm(X,Y ) definition (relation 10) gives:

PmXY [y]↓X = αyPmXY ↓X

where αy is independent of x ⊆ X. We have PmXY [y]↓X = plXY [y]↓X and
PmXY ↓X = plXY ↓X . The non proportionality of mXY [y]↓X(∅) has no impact
on the lemma as P∅,C = PC,∅ = 0, ∀C ⊆ X, what just translates the fact that
pl(∅) = 0. Thus plXY [y]↓X = αypl

XY ↓X for any y ⊆ Y .
In particular, plXY [y]↓X(X) = αypl

XY ↓X(X). Applying lemmas 1 and 2,
we get

αy =
plXY (X, y)
plXY (X,Y )

✷

Based on the definition of irrelevance, we can deduce the following conse-
quences.

Theorem 6 Given two variables X and Y , and m= mXY on XY , the following
assertions are equivalent:

1. IRm(X,Y )

2. plXY [y′]↓X = β plXY [y′′]↓X (11)

where β =
plXY (X, y′)
plXY (X, y′′)

, (β independent of x)

3. plXY (x, y) =
plXY (x, Y ) plXY (X, y)

plXY (X,Y )
(12)

Furthermore,

IRm(X,Y ) = IRm(Y,X) (13)

Proof.
1. We prove that 1 and 2 are equivalent. By theorem 5 and considering y′ and
y′′ subsets of Y , we get

plXY ↓X =
1
αy′

plXY [y′]↓X =
1
αy′′

plXY [y′′]↓X

plXY [y′]↓X =
plXY (X, y′)
plXY (X, y′′)

plXY [y′′]↓X

2. Using lemmas 1, 2, theorem 5 and relation (11), relation (12) can be rewrit-
ten, for any x ⊆ X, as

plXY (x, y) = plXY [y]↓X(x) =
plXY (X, y)
plXY (X,Y )

plXY ↓X(x) =

13



plXY (X, y)
plXY (X,Y )

plXY (x, Y )

Hence, (12) is proved.

3. Relation (13) results directly from the symmetry of relation (12). ✷

The third item of theorem 6 implies that IR is equivalent to Shafer’s cogni-
tive independence when belief functions are normalized.

Consider the particular belief function on XY that allocates a bba 1 to some
(x, y) for x ⊆ X and y ⊆ Y . We show it satisfies the irrelevance property.

Lemma 3 Let m be a bba defined on XY so that m(x, y) = 1 for some x ⊆
X, y ⊆ Y . Then IRm(X,Y ).

Proof. After conditioning m on y′ ⊆ Y , we have: m[y′]↓X(x) = 1 for any y′

such that y′ ∩ y �= ∅, and m[y′]↓X(∅) = 1 for any y′ such that y′ ∩ y = ∅. Thus
we have IRm(X,Y ). ✷

In the following example, we show that irrelevance does not imply non-
interactivity between variables.

Example. Let the sets X and Y be as defined by N2. Table 1 presents a very
symmetrical bba mXY on XY that satisfies the irrelevance constraints but not
the non-interactivity ones. The marginals are: mXY ↓X(x1) = mXY ↓X(x2) =
.3, mXY ↓X(X) = .4 and mXY ↓Y (y1) = mXY ↓Y (y2) = .3, mXY ↓Y (Y ) = .4. Ir-
relevance is satisfied as can be controlled by computing the plausibilities that en-
ter in the third item of theorem 6. Nevertheless non-interactivity is not satisfied
as mXY (w1) = .15 and mXY ↓X(x1) mXY ↓Y (y1)/plXY (X,Y ) = .3× .3/1. = .09,
hence violating relation (6). ✷

for ω such that: mXY (w) plXY (w)
w = ∅ .00 .00
|w| = 1 .15 .49

w ∈ {(x1, Y ), (x2, Y ), (X, y1), (X, y2)} .00 .70
w ∈ {(w1, w4), (w2, w3)} .04 .66

|w| = 3 .02 .85
w = XY .24 1.00

Table 1: For each subset of XY , listed in column 1, columns 2 and 3 present
the value of mXY and of its related plXY .

We feel the next property should also be satisfied by irrelevance. Let A1

and A2 denote two agents whose beliefs are considered. Suppose the first agent
A1 states that Y is irrelevant to X and produces his beliefs on XY and the
second agent A2 states that Y is irrelevant to X and produces his own beliefs
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on XY . Then the two agent beliefs on XY are combined by Dempster’s rule of
combination. We want that Y is still irrelevant to X under this combined belief
function on XY .

This idea can be formalized by the next property, called Irrelevance Preser-
vation under Dempster’ rule of combination, and denoted by IRP ∩©.

Definition 6 Irrelevance Preservation under Dempster’s rule of com-
bination. If IRm1(X,Y ) and IRm2(X,Y ) then IRm1 ∩©m2

(X,Y ).

We are going to show the major result of this paper, that is that IR & IRP ∩©
is equivalent to non-interactivity. We first prove it for the case where |X| =
|Y | = 2 (section 6.1) and then for general X and Y (section 6.2).

Remark. This property is not described in probability theory as the concept
of combination and the ∩© operation are hardly considered.

6.1 The 2 × 2 Case

We consider the case where |X| = |Y | = 2 and prove that IR & IRP ∩© implies
non-interactivity. The proof is based on an analysis of the relation between
m(∅) and the commonality function. Relation P2 gives:

m(∅) = 1 −
4∑

i=1

q(wi) + q(x1, Y ) + q(x2, Y ) + q(X, y1) + q(X, y2)

+ q({w1, w4}) + q({w2, w3}) −
∑

|A|=3,A⊆XY

q(A) + q(X,Y ).

We first analyze the term:

1 −m(∅) −
4∑

i=1

q(wi) + q(x1, Y ) + q(x2, Y ) + q(X, y1) + q(X, y2)

(lemma 4) then we show that m({ω1, ω4}) = m({ω2, ω3}) = 0 (lemma 5 and
6), and that m(w) = 0 for |w| = 3 (lemma 7), all these implying that the focal
elements of m belong to the set of rectangles RectXY defined on XY .

Lemma 4 Let Ω = XY be defined by N2. Let m = mXY and IRm(X,Y ) then:

1 −m(∅) −
4∑

i=1

q(wi) + q(x1, Y ) + q(x2, Y ) + q(X, y1) + q(X, y2)

=
m↓X(X)m↓Y (Y )

pl(X,Y )
(14)

15



Proof. All belief functions hereafter are initially defined on XY. For simplicity
sake, we do not indicate the XY superscript.

By P1, q(wi) = pl(wi) for i=1,2,3,4
By P3, q(xi, Y ) = pl(xi, y1)+pl(xi, y2)−pl(xi, Y ) and, q(X, yi) = pl(x1, yi)+

pl(x2, yi) − pl(X, yi) for i=1,2.

Relation (14) becomes:

1 −m(∅) +
4∑

i=1

pl(wi) − pl(x1, Y ) − pl(x2, Y ) − pl(X, y1) − pl(X, y2)

=
m↓X(X)m↓Y (Y )

pl(X,Y )
(15)

For i=1,2, j=1,2, let
θi = m↓X(xi) = m(xi, y1) +m(xi, y2) +m(xi, Y )
ηj = m↓Y (yj) = m(x1, yj) +m(x2, yj) +m(X, yj)
Θ = m↓X(X)
H = m↓Y (Y ), and
Z = m(∅).

By IRm(X,Y ), we have: pl(xi, yj) = pl(xi,Y ) pl(X,yj)
pl(X,Y ) = (θi+Θ) (ηj+H)

(1−Z) ,

and: 1 −m(∅) = pl(X,Y ) = pl↓X(X) = pl↓Y (Y ) = 1 − Z.

Then the relation (15) becomes:
1 − Z + (θ1 + Θ)(η1 +H)/(1 − Z) − (θ1 + Θ)
+ (θ1 + Θ)(η2 +H)/(1 − Z) − (θ2 + Θ)
+ (θ2 + Θ)(η1 +H)/(1 − Z) − (η1 +H)
+ (θ2 + Θ)(η2 +H)/(1 − Z) − (η2 +H)
= (1−Z)−1[(1−Z)2 +(1−Z+Θ)(1−Z+H)− (1−Z)(2(1−Z)+Θ+H)]
= (1−Z)−1[2(1−Z)2 +(1−Z)(Θ+H)+ΘH−2(1−Z)2− (1−Z)(Θ+H)]
= (1 − Z)−1ΘH.
This last term is equal to m↓X(X)m↓Y (Y )

pl(X,Y ) , hence the lemma is proved. ✷

Lemma 5 Let Ω = XY be defined by N2. Let m = mXY and IRm(X,Y ) then

m({w1, w4}) ≤ m(X,Y ) and m({w2, w3}) ≤ m(X,Y ).

Proof. We use the same notations as in the proof of lemma 4. By P2, we have:
0 = 1−Z−

∑4
i=1 q(wi)+q(x1, Y )+q(x2, Y )+q(X, y1)+q(X, y2)+q({w1, w4})+

q({w2, w3}) −
∑

|A|=3,A⊆XY q(A) + q(X,Y ).

With Lemma 4, this becomes:
0 = HΘ

1−Z + q({w1, w4}) + q({w2, w3}) −
∑

|A|=3,A⊆XY q(A) + q(X,Y ).
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By transforming q into m, we get:
0 = HΘ

1−Z + m({w1, w4}) + m({w2, w3}) +
∑

|A|=3,A⊆XY m(A) + 2m(X,Y ) −∑
|A|=3,A⊆XY m(A) − 4m(X,Y ) +m(X,Y )

Thus,
0 = HΘ

1−Z +m({w1, w4}) +m({w2, w3}) −m(X,Y )
or

m({w1, w4}) +m({w2, w3}) + HΘ
1−Z = m(X,Y )

All terms being non negative, we have:
m({w1, w4}) ≤ m(X,Y ) and m({w2, w3}) ≤ m(X,Y ) ✷

Lemma 6 Let Ω = XY be defined by N2. Let m = mXY and IRm(X,Y ).
Then IRP ∩© implies: m({w1, w4}) = m({w2, w3}) = 0

Proof. By the previous lemmas 4 and 5, we have the next inequality:
m({w1, w4}) +m({w1, w2, w4}) +m({w1, w3, w4}) +m(X,Y )
≤ m(X,Y ) +m({w1, w2, w4}) +m({w1, w3, w4}) +m(X,Y )
Thus,
q({w1, w4}) ≤ q({w1, w2, w4}) + q({w1, w3, w4}).

Let q̂ = max(q({w1, w2, w4}), q({w1, w3, w4}))
Using P4, we have q̂ ≤ q({w1, w4}) ≤ 2q̂ .
This inequality results from IRm(X,Y ) and must still be satisfied by ∩©n

i=1m
in order to satisfy the property of irrelevance preservation under Dempster’s rule
of combination (IRP ∩©).

So, q̂n ≤ qn({w1, w4}) ≤ 2q̂n for all n > 0.
Thus, q̂ ≤ q({w1, w4}) ≤ 2

1
n q̂ for all n > 0.

Therefore q({w1, w4}) = q̂ as limn→∞2
1
n = 1.

This equality means thatm({w1, w4})+m({w1, w2, w4})+m({w1, w3, w4})+
m(X,Y ) = max(m({w1, w2, w4}),m({w1, w3, w4})) +m(X,Y )

Thus, m({w1, w4}) = 0
The proof for m({w2, w3}) follows the same steps. ✷

Lemma 7 Let Ω = XY be defined by N2. Let m = mXY and IRm(X,Y ).
Then IRP ∩© implies: m(A) = 0, ∀A with |A| = 3.

Proof. Suppose m({ω1, ω2, ω3}) = x > 0. By symmetry, we build m′ on XY
by permuting w1 with w4. In that case, m({ω2, ω3, ω4}) = x, and we have
IRm′(X,Y ).

Consider now m ∩©m′. The product m({ω1, ω2, ω3})m′({ω2, ω3, ω4}) = x2 >
0 is allocated to m ∩©m′({ω2, ω3}). By lemma 5, this implies that we do not have
IRm ∩©m′(X,Y ) what in contrary to what IRP ∩© requires. Thus IRP ∩© implies
m({ω1, ω2, ω3}) = 0.

By symmetry the same holds for any A ⊆ XY such that | A |= 3. ✷
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6.2 The General Case

We have thus proved that IR & IRP ∩© implies that all focal elements of XY
belong to RectXY for the case defined by N2. We now prove that the same
holds in general.

Theorem 7 Let Ω = XY . Let m = mXY and IRm(X,Y ). Then IRP ∩© implies
that m(A) = 0, whenever A does not belong to RectXY .

Proof. Suppose A ⊆ XY does not belong toRectXY , thus does not admit a rep-
resentation as (x, y), for some x ⊆ X, y ⊆ Y and m(A) > 0. Then there exist a
subsetB ofA such thatB = {(x1, y1), (x2, y2)} orB = {(x1, y1), (x2, y2), (x1, y2)}
for some x1, x2 ∈ X, y1, y2 ∈ Y, x1 �= x2, y1 �= y2.

Let C = {(x1, y1), (x2, y2), (x1, y2), (x2, y1)} and let mC be the bba that
induces the conditioning of m on C: so mC(C) = 1.

By lemma 3, we have IRmC
(X,Y ). Combining m with mC leads to a

bba on C, with all bba given to subsets of C. We are thus back to the con-
ditions used in Lemmas 6 and 7. The bba m(A) is transferred by conditioning
on C to B, and thus we have a mass that should be null in order to satisfy
IRm ∩©mC

(X,Y ) & IRP ∩©. Hence m(A) must be null.
Therefore the bba m(D) can be positive only if D ∈ RectXY . ✷

We can now prove that IRm(X,Y ) & IRP ∩© implies X ⊥m Y .

Theorem 8 Let Ω = XY and m = mXY . If IRm(X,Y ) and if for all m′

defined on XY such that IRm′(X,Y ), we have IRm ∩©m′(X,Y ), then X ⊥m Y .

Proof. Suppose that both mXY and m′ are normalized. It is sufficient then to
prove that Shafer’s evidential independence holds as this property is equivalent
to non-interactivity (see section 5). We have already obtained that irrelevance
implies Shafer’s cognitive independence (12), so we must only prove that the
product relation (3) for bel holds as well.

Let A↓X denote the projection of A ⊆ XY on X. We have for x �= ∅:

mXY [y]↓X(x) =
∑

A↓X=x

mXY [y](A)

=
∑

A↓X=x,B⊆(X,y)

mXY (A ∪B)

In theorem 7, we have proved that m(D) > 0 only if D admits a represen-
tation as D = (x, y), for some x ⊆ X, y ⊆ Y . Let R* denote that property.

By theorem 5 and with plXY (X,Y ) = 1, IRm(X,Y ) implies ∀x ⊆ X,x �= ∅:

plXY [y]↓X(x) = plXY (X, y) plXY ↓X(x).

Applying on both side the transformation between plausibility functions and
bba, one gets:

mXY [y]↓X(x) = plXY (X, y) mXY ↓X(x).
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By the R* property, it becomes:

mXY [y]↓X(x) = plXY (X, y)
∑

y′⊆Y

mXY (x, y′).

Computing then the bel functions by summing over all x′ ⊆ x, x′ �= ∅, we
get:

belXY [y]↓X(x) = plXY (X, y) belXY (x, Y ).

By the marginalization and conditioning definitions and R*, we get:

belXY [y]↓X(x) = belXY [y](x, y)

=
∑

∅�=x′⊆x,∅�=y′⊆y

mXY [y](x′, y′) using R*

=
∑

A⊆(X,y)

∑

∅�=x′⊆x,∅�=y′⊆y

mXY ((x′, y′) ∪A)

=
∑

y′′⊆y

∑

∅�=x′⊆x,∅�=y′⊆y

mXY ((x′, (y′ ∪ y′′) using R*

=
∑

∅�=x′⊆x,y′∩y �=∅
mXY (x′, y′)

=
∑

∅�=x′⊆x,∅�=y′⊆Y

mXY (x′, y′) −
∑

∅�=x′⊆x,∅�=y′⊆y

mXY (x′, y′)

= belXY (x, Y ) − belXY (x, y) using R*

Therefore we have:

plXY (X, y) belXY (x, Y ) = belXY (x, Y ) − belXY (x, y)
(1 − plXY (X, y)) belXY (x, Y ) = belXY (x, y)

belXY (X, y) belXY (x, Y ) = belXY (x, y)

This last relation being true for any x and y, we thus have proved that the
product rule characterizing bel in Shafer’s definition of evidential independence
holds.

If the bba are unnormalized, the proof proceeds similarly. It consists in
building the normalized bba mXY

N and m′
N , proving as just done, that Shafer’s

definition of evidential independence holds, and then multiplying all terms by
(plXY (X,Y ))2. ✷

Theorem 8 means that when Y is irrelevant to X with respect to m and this
irrelevance is preserved under Dempster’ rule of combination with any other
m∗ such that Y is also irrelevant to X with respect to m∗, then X and Y are
non-interactive with respect to m. We also show the reverse.
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Theorem 9 X ⊥m Y ⇒ IRm(X,Y ).

Proof. Immediate as X ⊥m Y is equivalent to Shafer’s evidential independence
(5), up to the normalization factor. So the product rule for the pl function (2) is
satisfied, in this case irrelevance is also satisfied (12). The normalization factor
is handled by the proportionality factor introduced in relations (6) and (10). ✷

Theorem 10 X ⊥m Y ⇒ IRP ∩©.

Proof. Suppose two bba mXY
1 and mXY

2 on XY such that X ⊥mXY
1

Y and
X ⊥mXY

2
Y . By theorem 2, the non-interactivity implies that ∀w ⊆ XY :

qXY
1 (w) = qXY ↓X

1 (x) qXY ↓Y
1 (y),

qXY
2 (w) = qXY ↓X

2 (x) qXY ↓Y
2 (y),

where x = ω↓X and y = ω↓Y , the projections of ω on X and Y , respectively.
Applying conhunctive combination, we get:

(qXY
1 ∩©qXY

2 )(w) = qXY
1 (ω) qXY

2 (ω),

= qXY ↓X
1 (x) qXY ↓Y

1 (y) qXY ↓X
2 (x) qXY ↓Y

2 (y)

= (qXY ↓X
1

∩©qXY ↓X
2 )(x) (qXY ↓Y

1
∩©qXY ↓Y

2 )(y).

Therefore, X and Y are also non-interactive with respect to mXY
1 ∩©mXY

2 ,
in which case we have IRmXY

1
∩©mXY

2
(X,Y ) by theorem 9. So irrelevance is pre-

served under Dempster’s rule of combination. ✷

7 Doxastic Independence

The most obvious difference between probabilistic independence and belief func-
tion independence is that irrelevance and independence have not identical mean-
ing in the belief function framework. This distinction is not commonly consid-
ered in probabilistic framework where authors like Pearl [16] and Dawid [8] use
the words irrelevance and independence interchangeably.

In order to enhance this distinction, we use the expression doxastic in-
dependence for belief function independence. In Greek, ’doxein’ means ’to
believe’. The formal definition of doxastic independence is as follows:

Definition 7 Doxastic Independence. Given two variables X and Y, and a
bba m on XY. Variables X and Y are doxastically independent with respect to
m, denoted by X ⊥⊥m Y , if and only if m satisfies:

• IRm(X,Y )

• ∀m0 on XY : IRm0(X,Y ) ⇒ IRm ∩©m0
(X,Y )
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The intuitive meaning of this definition is that two variables are considered
as doxastically independent only when they are irrelevant and this irrelevance
is preserved under Dempster’s rule of combination.

Theorem 11 Doxastic independence preservation under ∩©.
If X ⊥⊥m1 Y and X ⊥⊥m2 Y then X ⊥⊥m1 ∩©m2

Y

Proof. Let BIR be the set of bba m such that IRm(X,Y ). Both m1 and m2

belong to BIR.
According to the definition of doxastic independence of X and Y , with re-

spect to m1 and m2, respectively, we have:

IRm1(X,Y ) and ∀m ∈ BIR, IRm1 ∩©m(X,Y ), (16)
IRm2(X,Y ) and ∀m ∈ BIR, IRm2 ∩©m(X,Y ). (17)

As m2 ∈ BIR, we replace m by m2 in (16), we obtain thus IRm1 ∩©m2
(X,Y ).

For what concerns the IRP ∩©, we must prove that for all m ∈ BIR,

IRm1 ∩©m2 ∩©m(X,Y ).

This is true if m2 ∩©m ∈ BIR for all m ∈ BIR. By (17) we know that for any
m ∈ BIR, IRm2 ∩©m(X,Y ), therefore m2 ∩©m ∈ BIR. ✷

The link between doxastic independence and non-interactivity is given by
the next theorem:

Theorem 12 Given two variables X and Y, and a bba m on XY. The variables
X and Y are doxastically independent with respect to m if and only if X and Y
are non-interactive with respect to m:

X ⊥⊥m Y ⇔ X ⊥m Y

Proof. Proof immediate from theorems 8, 9 and 10. ✷

8 Conclusion

In this paper, we have studied different concepts of marginal independence for
belief functions. Of special interest for us is to clarify the relationships between
the concepts of non-interactivity, irrelevance and doxastic independence when
uncertainty is expressed under the form of belief functions as in TBM.

Non-interactivity is defined by the ‘mathematical’ property that the joint
belief function can be described by its marginals. Irrelevance is defined by
the ‘common sense’ property that the result of conditioning the joint belief
function on one variable and marginalizing it on the other variable produce
a belief function that is the same whatever the conditioning event. Finally
doxastic independence is defined by a particular form of irrelevance, the one
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preserved under Dempster’s rule of combination. Irrelevance alone does not
imply non-interactivity. The major theorem proves that doxastic independence
is equivalent to non-interactivity, thus equating the ‘common sense’ definition
with the ‘mathematical’ definition.

These concepts of marginal independence for belief functions can be extended
to conditional case. The study of conditional independence in the framework of
belief functions theory is similar to the marginal case and will be presented in
a forthcoming paper.
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