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Abstract— Recent studies show that some security features
that blockchains grant to decentralized networks on the internet
can be ported to swarm robotics. Although the integration
of blockchain technology and swarm robotics shows great
promise, thus far, research has been limited to proof-of-concept
scenarios where the blockchain-based mechanisms are tailored
to a particular swarm task and operating environment. In this
study, we propose a generic framework based on a blockchain
smart contract that enables robot swarms to achieve secure con-
sensus in an arbitrary observation space. This means that our
framework can be customized to fit different swarm robotics
missions, while providing methods to identify and neutralize
Byzantine robots, that is, robots which exhibit detrimental
behaviours stemming from faults or malicious tampering.

I. INTRODUCTION

The ability to communicate individual opinions and to
reach a collective agreement regarding those opinions—i.e.,
achieve consensus—is a fundamental behaviour in various
societies of animals. Oftentimes, the survival and thriving of
an animal society depend on how efficiently it can achieve
consensus on environmental observations made by its mem-
bers, as well as on which actions are the most appropriate
response to those observations [1]. For instance, herds of
mammals need to agree on when to move towards pastures,
or towards water sources; colonies of insects need to choose
the best location for nesting; and some troops of primates,
including societies of humans, have systems to collectively
select their leaders.

As a discipline which originated from imitating the col-
lective behaviour of living organisms, over the years swarm
robotics research has intensively studied consensus achieve-
ment in a population of robots [2]. To achieve consensus in a
way that preserves the desired properties of a robot swarm—
decentralization and flexibility—is not a trivial task. Classical
consensus studies in swarm robotics are usually dedicated
methods for specific tasks (e.g., path or site selection [3], [4],
coordinated motion [5], or selection of the best option from
a discrete set of alternatives [6]), and thus lack the flexibility
to be adapted to the general-case consensus achievement
problem, that is, agree on any subset of elements in any
type of observation space. Furthermore, despite robot swarms
being designed with redundancy, and thus being considered
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resilient to faults that disable the entire robot [7], recent
research has shown that current consensus methods in swarm
robotics are vulnerable to various types of attacks, such as
disruptions caused by robots that behave differently from
what was intended (e.g., due to hardware faults, or to mali-
cious tampering from an adversary agent [8]–[10]); and Sybil
attacks, where a single agent creates multiple participation
credentials to control the result of consensus. Once again,
addressing these challenges while maintaining a decentral-
ized robot swarm is not trivial, since robot swarms lack a
central authority that can assign participation credentials to
robots and monitor their behaviour.

The Byzantine Generals Problem is a classical thought
problem in which agents try to reach a consensus in a
decentralized way, even though some of the agents are
unreliable. In a seminal paper, it was shown that the prob-
lem is unsolvable when the number of agents capable of
coordinating malicious attacks is greater than one-third of
the total population [11], [12]. Inspired by the Byzantine
Generals, we use the term Byzantine behaviours to refer to
a broad set of robot behaviours that are caused by faults
or malicious tampering, are difficult to detect, and can
potentially lead to incorrect consensus. A robot that exhibits
Byzantine behaviours is called a Byzantine robot. Incorrect
consensus can inhibit the swarm from completing a higher-
order task (e.g., if the robots agree on an incorrect position
of a target object and waste time and energy to plan and act
around this position) or, in the worst cases, can lead to a
catastrophic result (e.g., if the robots agree on a hazardous
building site location). Hence, it is crucial to consider the
impact of Byzantine behaviours on consensus achievement
in robot swarms.

Advances in distributed database technology and com-
puting protocols (i.e., blockchains and smart contracts [13],
[14]) potentially provide the necessary tools for robot swarms
to achieve global consensus in a decentralized and se-
cure manner [15]. The authors of [16], [17] deployed a
blockchain-based smart contract in a robot swarm that en-
abled the robots to agree on an estimated ratio between white
and black tiles on the experimental floor, despite the presence
of Byzantine robots. However, their solution is tailored to
that specific scenario and does not provide the means to
distinguish different types of Byzantine behaviour. Indeed,
Byzantine behaviours that are caused by faulty hardware or
software and those that are caused by malicious tampering
are anomalies which differ in nature and severity [18];
thus, distinguishing between them is a critical challenge in
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developing a Byzantine-tolerant robot swarm.
In this paper, we propose a generic and flexible framework

that, exploiting the programmability of smart contracts, is
suitable for any swarm robotics mission where achieving
consensus in a secure manner is necessary. More specifically,
our framework uses blockchain technology and smart con-
tracts to enable robot swarms to achieve secure consensus
in an arbitrary observation space, which means that our
framework could be deployed to different swarm robotics
missions, while granting crucial security properties against
Byzantine behaviours and Sybil attacks.

The framework is implemented using a blockchain smart
contract composed of three modules: 1) a clustering al-
gorithm, which groups the observations from robots into
clusters and where the centre of each cluster represents a
piece of new information to be considered for inclusion in
consensus; 2) a weighted voting game (WVG) protocol [19],
which determines the inclusion, or not, of new information in
consensus; and 3) a reward mechanism, which redistributes
crypto assets from robots that vote against the outcome of the
WVG to those that vote accordingly with the WVG outcome.

The crypto-economic aspect of the smart contract and the
properties of crypto assets (e.g., scarcity and fungibility)
are crucial to the security and operation of the framework.
First, the balance of crypto assets owned by faulty and mali-
cious robots converges to different values—indeed, malicious
robots that consistently input erroneous information tend to
lose most of their crypto assets, while faulty robots can
maintain or gain crypto assets depending on how severe their
faults are (i.e., how often they trigger Byzantine behaviours).
This provides an intuitive way to assess the nature and
severity of the robots’ Byzantine behaviours. Second, the
balance of crypto assets can be used to enable Byzantine
fault tolerance: robots use crypto assets as a participation
credential, which protects the swarm from Sybil attacks
and from the harmful impact of Byzantine robots. Indeed,
malicious and faulty robots eventually own fewer crypto
assets due to their behaviours, thus becoming less impactful
in the consensus achievement process [16].

We validate our framework using an experimental scenario
in which the robot swarm must locate a set of resource
patches (named food sources) that are scattered in the
environment at unknown positions in order to subsequently
perform collective resource collection (a foraging task) [20].
In this scenario, the goal of the swarm is to achieve consensus
on a set of food source coordinates. The robots estimate
their coordinates in a global reference frame, but no robot
is able to make perfect measurements. The quality of their
position estimates depends on the precision of their hardware
and sensing; therefore, every robot has a different level of
accuracy in making position estimates. In addition, malicious
robots deliberately report incorrect food source coordinates,
in an attempt to misguide the other robots.

This paper gives three major contributions:
1) A generic Byzantine-tolerant consensus framework that

can be deployed to different robot swarm consensus
tasks, particularly when security is a critical concern.

This is accomplished by exploiting the programmability
of smart contracts and the cryptographic security of
blockchains.

2) A method to identify and neutralize Byzantine robots
that can be executed during the autonomous operation
of the swarm, i.e., without the need for a centralized
authority to diagnose Byzantine behaviours nor to grant
participation credentials to the robots. This is accom-
plished through the use of scarce crypto assets which
serve both as a participation credential and as a metric
to qualify Byzantine behaviours.

3) A solution, using the proposed framework, to a problem
inspired by a swarm robotics foraging task, which
allows the robot swarm (composed of robots with both
faulty and malicious behaviours) to securely achieve
consensus on sets of coordinates of food sources.

II. RELATED WORK

Our approach is related to several topics as listed below.
a) Byzantine behaviour detection and identification: A

key characteristic of Byzantine behaviours is the difficulty to
establish whether or not they have occurred [12]. While some
faults are straightforward and can be easily detected (e.g.,
disabled components), most faults that lead to Byzantine
behaviours are caused by intermittent or partial faults which
introduce deviations from the robot’s intended and actual
behaviours (e.g., miscalibrated sensors), and thus require a
dedicated detection effort [21]. A robot with faults which
lead to Byzantine behaviours may still contribute to the
swarm operations, but its unreliability can pose a security
risk [22], particularly in consensus achievement. Considering
this, we classify Byzantine behaviours in two categories:

1) Faulty behaviours, which are caused by hardware
or software faults and lead to unexpected changes in the
functioning of the robot while they perform the normal
(expected) control strategy [23].

2) Malicious behaviours, which are ascribed to the tam-
pering of the robot control software or communications. The
malicious robot executes strategies which are different from
the expected strategy, as the result of an attack from an
external agent with the objective of disrupting the swarm.

Faults that trigger Byzantine behaviours can be de-
tected through either endogenous detection (when robots
detect faults in themselves) or exogenous detection (when
robot faults are detected by an external entity or another
robot) [21], but malicious tampering can only be detected
through exogenous detection. Furthermore, some approaches
in exogenous Byzantine behaviour detection trust a central-
ized detection algorithm [24], [25] that is assumed to never
fail, although this is unrealistic in practice.

In the absence of a centralized fault detector, Christensen
et al. [26] designed a dedicated communication protocol to
identify faulty robots, while Tarapore et al. [27] used an
adaptive artificial immune system as a decentralized Byzan-
tine behaviour detection protocol. However, these approaches
require robots to perfectly follow a predefined behavioural
protocol and/or correctly report diagnosis information based



on their internal state. Thus they are not applicable to
unexpected faults, and will not detect malicious behaviours.

Our framework can be seen as an exogenous and fully
decentralized approach to detect Byzantine behaviours in
robot swarms while providing the ability to distinguish
between Byzantine behaviours induced by faults from those
induced by malicious tampering.

b) Consensus achievement in robot swarms: To solve
a consensus achievement problem, the swarm has to agree
on a choice among a set of choices. A distinction has been
made between discrete and continuous consensus achieve-
ment problems. In the discrete case, robots need to agree
on a finite set of possible choices (such as path or site
selection [3], [6]), while in the continuous case, the robots
need to agree on the values of a set of continuous variables
(such as collective motion [5], or spatial aggregation [28]).
Consensus achievement can be further divided into exact and
approximate forms [29]. Exact consensus requires that every
robot selects precisely the same choice, while approximate
consensus allows robots to make different choices, as long
as the difference between the maximum and the minimum
values of these choices is small enough. Our approach
is designed for exact consensus achievement and can be
implemented in both discrete and continuous domains.

c) Blockchain for Byzantine-tolerant consensus achie-
vement: The recent success of Decentralized Autonomous
Organizations (DAOs) suggests that voting mechanisms can
be used as Byzantine-tolerant consensus protocols in de-
centralized and open participation networks [30] by using
crypto-economic incentives to indirectly regulate the be-
haviour of participants. DAOs exploiting the programming
flexibility of blockchain smart contracts have been developed
for various purposes, such as hosting stable coins and peer-
to-peer exchanges, as well as enabling distributed decision-
making within the DAO [31]–[33]. Strobel et al. [16] first
introduced blockchain smart contracts as a distributed plat-
form to achieve secure consensus in robot swarms, while
Pacheco et al. [17] showed the viability of deploying this
platform on a swarm composed of real Pi-puck robots.
They proposed a blockchain smart contract as an algorithmic
way to achieve secure consensus on one-dimensional sensor
readings. However, their study was specific to a particular
task and observation space and did not include Byzantine
identification to differentiate between faults or malicious
behaviours. This paper extends this line of research by
designing a generic blockchain-based consensus framework
(i.e., a DAO) for swarm robotics applications, in which a
voting-based mechanism enables Byzantine-tolerant consen-
sus achievement.

III. GENERIC FRAMEWORK

We consider the Byzantine-tolerant consensus achieve-
ment problem in an observation space Ω, where a swarm
S has to agree on a consensus set L in the power set of
the observation space pow(Ω). For example, if the robots’
observations are coordinates (i.e., points on a 2D space), then
Ω = R2, pow(Ω) represents any possible set of points R2,
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Fig. 1. Illustration of the three major stages of our framework given a
swarm of three robots with different behaviours. The non-Byzantine robot
performs the normal strategy with good quality observations; the faulty
robot behaves as the non-Byzantine but with high observation error; and
the malicious robot reports incorrect observations. In the Proposition stage,
robots submit reports that do not fall within existing clusters, thus forming
new proposals. In the Verification stage, robots verify proposals by submit-
ting additional reports, thus updating the clusters and improving the food
source position estimate. Reports that do not fall within existing clusters,
become new proposals (even if sent during the Verification stage). In the
Confirmation stage, clusters that are sufficiently verified are either confirmed
or rejected according to a voting process. Throughout this process, the assets
of the robots are redistributed according to their contributions.

and the goal of the consensus achievement problem is to let
all robots agree on a particular set of points L ∈ pow(Ω).

Our framework to achieve secure consensus can be divided
into three main stages, which are visualized in Fig. 1.

a) Proposition: Robots submit reports to the smart
contract (see Definition 1). Each report includes an observa-
tion in the Ω space that the robot believes should be added
to the consensus set. A report that is not similar enough
to previous reports is classified by the smart contract as a
proposal, which must be verified by the other robots.

b) Verification: Robots consult the smart contract to
get the list of unverified proposals (i.e., proposals that have
not been added to the consensus set yet). Verification may
require an action from the robots, such as sensing the
environment or performing a computation. Afterwards, the
robot submits a report of the observations that result from
this action. Once a proposal has received enough reports, it
can enter the confirmation stage.

c) Confirmation: The smart contract confirms or not
the membership to the consensus set of the proposal, and
rewards crypto assets to the robots that participated in
the proposition and verification of the confirmed proposal.
At this stage, the consensus set is permanently changed
on the blockchain and, once all robots synchronize their
blockchains, a new consensus has been achieved.

A report is a structured blockchain transaction defined as
follows.

Definition 1. A report is a 4-tuple r = (o, v, w, x), which
consists of an observation r.o ∈ Ω, a voting decision r.v ∈
{yes, no} representing the robots’ opinion on whether or not
the observation r.o should become part of the consensus



set, a deposit of an amount r.w of crypto assets to the
smart contract address, and the blockchain address r.x of
the reporting robot.

The smart contract uses a clustering algorithm to create
clusters and assign each report received during the Proposi-
tion and Verification stages to a cluster based on its similarity
to other reports. The similarity between reports is a distance
measure on the observation space d : Ω× Ω→ R≥0.

Definition 2. A cluster Ci ∈ C is a set of reports r such that
∀r ∈ Ci : d(r.o,m(Ci)) ≤ d(r.o,m(Cj)),∀Cj ∈ C\Ci,
where C is the set of all clusters, and m(Ci) represents the
centre of the cluster Ci. The cluster centres are initialized
according to the rules employed by the clustering algorithm,
and then updated at each iteration as the weighted average
of the reports in Ci, i.e., m(Ci) =

∑
r∈Ci

r.o · r.w/|Ci|.

During the Verification stage, robots perform actions to
verify clusters. A cluster Ci is sufficiently verified if and
only if its reports satisfy the following conditions:

1) Unique identities: ∀(ra, rb) ∈ C2
i : ra.x 6= rb.x, a 6= b

2) Assets supermajority:
∑

r∈Ci
r.w ≥ 2

3qrT ,
where T is the total supply of crypto assets in circulation,
and qr ∈ [0, 1] is the Relative assets quota, a parameter
that defines the reporting deposit as a percentage of robots’
current balance [34]. The value of qr controls the maximum
number of unconfirmed clusters on the smart contract. In
practice, a higher value of qr will accelerate the process
of the redistribution of assets between robots, but will also
slow down the process of adding new observations to the
consensus set (in our experiments, we use qr = 1

3 ).
As a prerequisite for Byzantine tolerance, it is assumed

that malicious robots will never be able to carry out a
coordinated attack with control of over one-third of the
total assets. If such control were to happen, coordinated
attackers could potentially submit false reports with identical
information or refuse to send reports, thus misleading or
obstructing the achievement of consensus, respectively.

Definition 3. A proposal is the centre of a cluster Ci that
is currently in the Verification stage.

Once a cluster Ci has been sufficiently verified, the
corresponding proposal enters the Confirmation stage for
drawing a collective decision on whether or not it belongs
in the consensus set. For this purpose, a Weighted Voting
Game (WVG) is conducted over all reports in Ci.

The WVG weight vector consists of the crypto assets
deposited for each report in Ci: w = (r1.w, ..., r|Ci|.w) ∈
R|Ci|
≥0 . The reports in Ci are divided into two coalitions YCi

and NCi
according to their votes: YCi

= {r ∈ Ci|r.v =
yes} and NCi

= Ci\YCi
. A coalition WCi

∈ {YCi
, NCi

}
is the winning coalition if it satisfies a voting rule; in our
experiment, we use the weighted majority rule: Wi is the
winning coalition if

∑
r∈WCi

r.w ≥ 1
2

∑
r∈Ci

r.w.
When YCi

becomes the winning coalition of the WVG, the
proposal of Ci is confirmed as a member of the consensus
set. After the WVG is concluded, all reports in Ci are

removed from the smart contract state, and the deposited
crypto assets in these reports are redistributed according to
a reward function.

Definition 4. A reward function f takes a sufficiently
verified cluster Ci, the WVG winning coalition WCi

, and
a report r ∈ Ci. It returns the amount of crypto assets that
need to be transferred to the reporter robot address r.x.

The reward function can have different forms depending
on the tasks and observation spaces. In our experiment, we
used the following reward function:

f(r, Ci,WCi) =

r.w +

∑
r′∈Ci\WCi

r′.w

|WCi
| , if r ∈WCi

0, otherwise,
(1)

where Ci\WCi represents the losing coalition in the WVG.
In this reward function, all robots in the winning coalition
equally share the deposits from the robots in the losing
coalition (second term in Eq. 1, top). Otherwise, using a
weight-based redistribution that is proportional to the amount
of deposits may lead to a rich-get-richer phenomenon and
thus centralization of the framework.

After the confirmation of a cluster Ci, the weighted
average m(WCi

) of all observations r.o in the supportive
reports r ∈ WCi

within the cluster will be included in the
swarm consensus set:

m(WCi
) =

∑
r∈WCi

r.o · r.w
|WCi |

. (2)

IV. EXPERIMENTAL STUDY

A. Problem statement and the smart contract
We apply our framework to a food source location dis-

covery task, where the observations are 2D coordinates in
a global reference frame, that is, Ω = R2. The swarm has
to reach a consensus over a set of available food source
coordinates L ∈ pow(Ω). The smart contract meta controller
in our experiments is shown in Algorithm 1.

The meta controller includes two executable functions.
Report is a function which enables robots to submit their
reports to the consensus algorithm accompanied by the trans-
action of the crypto assets deposit. ConsultProposals is
a call-only function which returns centres of clusters that are
awaiting verification (i.e., proposals), in order to coordinate
the robots’ verification actions. Note that the smart contract
does not distinguish the reports made during the Proposition
or Verification stages, as it is the outcome of the clustering
algorithm that defines whether a report is a new proposal or
a verification of a current one.

An incremental k-means algorithm [35], implemented on
the meta controller, is responsible for clustering similar re-
ports and identifying outliers, which become new proposals.
Note that although there exist more complex search strategies
for k value adjustment in k-means algorithms [36], in this
paper, we use a simple approach to adjust the k value:
we increase k by one when the distance between a new
observation that is greater than a threshold τ from all existing
cluster centres is reported.



Algorithm 1: Smart contract meta controller
Input : Swarm S; Observation space Ω; Distance function d;

Inter-cluster distance threshold τ ; Relative assets quota
qr ; Total circulating assets T

Output: Consensus set L ∈ pow(Ω)
Init : Size of consensus set k = 0; Cluster set C = {}; Report

set R = {}; Consensus set L = {}.
Procedure Report(r = (o, v, w, x))

if w < qrBalance(r.x) then
. Reject for insufficient deposit
Transfer r.w assets to r.x; return 0;

R← R
⋃
{r} ;

if C = ∅ then
C ← C

⋃
{r}; k ← 1;

else
. Unsupervised clustering
if ∀Ci ∈ C : d(Centre(Ci), r) ≥ τ ∧ k < b 1

qr
c then

k ← k + 1

C ← IncreKmeans(R, k);

for Ci ∈ C do
if ∃(r1, r2) ∈ C2

i : r1.x = r2.x then
. Remove duplicate identities
R← R\{r2};Ci ← Ci\{r2};
Transfer r2.w assets to r2.x;

if
∑

r∈Ci
r.w ≥ 2

3
qrW then

. Perform WVG over all r ∈ Ci

if YCi
is winning coalition then

. Most assets vote yes
L← L

⋃
Centre(Ci);

for r′ ∈ winning coalition do
Transfer f(r′, Ci) assets to r′.x;

C ← C\{Ci}; R← R\Ci; k ← k − 1;

Procedure ConsultProposals()
return {Centre(Ci) : ∀Ci ∈ C,

∑
r∈Ci

r.w < 2
3
qrT};

B. Simulation setup

We simulate the food source discovery task in a square-
shaped arena in the ARGoS simulator [37], [38], where the
food sources and a swarm of n = |S| robots are initially
placed at random positions in the arena (Fig. 2). Each
robot runs an Ethereum Virtual Machine (EVM) instance,
associated with a unique wallet address, that handles the dis-
tributed database and executes the computations of the smart
contract for consensus achievement, which is implemented in
the Solidity programming language. To guarantee consensus
on the distributed database, the swarm uses the Proof-of-
Authority (PoA) consensus protocol [39]. Compared to the
classical Proof-of-Work consensus, PoA does not spend the
computational resources of robots to solve mathematical
puzzles and has a predictable new block generation period.
When participants are perfectly time-synchronized, PoA is
Byzantine-tolerant up to n

2 − 1 Byzantine participants [40].
However, if this is not the case, this value drops to the
theoretical limit of n

3 [41], [42]. During our swarm robotics
experiments, synchronization delays can occur due to sparse
connectivity between the robots operating in a large environ-
ment. For this reason, we use a block generation period of
2 seconds, to let the information blocks have enough time
to be synchronized. Additionally, we disregard the impact of

Fig. 2. Top view of the square arena (side length: la = 1.5 m) with 15
robots. The arena contains three food sources (blue). Robots only get noise-
free positioning within the home region (green). The red circle indicates
the incorrect food source reported by the malicious robot, which is not
visible to the other robots. Robots connected with cyan lines are within
communication range and can synchronize their blockchains.

Scout

Report

Verify

Encounter
food source

ConsultProposal returns non-empty

Block
confirmed

Arrive at
proposal

Fig. 3. The FSM controller of a non-malicious robot.

gas fees (fees paid in crypto assets for the execution of smart
contract functions) on the operation of smart contracts. The
block generation period can be thought of as the operating
frequency of the smart contract meta controller [20]. For
more details on our simulations setup, we refer to [43].

C. Robot controller

All non-malicious robots are equipped with a three-state
Finite State Machine (FSM) controller shown in Fig. 3. The
robot behaviour in each state of the FSM is the following:

1) Scout: Move randomly in the arena while sensing the
floor colour using the ground sensors and querying the
ConsultProposals function on the smart contract
at regular intervals. Then, transition to the Verify state
when ConsultProposals returns a non-empty re-
sult or to the Report state when the ground sensors
detect blue colour.

2) Verify: Randomly select a proposal from the list of
proposals from ConsultProposals, then navigate
to the proposal coordinates to perform verification.
Afterwards, transition to the Report state.

3) Report: Construct a report with the estimates of the
centre of the food source measured with the ground
sensors, then send a transaction containing the report
and corresponding deposit using the Report function
on the smart contract. Afterwards, switch to Scout state
once the report has been added to the blockchain.

D. Byzantine behaviours

Among the swarm of n robots, we assume that any robot
may exhibit Byzantine behaviour, either due to faults with



varying degrees of severity or malicious tampering. More
precisely, nf robots are faulty robots—each one of them has
different and imperfect self-positioning quality—while nm
robots are malicious and might try to mislead the swarm
by reporting incorrect food source positions. The number of
robots satisfies nf + nm = n.

Each faulty robot is indexed by an integer ni = 1 . . . nf :
robots with higher indexes have more severe faults, and
thus, higher observation error. We simulate two different
types of faults that lead to inaccurate observations of the
2D coordinates of food sources:

a) Mechanical faults: We simulate friction on wheels,
which makes the actual speed of the wheel lower than the
command speed. The speed decrease on each wheel at each
time step is sampled from a uniform distribution between
[0, pmni], where pm = 0.01 stands for the unit friction
parameter and ni represents the index of the robot.

b) Sensing faults: The robot estimates its current posi-
tion using readings from a noisy virtual sensor. At each time
step t, the sensor provides a position estimate yt = xt + zt,
where xt is the actual position of the robot and zt ∼
N (0, V ) is Gaussian noise, with V = Ipsni a covariance
matrix where I is the identity matrix and ps = 0.03. This
virtual sensor mimics a self-localization error from reference
landmarks, usually generated by more complex sensors and
algorithms (e.g., camera, IMU and SLAM). The reading from
the virtual sensor is noise-free when robots are located in the
home region.

To build a new report over the observation space, each
robot predicts its position in the global reference frame using
a Kalman filter [44] with ideal forward dynamics, of which
the state space is equal to the observation space Ω = R2

(positions in 2D). In the prediction step, the robot predicts
its position by applying wheel speed action to the forward
dynamics model in the Kalman filter, while in the update
step, the robot observes a noisy position from the virtual
sensor and updates its position estimate.

The malicious robots follow a similar FSM controller to
the one shown in Fig. 3, but instead of performing random-
walk during the Scout state, they move towards an incorrect
food source location (represented by a red circle in Fig. 2),
and upon arrival at the location, they submit a misleading
report r : r.v = yes supporting that incorrect source.

E. Comparative Metrics and Results

We compare our approach with two baseline consen-
sus algorithms, namely, the linear consensus (LCP) [29]
and weighted-mean-subsequence reduced (W-MSR) proto-
cols [45]. In both LCP and W-MSR, a robot updates its belief
according to the beliefs received from its neighbours, how-
ever, with W-MSR the robot goes a step further by discarding
five beliefs that have the greatest Euclidean distance from its
own belief.

Although both LCP and W-MSR are designed for achiev-
ing decentralized consensus, they differ from our approach in
two critical ways. First, LCP and W-MSR are not applicable
to the scenario with flexible cardinality of the consensus set

(i.e., variable number of food source locations). Second, they
are designed to achieve approximate consensus (i.e., each
robot may hold slightly different beliefs), while in exact
consensus protocols, such as ours, all robots are required
to converge to the same belief. For these reasons, to draw a
comparison with the LCP and W-MSR baselines, we conduct
experiments with a single food source location and we define
the average consensus error (Ec):

Ec =
∑
a∈S

||ba − pf ||
|S|

, (3)

where ba is the belief of robot a and pf is the correct
position of the food source. With our exact consensus
method, all robots share an identical belief denoted by ba,
which corresponds to the consensus set obtained after the
first confirmation of a cluster in each experiment (Eq. 2). As
such, the consensus error becomes Ec = ||ba−pf || (the same
for all robots). Conversely, in the approximate consensus
protocols, since each robot has its own belief, Ec must be
calculated post hoc as the average of the consensus errors of
the faulty robots (we excluded the malicious robots from S
in Eq. 3, as, when using the LCP or W-MSR protocols, they
never update their erroneous ba).
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Fig. 4. Consensus error for increasing number of malicious robots in
a swarm of 15 robots over 15 repetitions in a single food source arena.
Compared to the baselines, our approach achieves lower consensus errors
under the presence of 1 to 5 malicious robot(s).

Fig.4 shows that, unlike the baseline approaches, the
consensus quality of our approach is not affected by the
attack from malicious robots. However, it is important to
weigh the trade-off between security and time and energy
costs. For this purpose, we refer to the concept of sensing
cost [46]. Specifically, we examine the total number of times
the robots enter the Report state before the swarm achieves
consensus. The transition conditions and behaviours of the
Report state for our approach are defined in Fig. 3.

For the LCP and W-MSR baselines, the robot controller
switches to the Report state when it detects a food source.
However, if the robot is unable to find the food source but
has received beliefs from at least two-thirds of robots in the
swarm, it will take the average of all received beliefs as its
initial belief, and will not switch to the Report state. As a
result, with a swarm of 15 robots, the sensing costs of the
LCP and W-MSR baseline methods are always between 10
and 15 (Fig. 5). Our approach, on the other hand, requires
robots to repeatedly estimate the centre of food sources and



report their estimates to validate correct proposals and reject
false ones, resulting in a higher sensing cost. This trade-off
is critical in achieving Byzantine-tolerant consensus.
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Fig. 5. Sensing cost for increasing number of malicious robots in a swarm
of 15 robots over 15 repetitions in a single food source arena. Our approach
requires higher sensing cost compared to the baselines.

One of the main features of our consensus framework is
its flexibility in accommodating consensus sets with arbitrary
cardinality. To demonstrate this, we further evaluate our
approach in a more complex environment with three food
sources as shown in Fig. 2. In this set of experiments, we
consider a swarm of n = 15 robots, in which nf = 14
are faulty robots and nm = 1 robot is malicious. The faulty
robots are indexed from 1 to 14 and show increasing severity
of faults, as described in Section IV-D. To study the impact
of asset redistribution within the swarm, we remove food
source coordinates from the consensus set as soon as they
are confirmed, allowing the robots to continue exploring and
achieving new consensus.
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Fig. 6. Assets balance over time for a swarm of 15 robots over 15
repetitions. The averaged balances of robots with the least, average, and
most severe faults are represented by the blue, orange, and green lines,
respectively. The balance of the malicious robot is depicted in red, and the
filled range represents the 95% confidence interval under a two-sided t-test.
Parameter values are: pm = 0.01, ps = 3la × 10−4, where la = 1.5 m is
the length of the arena.

As we can see from Fig. 6, the smart contract meta
controller redistributes the assets among robots, according to
their contribution to the consensus achievement. Robots with
less severe faults are able to collect more assets and therefore
have a higher “right to speak”, while the malicious robot
gradually loses all of its assets and is eventually excluded
from participating in consensus achievement. Moreover, the

distinct pattern of balance evolution for robots with different
kinds and severity of Byzantine behaviours provides a metric
which can be used to identify Byzantine robots.

To study how the tolerance to Byzantine behaviours
evolves during an experiment, we define the relative correct
deposit (RCD) as the fraction of crypto assets that are
deposited in favour of existing food sources, i.e., those that
are not wrongfully introduced by faulty or malicious robots:

RCD(Ci) =

∑
r∈YCi

r.w∑
r∈Ci

r.w
, (4)

where Ci denotes a confirmed cluster, the centre of which
lies within the area of an existing food source (see Fig. 2).
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Fig. 7. RCD evolution on first 5 confirmations of existing food sources over
20 repetitions. The shaded area represents the 95% confidence interval under
a two-sided t-test. The RCD evolution indicates a statistically increasing
confidence of the swarm to include correct food source positions to the
consensus set by giving more weight to robots with less severe faults, than
to those presenting either severe faults or malicious behaviour.

Each time a new food source is confirmed (x-axis in
Fig. 7), a redistribution of crypto assets occurs. This results
in an increasing trend of the RCD since, after each new
confirmation, assets are re-allocated to better-performing
robots (Fig. 6), thus increasing the level of tolerance against
incorrect reports, and reducing the influence that Byzantine
behaviours can have on consensus achievement.

V. CONCLUSION

We have proposed a generic framework which uses
blockchain and smart contracts to achieve consensus in a
robot swarm in the presence of Byzantine robots. To prove
the effectiveness of the framework, we implemented it as
a meta controller using an Ethereum smart contract and
compared it with the existing LCP and W-MSR protocols
as baselines in a swarm robotics foraging scenario. Results
show that our approach achieves better Byzantine tolerance,
albeit at a higher sensing cost. Upon further examination
of a more complex foraging scenario, we observed that
our approach effectively redistributes crypto assets between
robots based on the type and severity of faults exhibited by
the robots. This redistribution led to increased robustness
against Byzantine behaviours. Additionally, the amount of
assets can serve as a metric to assess the severity of faults
and to distinguish between faulty and malicious robots.

The generic nature of our framework is demonstrated
through its flexibility and modularity: in practice, and as



long as robots provide observations that belong in the same
observation space, no modifications are required in order to
deploy our framework to a different consensus achievement
scenario. In the case that a task requires a different clustering
scheme for its observations, or different Byzantine-tolerance
properties, the framework’s modular design allows the clus-
tering algorithm, the voting rule and the reward function to
be tailored to the new task.
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[4] M. A. Hsieh, Á. Halász, S. Berman, and V. Kumar, “Biologically
inspired redistribution of a swarm of robots among multiple sites,”
Swarm Intelligence, vol. 2, no. 2, pp. 121–141, 2008.

[5] E. Ferrante, A. E. Turgut, C. Huepe, A. Stranieri, C. Pinciroli, and
M. Dorigo, “Self-organized flocking with a mobile robot swarm: A
novel motion control method,” Adaptive Behavior, vol. 20, no. 6, pp.
460–477, 2012.

[6] G. Valentini, E. Ferrante, and M. Dorigo, “The best-of-n problem in
robot swarms: Formalization, state of the art, and novel perspectives,”
Frontiers in Robotics and AI, vol. 4, p. 9, 2017.

[7] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Schol-
arpedia, vol. 9, no. 1, p. 1463, 2014.
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