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Abstract—Hierarchical frameworks—a special class of directed
frameworks with a layer-by-layer architecture—can be an effec-
tive mechanism to coordinate robot swarms. Their effectiveness
was recently demonstrated by the mergeable nervous systems
paradigm (Mathews et al., 2017), in which a robot swarm can
switch dynamically between distributed and centralized control
depending on the task, using self-organized hierarchical frame-
works. New theoretical foundations are required to use this
paradigm for formation control of large swarms. In particular,
the systematic and mathematically analyzable organization and
reorganization of hierarchical frameworks in a robot swarm is
still an open problem. Although methods for framework con-
struction and formation maintenance via rigidity theory exist in
the literature, they do not address cases of hierarchy in a robot
swarm. In this article, we extend bearing rigidity to directed
topologies and extend the Henneberg constructions to generate
self-organized hierarchical frameworks with bearing rigidity. We
investigate three-key self-reconfiguration problems: 1) framework
merging; 2) robot departure; and 3) framework splitting. We also
derive the mathematical conditions of these problems and then
develop algorithms that preserve rigidity and hierarchy using
only local information. Our approach can be used for formation
control generally, as in principle it can be coupled with any con-
trol law that makes use of bearing rigidity. To demonstrate and
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validate our proposed hierarchical frameworks and methods, we
apply them to four scenarios of reactive formation control using
an example control law.

Index Terms—Aerial swarm, AUVs, bearing rigidity, forma-
tion control, hierarchical framework, mobile robots, rigidity
maintenance, robot swarm, UAVs, underwater swarm.

I. INTRODUCTION

IN THE last decades, multirobot systems have been
proposed as the default solution to carry out certain classes

of missions [1], such as cooperative object transportation [2]
and search and rescue [3]. For any mission, the robots’
performance depends on the suitability of the chosen control
strategy for the given task. It is well known that centralized
control of large multirobot systems poses several problems,
including limited scalability, a single point of failure in the
coordinating agent, and potentially unrealistic communica-
tion infrastructures. To circumvent these problems, the swarm
robotics community has successfully demonstrated that groups
of robots can be controlled in a completely decentralized
way [4], [5], [6], [7], [8], [9]. However, as the size and speed of
a fully decentralized swarm increases, the design and manage-
ment of swarm-level behaviors become increasingly difficult.
To address this dichotomy in the context of formation control,
we study formation frameworks that are self-organized and use
only local measurement and communication, but still, incorpo-
rate some aspects of centralization to improve manageability.
We propose a systematic way to build these self-reconfigurable
hierarchical frameworks and use them to support formation
control laws.

A. Motivations

Formation control in challenging environments—such as
underwater, underground, or inside buildings with unknown
interiors—is not yet fully understood [10]. In such environ-
ments, formation control cannot rely on absolute references
(e.g., a global reference frame), because external positioning
infrastructures, such as GPS or off-board sensing, are often
not available. According to the recent survey by [11], cur-
rent approaches that use only relative information generally
have the following limitations: they either 1) require a spe-
cific topology or connection property but have not thoroughly
addressed connectivity preservation or 2) use fully decen-
tralized control, which complicates global and local stability,
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but have not thoroughly addressed stability properties. We
aim to address these two gaps by designing self-organized
frameworks with mathematically provable properties to sup-
port formation controllers. The frameworks we propose use
self-reconfigurability to preserve connectivity and use self-
organized hierarchy to avoid the stability issues of full
decentralization.

We aim to design frameworks that can be comprehen-
sively self-reconfigured on demand, not only for expected
mission requirements but also for unexpected disturbances.
Environmental conditions, for instance, might suddenly require
formations to grow or shrink in size. As an example, a for-
mation might need to split into multiple subformations to fit
through a narrow passage, then merge to resume the orig-
inal mission. Formations might also need to reconfigure in
order to recover from robot malfunctions. For example, if sev-
eral robots fail suddenly due to a collision, the formation will
need to reconfigure so as to maintain connectivity and stabil-
ity after those departures. In this article, we, therefore, address
the component operations of all framework construction and
reconstruction problems: robot addition, framework merging,
robot departure, and framework splitting.

B. Related Work

The idea of self-reconfigurable hierarchical frameworks has
recently been introduced in the literature as mergeable ner-
vous systems (MNSs) [1], [12], [13]. The main idea of the
MNS approach is to control a swarm through a self-organized
hierarchical control framework, where both the “brain” robot
and the communication hierarchy are determined dynamically
and are self-reconfigurable. The MNS approach allows a robot
swarm to adjust the degree of decentralization used in its con-
trol strategy, based on the appropriateness for a given task.
So far, the practical effectiveness of the MNS approach has
been demonstrated for small groups of robots [1], [12], [13].
In order for the MNS paradigm to extend to formation con-
trol of much larger robot swarms and swarms that include fast
ground vehicles or drones, new theoretical foundations need
to be developed to complement the existing practical stud-
ies. There have been a few studies in which robots join a
hierarchy using local decisions (e.g., [9]), but construction of
self-organized hierarchical frameworks is currently not fully
understood.

Rigidity graph theory is a fundamental mathematical tool
to handle various problems in networked robotic systems,
e.g., [14] and [15]. Our approach to hierarchical frameworks
is based on the concept of bearing rigidity, which has recently
been used to address network problems in formation con-
trol [16], [17], [18], [19], [20], [21], [22], [23] and network
localization [24]. Bearing rigidity is a graph property that
allows a formation to be maintained without external position-
ing, using only interagent measurements of bearing. Bearing
(i.e., vector of arrival) can be sensed directly by onboard cam-
eras or sensor arrays [18] in conjunction with an onboard
inertial measurement unit. Bearing vectors remain unchanged
during translational and scaling maneuvering of the forma-
tion [16], enabling high flexibility information management.

However, the underlying graphs in existing approaches are
assumed to be undirected. These are less natural than directed
graphs when dealing with multirobot systems. If the graph
is assumed to be undirected, then constant mutual visibility
among all robot pairs needs to be ensured. In practice, this
cannot be guaranteed, as some communication breaks will be
unavoidable, regardless of the sensing type. Although bearing
rigidity under undirected graphs has been developed in [25], it
is heavily based on symmetry, and, therefore, cannot be sim-
ply applied to directed graphs [26]. Bearing-only formation
maneuvering under directed graphs with hierarchical structures
was considered in [27], but rigidity was not analyzed.

Within bearing rigidity, infinitesimal bearing rigidity is
the most important notion. In general terms, infinitesimal
bearing rigidity implies that each robot can find its unique tar-
get position using only inter-robot measurements of bearing
vectors. A predominant algorithm for constructing sequen-
tially infinitesimally bearing rigid (IBR) frameworks is the
so-called Henneberg construction. Originally proposed for dis-
tance rigidity [28], the Henneberg constructions have been
extended to bearing rigidity in [26] and [29]. The sequen-
tial nature of a Henneberg construction lends itself well to the
determination of hierarchy, including for the design of hier-
archical control structures for swarms. Based on this idea, in
this article, we propose a novel approach to swarm control that
combines the use of self-organized hierarchy (see MNS [1])
with the Henneberg construction. Our approach has provable
reconfiguration properties and allows for formation control in
swarms using behaviors that are simple to design.

Besides the self-reconfiguration of frameworks, which is a
crucial feature of this approach, it is also important to inves-
tigate the preservation of rigidity in these scenarios. Attempts
to solve the rigidity recovery problem can be found in the
literature, in scenarios of merging [30], robot departure [31],
[32], and splitting [33]. However, in order to add or remove
the minimum edges to maintain rigidity, these existing solu-
tions use global assessment and require centralized control.
Note that approaches that depend on global assessment suf-
fer from poor scalability, and, therefore, cannot be applied to
large-scale robot swarms. This further motivates us to design
distributed self-reconfiguration algorithms.

C. Approach and Contributions

This article addresses self-reconfigurable hierarchical frame-
works in robot swarms, for the purpose of formation control,
enabled by bearing rigidity theory and the notion of hierar-
chy. Our hierarchical frameworks can construct and reconstruct
themselves comprehensively (through robot addition, frame-
work merging, robot departure, and framework splitting) using
only local measurement and local communication. To demon-
strate our hierarchical frameworks and validate our theoretical
results, we apply them with a simple example controller and
run experiments in four scenarios.

The main technical contributions of this article can be
summarized as follows.

1) We address a current gap in bearing-based approaches by
extending to multirobot systems that communicate over
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directed networks. Different from existing approaches
that are restricted to undirected networks [16], [17], [18],
[19], [20], [21], [24], we extend bearing rigidity theory
to directed graphs with lower-triangular structure. This
is nontrivial because of the analysis difficulty associ-
ated with the lack of symmetry, which must be handled
in directed graphs. We show that to evaluate rigidity
under such a topology, in addition to the concept of
infinitesimal bearing rigidity given in [25], the concept
of bearing persistence is required. We provide the nec-
essary and sufficient conditions to uniquely determine a
framework under a directed topology with asymmetric
and lower-triangular structure.

2) We propose a novel hierarchical Henneberg construction
(HHC) to integrate the concepts of bearing rigidity and
hierarchy. Compared to the bearing-based Henneberg
Construction proposed in [26], which analyzes rigidity
from a geometric perspective using a global reference
frame, our method can establish rigidity intrinsically and
in a decentralized way (i.e., without global references).
The only existing approach to analyze bearing rigidity in
a decentralized way without a global reference is [10],
which has few constraints on topology, but still, assumes
that the topology has already been established. Our
approach, by contrast, uses hierarchy to construct and
maintain the necessary topology and intrinsically estab-
lish rigidity, without relying on an absolute reference,
system-wide broadcast, or other global mechanisms.

3) We propose the mathematical conditions and design
the distributed algorithms for framework construction
(including robot addition), framework merging, robot
departure, and framework splitting. Compared with [30],
[31], [32], and [33], which rely on global assessment
to determine the reconfiguration strategies, our methods
can be implemented in a distributed manner due to the
hierarchical structure. It is worth noting that our frame-
work reconfiguration is not a simple topological sorting
because both the bearing rigidity and hierarchy of the
framework should be preserved.

The remainder of this article is organized as follows. In
Section II, the foundational concepts of bearing rigidity and
bearing persistence are presented. In Section III, we formu-
late three-key problems addressed in this article: 1) framework
construction; 2) framework reconstruction; and 3) validation
of our frameworks using an example formation control law.
These problems are addressed in Sections IV–VI, respectively.
The conclusions are summarized in Section VII.

II. FROM BEARING RIGIDITY TO BEARING PERSISTENCE

Notation: R
d is the d-dimensional Euclidean space. 0 is a

zero matrix with appropriate dimension; d× d identity matrix
is denoted by Id and n×1 vector of all ones is denoted by 1n.
rank(·) and Null(·) are the rank and null space of a square
matrix; card(·) denotes the number of elements in a set. ‖ · ‖
is the Euclidean norm of a vector.

Consider a set of n (n ≥ 2) robots in R
d (d = 2, 3). pi(t) ∈

R
d denotes the position of robot i ∈ {1, 2, . . . , n} at time t and

Fig. 1. Examples of non-IBR frameworks. The red arrows represent nontrivial
infinitesimal bearing motions, under which the framework will deform and
cannot be uniquely determined.

the vector p(t) = [pT
1 (t), pT

2 (t), . . . , pT
n (t)]T ∈ R

dn describes
the configuration of the robot swarm at time t. Interactions
among the robots are characterized by a graph G = (V, E),
where |V| = n and |E | = m. If eji = (ej, ei) ∈ E , then the ith
robot can receive information from the jth robot. G is undi-
rected if ∀eji ∈ E , there exists eij ∈ E ; otherwise, G is directed.
We define the parent set of vertex vi as Pi = {vj ∈ V|eji ∈ E},
and the child set of vi as Ci = {vj ∈ V|eij ∈ E}.

It is assumed that for each edge eji ∈ E , robot i can continu-
ously measure the bearing of robot j where the bearing vector
is gij = pij/‖pij‖ and where pij = pj − pi is the displacement
vector.

We define a framework as a graph G associated with a con-
figuration p, i.e., (G, p). According to whether the underlying
graph is directed or not, the framework is either an undirected
framework or a directed framework.

In the next section, we will recall some classical concepts
concerning the so-called bearing rigidity of undirected frame-
works, and in the subsequent section, we will report a series
of new results on directed frameworks that will be used in this
article.

A. Bearing Rigidity in Undirected Frameworks

To describe all the bearings in (G, p), define the bearing

function FB as FB(p)
�= [gT

1 , gT
2 , . . . , gT

m]T , where gk corre-
sponds to the kth edge in graph G. Then, we can define the
bearing rigidity matrix as

RB(p)
�= ∂FB

∂p
∈ R

dm×dn. (1)

Definition 1 (Infinitesimal Bearing Rigidity [25]): An undi-
rected framework (G, p) in R

d is IBR if and only if the
positions of all robots in the framework can be uniquely
determined up to a translational and scaling factor.

Lemma 1 [25]: An undirected framework (G, p) in R
d is

IBR if and only if rank(RB(p)) = dn− d − 1, or equivalently
Null(RB(p)) = span{1n ⊗ Id, p}.

Another equivalent definition for an IBR framework is
that all the infinitesimal bearing motions are trivial,1 i.e.,
translation and scaling are the only robot motions that pre-
serve the relative bearings between robots connected by an
edge. Examples of noninfinitesimally bearing rigid frame-
works are presented in Fig. 1, where there clearly exist non-
trivial infinitesimal bearing motions (see red dashed arrows),
under which the framework will deform. By contrast, Fig. 2
shows examples of rigid frameworks where the only infinites-
imal motions possible are rigid translation and scaling of

1Two kinds of trivial infinitesimal bearing motions exist: translational and
scaling of the entire framework. More details are given in [25].
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Fig. 2. Examples of IBR frameworks. In contrast to examples in Fig. 1,
the newly added edges (see blue edges) can eliminate nontrivial infinitesimal
bearing motions, such that the configuration is uniquely determined.

Fig. 3. Examples to illustrate the concepts of bearing rigidity [34] and
bearing persistence in directed frameworks. (a) IBR but non-BP framework.
(b) IBR and BP framework. (c) Non-IBR but BP framework.

the frameworks. Note that the cases reported in Fig. 2 are
obtained by rigidifying the examples in Fig. 1, by adding
edges (see blue edges) to eliminate nontrivial infinitesimal
bearing motions.

B. Bearing Persistence in Directed Frameworks With
Lower-Triangular Structure

It is worth noting that rigidity is fundamentally an undi-
rected notion, and, therefore, is not sufficient to character-
ize directed frameworks [35]. Consider the framework in
Fig. 3(a). Although it is IBR (because of the rank of RB),
this framework cannot always be determined uniquely. In this
framework, robot 1 has no bearing constraints, therefore, it can
be placed arbitrarily in space. After the position of robot 1
is determined, robots 2 and 4 can be subsequently placed.
However, robots 2 and 4 only have one bearing constraint
and they can be randomly placed along edges e12 and e14.
Once the positions of robots 1, 2, and 4 are determined, it
is clear that the position of robot 3 is not always feasible,
because it has three bearing constraints to be satisfied. The
position of robot 3 is feasible if and only if ‖p21‖ = ‖p41‖.
Therefore, rigidity is not sufficient to characterize the frame-
work in Fig. 3(a). By contrast, the framework in Fig. 3(b) can
be uniquely determined as an undirected framework.

This example indicates that more conditions are required to
guarantee the existence and uniqueness of a directed frame-
work. Therefore, in this article, we will also use the condition
of bearing persistence. Before defining this notion, we intro-
duce another bearing-related matrix B ∈ R

dn×dn, namely the
bearing Laplacian, which is defined as [25]

Bij =
⎧
⎨

⎩

0, i �= j, eji /∈ E
−Pgij , i �= j, eji ∈ E
∑

vk∈Pi
Pgik , i = j

(2)

where Bij ∈ R
d×d is the ijth block of a submatrix of B, and

Pgij is an orthogonal projection operator defined as Pgij

�=
Id − gijgT

ij . It can be proved that Pgij is positive semi-definite,
0 is a simple eigenvalue of Pgij , Null(Pgij) = span(pi − pj),
and rank(Pgij) = d − 1.

Lemma 2 [36]: rank(Bii) = d if and only if there exist at
least two vertices vj, vk ∈ Pi such that gij �= gik.

We can now introduce the definition of bearing persistence.
Definition 2 (Bearing Persistence [34]): A directed frame-

work (G, p) in R
d is bearing persistent (BP) if Null(B) =

Null(RB).
For undirected frameworks, the bearing Laplacian matrix B

is symmetric positive semi-definite, which satisfies Null(B) =
Null(RB) [34]. For directed frameworks, however, only
Null(RB) ⊂ Null(B) is guaranteed. Note that bearing persis-
tence is independent of rigidity. An example is illustrated in
Fig. 3(c), which is not IBR but is still BP.

Even when using persistence, whether all IBR and BP-
directed frameworks can be uniquely determined is still an
open problem [25]. This research focuses on directed graphs
with a hierarchical structure. Specifically, each robot only
observes and tracks two immediate neighbors with higher
hierarchy (i.e., parents), which results in a lower-triangular
structure (see [37]). Therefore, the bearing Laplacian of these
special directed graphs can be written as

B =

⎡

⎢
⎢
⎢
⎣

0 0
B2,1 B2,2

...
...

. . .

Bn,1 Bn,2 · · · Bn,n

⎤

⎥
⎥
⎥
⎦

. (3)

Lemma 3: Consider a directed framework (G, p) in R
d.

If the corresponding bearing Laplacian matrix B is lower
triangular, the following statements are equivalent.

1) (G, p) is IBR and BP.
2) (G, p) can be uniquely determined up to a translational

and scaling factor.
3) Null(B) = Null(RB) = span{1n ⊗ Id, p}.
4) rank(B) = dn− d − 1.
5) rank(B2,2) = d − 1 and rank(Bii) = d ∀i ≥ 3.

The proof of Lemma 3 is reported in Appendix A.
Lemma 3 gives necessary and sufficient conditions to uniquely
determine a directed framework with a lower triangular
matrix B. Note that the structure of B can be different under
distinct labeling rules. Here, we only require that one labeling
rule exists, such that B is lower triangular, then Lemma 3 will
be applicable immediately.

Infinitesimal bearing rigidity and bearing persistence are
generic properties, which are mainly determined by the struc-
ture of the underlying graph, rather than the configuration. To
highlight this fact, we introduce the following definition.

Definition 3 [Generically Bearing Rigid and BP (GBR-BP)
Graph]: A directed graph G is GBR-BP in R

d if there exists
at least one configuration p ∈ R

dn such that (G, p) in R
d is

IBR and BP.
Lemma 4: Consider a directed graph G = (V, E), with a

lower triangular bearing Laplacian matrix B. G is GBR-BP if
and only if card(P2) = 1 and card(Pi) ≥ 2 ∀i ≥ 3.

The proof of Lemma 4 is given in Appendix B. Lemma 4
provides an admissible solution to construct directed GBR-BP
graphs and provides the theoretical basis needed to develop
construction and reconfiguration strategies later. GBR-BP
graphs have the following two properties.
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Lemma 5: Consider a GBR-BP graph G = (V, E), with a
lower-triangular structure. Add an edge eji to the graph G,
where vi, vj ∈ V and j < i. The resultant graph G+ = (V, E+)

with E+ = E ∪ {eji} is GBR-BP.
Lemma 6: Consider a GBR-BP graph G = (V, E), with a

lower-triangular structure, delete an edge eki ∈ E , and add an
edge eji /∈ E with j < i. Then, the resultant graph G′ = (V, E ′)
with E ′ = (E\eki) ∪ {eji} is GBR-BR.

Lemmas 5 and 6 can be directly derived from Lemma 4,
and, thus, the proofs are omitted. In other words, Lemma 5
allows us to connect new parent vertices to any vertex
vi (i ≥ 3). Lemma 6 allows us to change the parent vertices of
any vertex vi (i ≥ 3). This provides us flexibility in adjusting
the topology of a robot swarm dynamically, while the bearing
rigidity and persistence are guaranteed.

III. PROBLEM STATEMENT

Based on the concepts of bearing rigidity and bearing per-
sistence, the objective of this article is to investigate the
construction and reconstruction of self-reconfigurable hierar-
chical frameworks in a robot swarm. The following three
questions will be addressed.

1) Given a swarm of n robots capable of onboard bear-
ing measurements, how can the robots construct a
hierarchical and GBR-BP graph?

2) Given the constructed graph, how can the hierarchy and
rigidity properties be preserved in self-reconfiguration
scenarios, specifically in merging of frameworks, robot
departure, and splitting of frameworks?

3) Given the hierarchical frameworks, when coupled with
an example control law that makes use of bearing rigid-
ity, how can the robot swarm achieve and reconfigure
an arbitrary target formation with moving leaders while
preserving the hierarchy and rigidity properties during
self-reconfiguration scenarios?

IV. FRAMEWORK CONSTRUCTION

An important precondition to use Lemma 4 is that the bear-
ing Laplacian of the framework is lower triangular. In this
section, we extend the Henneberg constructions by introduc-
ing the notion of hierarchy, which not only guarantees the
rigidity and persistence requirement but also ensures the lower-
triangular feature of the bearing Laplacian. Our proposed
algorithm is inspired by [26] and is defined as follows.

HHC: Consider a group of n robots (n ≥ 2). The first step
is to arbitrarily choose two robots in the group as the leader
robots, denoted by v1 and v2, and add an edge e1,2 connecting
them. Define the hierarchy h(vi) of a generic robot vi as the
length of its longest path from vi to v1 in the directed graph
G. The hierarchy of v1 and v2 is 0 and 1, respectively, i.e.,
h(v1) = 0, h(v2) = 1. In subsequent steps, we utilize one of
the following two operations.

1) Vertex Addition: Add a new vertex vi to the existing
graph, incorporating two directed edges eji and eki to
two existing vertices vj and vk in the graph. Then, the
hierarchy of vertex vi is defined as h(vi) = max(h(vj)),

h(vk)+ 1.

Fig. 4. Example of HHC for a group of eight robots. (a) Four steps of
construction, with the added vertex and edges in blue and red, respectively.
Vertex addition is employed in steps 1–3 and edge splitting is used in step 4.
(b) Hierarchy layers of the framework resulting from the construction process
in (a), in which the two leaders are on the first and second layers (i.e., 0 and
1). (c) Minimal structure, where P1 and P2 are parents and C is the child.

2) Edge Splitting: Consider an existing vertex vk in the
graph, which has two parents vj and vp in the graph.
Remove an edge ejk from the graph and add a new vertex
vi together with three edges eik, eji, and eli, where vertex
vl is selected such that h(vl) ≤ h(vk). Then, update the
hierarchy of vi as h(vi) = max(h(vj), h(vl))+ 1 and the
hierarchy of vk as h(vk) = max(h(vi), h(vp))+ 1.

An example of HHC for a group of eight robots is presented
in Fig. 4(a). An important feature of HHC is that all the
robots, except the two that are arbitrarily selected as leaders,
have exactly two parents. Moreover, each follower can form
a connection with each of its two parents, forming a minimal
structure, as shown in Fig. 4(c). The child receives commands
from its parents and obtains its parents’ states via communi-
cation or sensing, and then uses this information to coordinate
with its parents. On the basis of the hierarchical framework,
shown in Fig. 4(b), the framework can also be viewed as an
acyclic tree, with the first of the two leaders as the root.

We define a layer-by-layer labeling rule to verify that the
bearing Laplacian matrix of a framework generated by HHC
is lower triangular. Let nl denote the number of vertices with
hierarchy l. Vertices with hierarchy 0 are labeled from v1
to vn0 . Vertices with hierarchy l ≥ 1 are labeled from vnl−1+1
to vnl . Note that there is no order requirement when labeling
vertices with the same hierarchy layer. Based on this labeling
rule, the bearing Laplacian B can be rewritten as

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
B2,1 B2,2

...
...

...
. . .

0 −Bij 0 −Bik Bii
...

...
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

A graph G = (V, E) generated via Henneberg construction
is called a Laman graph [38]. It was proved in [36] that an
undirected Laman graph is generically bearing rigid. Here, we
further show that a directed Laman graph is GBR-BP.

Theorem 1: A graph G, generated by HHC, is GBR-BP.
Proof: Following Lemma 4, G is GBR-BP if and only if

card(P2) = 1 and card(Pi) ≥ 2 ∀i ≥ 3. Denote the graph
consisting of n vertices as Gn = (Vn, En).

First, we consider the case of n = 2. G2 = (V2, E2) is
defined as V2 = {v1, v2} and E2 = {e1,2}. Note that the bearing
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Laplacian matrix of G2 is lower triangular, and card(P2) = 1.
Therefore, the claim is true for n = 2.

Second, suppose that the claim is true for 2 ≤ l ≤ n − 1.
Now, we consider the case of l = n, i.e., a new vertex vn will
be added to Gn−1. According to HHC, there are the following
two cases.

Vertex Addition: Select two distinct vertices vj and vk from
Gn−1. We add edges ejn and ekn. It is trivial to verify that the
bearing Laplacian matrix is still lower-triangular, as j, k < n.
Moreover, given that Gn−1 is GBR-BP and card(Pn) = 2, then
Gn is GBR-BP under Lemma 4.

Edge Splitting: We select three vertices vk, vj, and vl from
Gn−1, according to the requirements specified in the operation
description. Then, the new graph is given by Gn = (Vn, En),
where Vn = Vn−1 ∪ {vn} and E ′ = E \ ejk ∪ {ejn, eln, enk}. We
relabel the vertices according to our labeling rule, such that
the bearing Laplacian matrix is verified to be lower triangular.
We verify that card(Pi) = 2 is guaranteed ∀3 ≤ i ≤ n. It
follows from Lemma 3 that Gn is GBR-BP. �

The constructed framework can be considered centralized,
in the sense that two leaders have the ability to indirectly
control the whole swarm. It can also be considered decentral-
ized because each follower only needs the local information
associated with its parents. This reflects the targeted MNSs
concept [1], supporting parallel processing even in large-scale
robot swarms.

Our proposed construction process contributes frameworks
that exhibit the following key properties.

1) The framework benefits from rigidity and hierarchy.
These two features provide a theoretical basis to predict
the motion of each robot and can facilitate human
operators controlling the behavior of the swarm.

2) On the basis of rigidity and hierarchy, we can dynam-
ically change the size of the framework via the frame-
work reconstruction strategies proposed in Section V.
This flexibility of swarm size enables regulation of
frameworks according to task requirements and environ-
ment constraints.

3) The framework has no reliance on external position
or distance measurements, instead using only bearing
measurement. When coupled with an example control
law, e.g., for reactive formation control with moving
leaders, the robot swarm can achieve self-organized for-
mations using only relative bearing measurement and
local interactions, as shown in Section VI.

Remark 1: The concept of hierarchy has been reflected in the
field of bearing-based formation control, in formation maneu-
vering [27] and the Henneberg Construction [26]. However,
our research differs from these and contributes in two major
ways.

1) Bearing rigidity was not discussed in [27]. We
address this gap by analyzing the rigidity of hier-
archical frameworks based on the notion of bearing
persistence.

2) Hierarchy was introduced as a concept in [26], but not
fully investigated. We expand on the existing work and
propose self-reconfiguration algorithms on the basis of
hierarchical structures.

Fig. 5. Example of merging two frameworks. (a) Cube framework
is constructed by merging two square frameworks (added edges in red).
(b) Hierarchy layers of the post-merged framework.

V. FRAMEWORK RECONSTRUCTION

In this section, we address the problem of framework
reconstruction. The case of adding a new robot can be
addressed directly by the vertex addition and edge splitting
operations introduced in Section IV. The remaining cases of
reconstruction are more challenging and require explication.
Accordingly, in this section, we address the cases of merging
frameworks, robot departure, and splitting frameworks.

A. Merging Frameworks

This section concerns the problem of merging two frame-
works. A merging strategy for undirected frameworks that
consider the maintenance of bearing rigidity has been proposed
in [30]. We build upon [30] by extending to the case of
directed graphs and maintenance of the hierarchical structure
and bearing persistence.

First, consider two directed hierarchical frameworks:
(Ga, pa) with na robots, and (Gb, pb) with nb robots, where
na, nb ≥ 2. Fundamentally, we need to find the minimum num-
ber of new edges to be added, in order to maintain bearing
rigidity and persistence.

Theorem 2: Consider two graphs Ga = (Va, Ea) and Gb =
(Vb, Eb), generated by HHC. Denote two leaders of framework
(Gb, pb) as vb1 and vb2 and perform the following sequence
of operations: 1) Select two vertices vai , vaj ∈ Va and 2) Add
three edges e1 = (vai , vb1), e2 = (vaj , vb1), and e3 = (vaj , vb2).
The resulting post-merged graph Ḡ = {V̄, Ē} defined by V̄ =
Va ∪ Vb and Ē = Ea ∪ Eb ∪ {e1, e2, e3} is GBR-BP.

Proof: We add two edges to vb1 and one edge to vb2 , which
results in card(Pi) = 2 for all 3 ≤ i ≤ na + nb. We can,
therefore, employ Lemma 4 to verify that the post-merged
graph is GBR-BP. �

Theorem 2 implies that, after adding three edges, the
post-merged graph is GBR-BP. In addition, the hierarchical
structure of the framework is preserved. After the merging
operation, the hierarchy of robots in the framework (GB, pB)

should be updated as h(vBi)← h(vBi)+max(h(vai), (vaj))+1.
An example of merging two frameworks is given in Fig. 5.

Motivated by Theorem 2, we extend the merging strategy to
the case of m graphs, as summarized in Algorithm 2. It should
be noted that using Algorithm 2, merging processes can be
performed in series or in parallel. In the case of m graphs, the
merging processes can be grouped into a minimum of 1 groups
(i.e., all in parallel) and a maximum of m−1 groups (i.e., all in
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Algorithm 1 Constructing a Hierarchical GBR-BP Graph of
n (n ≥ 2) Robots in R

d (d ≥ 2)

1: i← 0;
2: Choose arbitrarily two robots from the swarm to define as leaders

v1 and v2;
3: G ← add vertices v1 and v2, and edge e2,1 = (v2, v1);
4: i← i+ 2;
5: h(v1)← 0, h(v2)← 1;
6: while i ≤ n do
7: i← i+ 1;
8: if Vertex addition is performed then
9: Choose arbitrarily two robots to define as vj and vk from

G;
10: G ← Add a vertex vi and two edges eij and eik;
11: h(vi)← max

(
h
(
vj)

)
, h(vk))

)+ 1;
12: else if Edge splitting is performed then
13: Choose arbitrarily one robot to define as vk from G, which

has two parent robots vj and vp;
14: Choose arbitrarily one robot to define as vl from G,

satisfying h(vl) ≤ h(vk);
15: G ← Remove edge ekj, add one robot vi and three edges

eki, eij and eil;
16: h(vi)← max

(
h
(
vj

)
, h(vl)

)+ 1;
17: h(vk)← max

(
h(vi), h

(
vp

))+ 1;
18: end if
19: end while
20: return G;

Algorithm 2 Merging m GBR-BP Graphs G1,G2, . . . ,Gm Into
One GBR-BP Graph Ḡ in R

d (d ≥ 2)

1: Ḡ ← G1;
2: for k = 2→ m do
3: Select two vertices vi and vj from Ḡk−1;
4: Select leader vertices vk1 and vk2 from Gk;
5: Add edges e1 =

(
vi, vk1

)
, e2 =

(
vj, vk2

)
, and e3 =

(
vj, vk2

)
;

6: Ḡ = (V̄, Ē)
, where V̄ ← V̄∪Vk and Ē ← Ē∪Ek∪{e1, e2, e3};

7: Update the hierarchy of vertices in Gk as h
(
vki

) ← h
(
vki

) +
max

(
h(vi),

(
vj

))+ 1;
8: end for
9: return Ḡ;

series), such that the time complexity will be between O(1)

and O(m). Therefore, with the proposed merging operation,
we can accelerate the construction process of large-scale robot
swarms. For instance, we can construct various hierarchical
and rigid frameworks simultaneously via Algorithm 1, and at
the same time, Algorithm 2 can be utilized to merge these
frameworks, achieving a faster self-organization process via
parallelization.

B. Robot Departure

In this section, we consider the removal of a robot from the
framework. According to whether a robot has a child or not,
the robots in the swarm can be classified into two categories:
1) outer node (i.e., no child) and 2) inner node (i.e., at least
one child). We consider the robot departure problem in both
cases.

Case 1 (Removal of an Outer Node): We first consider the
case with an outer node robot, e.g., v7 and v8 in Fig. 6(a).
Consider a directed hierarchical framework (G, p) with n

Fig. 6. Example of robot departure when using Algorithm 3. Step 1: Vertex
v4 (yellow) is removed from the framework. Step 2: Vertex v5 (blue) is shifted
to replace v4 and vertex v7 (blue) is shifted to replace v5. (a) and (b) show
the frameworks and the corresponding hierarchy layers, respectively, of the
two steps.

Algorithm 3 Removal of Vertex vk From GBR-BP Graph G
in R

d (d ≥ 2)

1: V ← V\{vk}, E ← E\{eij|vi or vj = vk
}
;

2: while vk is not an outer node vertex do
3: Select vertex vm ∈ Ck, such that ∀vj ∈ Ck, h(vm) ≥ h

(
vj

)
;

4: G ← Remove the edges associated with vm;
5: G ← Add edges from vertices in Pk to vm;
6: G ← Add edges from vm to vj ∈ Ck\vm;
7: h(vm)← h(vk);
8: vk ← vm;
9: end while

10: return G;

robots (n ≥ 2). We assume that the vertex vn is an outer
node and its parent vertices are relabeled as vi and vj.

Theorem 3: Given a GBR-BP graph G = (V, E) generated
by HHC, remove an outer node vertex vn and two associated
edges ein and ejn, the graph G− = (V−, E−) defined by V− =
V\{vn} and E− = E\{ein, ejn} is GBR-BP.

The proof of Theorem 3 is omitted, here, because the
removal of an outer node is an inverse operation of “vertex
addition” in HHC. Lemma 3 can be used to verify the rigidity
of the framework after the deletion of an outer node.

Case 2 (Removal of an Inner Node): When an inner node
robot leaves the framework [e.g., v4 in Fig. 6(a)], the rigidity
of the framework is destroyed and needs to be repaired. To
repair the rigidity and maintain the hierarchical structure, the
following corollary can be derived.

Corollary 1: Given a graph G = (V, E) generated by HHC,
if an inner vertex vk leaves the framework, let its position in
the framework (including hierarchy and connected edges) be
inherited by one of its children vertices vm that has the highest
hierarchy in Ck. In other words ∀vj ∈ Ck, h(vm) ≥ h(vj). If
vm is an outer node, Theorem 3 yields that the resultant graph
after performing the inheritance operation is GBR-BP. If vm

is an inner node, we can continue performing the inheritance
operation until an outer node is reached.

The strategy stated in Corollary 1 is summarized in
Algorithm 3 and an example is given in Fig. 6. With the help
of our proposed algorithm, we can remove any robot from the
framework without destroying rigidity, persistence, and hier-
archical architecture. One advantage of the proposed method
is that only local information is required to perform the inher-
itance operation. The time complexity of our proposed robot
departure algorithm can be calculated as O(n). In contrast
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Algorithm 4 Removal of k (k ≥ 2) Vertices From GBR-BP
Graph G in R

d (d ≥ 2)

1: V ← V\{vm1 , . . . , vmk

}
, E ← E\{eij|vi or vj /∈ V}

;
2: Select two vertices vl1 , vl2 ∈ V such that h

(
vl1

) ≤ h
(
vl2

) ≤
h(vi), ∀vi ∈ V;

3: h
(
vl2

)← h
(
vl1

)+ 1;
4: h(vi)← h(vi)+ 2, ∀vi ∈ V\{vl1 , vl2

}
;

5: for vi ∈ V\{vl1 , vl2
}

do
6: while card{Pi} < 2 do
7: G ← add new edge eqi, where vq ∈ V is chosen such that

vq /∈ Pi and h
(
vq

)
< h(vi);

8: end while
9: Update h(vi) according to the hierarchy of its parents;

10: end for
11: return G;

Fig. 7. Two possible configurations of directed Z-links (marked in red),
based on undirected Z-links [33].

to our approach, existing methods such as [32] require an
optimal repairing solution from the global perspective to find
the necessary edges to maintain the rigidity.

Remark 2: Note that for the case of multiple robots being
removed at the same time, it might not always be possible to
employ the inheriting operation as introduced in Corollary 1,
because the hierarchical structure would not always be main-
tained. To reconstruct frameworks under such a scenario, based
on Lemma 4, each follower should possess at least two parent
vertices. For this reason, Algorithm 4 presents a protocol for
the followers of removed robots to select new parents under
the hierarchy constraint.

C. Splitting Frameworks

In this section, we consider the case where a framework
with at least four robots is split into several disjoint subframe-
works, each consisting of at least two robots. Similar to the
merging operation, the main difficulty of the splitting oper-
ation is the preservation of the bearing rigidity, persistence,
and hierarchy of the subframeworks after splitting. Note that
the splitting operation can be considered a generalized exten-
sion of robot departure. Without loss of generality, we first
consider the strategy for splitting one framework into two
subframeworks.

We use a special graph called Z-link, originally proposed
in [39] and employed in [33] for undirected graphs. We extend
this existing research to directed Z-links. We denote Z-link by
Z = (VZ, EZ), where |VZ | = 4 and |EZ | = 3, as shown in
Fig. 7. The following definition determines the existence of a
Z-link in a graph G.

Definition 4 (Z-link): Consider a directed graph G =
(V, E). Two disjoint subgraphs Ga = (Va, Ea) and Gb =
(Vb, Eb) are said to be connected via a Z-link if the following
two conditions hold.

1) There exists four distinct vertices va1, va2 ∈ Va and
vb1, vb2 ∈ Vb, such that the graph among these four
vertices is a Z-link.

2) Va ∪ Vb = V , Va ∩ Vb = ∅, Ea ∩ Eb = ∅, and E =
Ea ∪ Eb ∪ EZ .

Theorem 4: Given a GBR-BP graph G = (V, E), let Ga =
(Va, Ea) and Gb = (Vb, Eb) be two disjoint subgraphs of G,
which are connected via a Z-link. Then, Ga is GBR-BP⇔ Gb

is GBR-BP.
Proof: We only show that Ga is GBR-BP⇒ Gb is GBR-BP,

because the reverse is the same.
Given that G is GBR-BP, there exists a configuration p =

[pT
1 , . . . , pT

n ]T ∈ R
dn, such that (G, p) is IBR and BP. Let pa =

[pT
1 , . . . , pT

na
]T ∈ R

dna and pb = [pT
na+1, . . . , pT

n ]T ∈ R
d(n−na).

Let Bb be the bearing Laplacian matrix of (Gb, pb).
Without loss of generality, we assume that Va ∩ VZ =
{va1, va2} and Vb ∩ VZ = {vna+1, vna+2}. We add edge
e(na+1)(na+2) to the graph G. Then, the resultant graph G+ =
(V, E∪e(na+1)(na+2)) is still GBR-BP under Lemma 5. Denote
B+ as the bearing Laplacian matrix of (G+, p).

We augment Ga to G+a = (V+a , E+a ), defined by V+a = Va ∪
{vna+1, vna+2} and E+a = Ea ∪ EZ ∪ e(na+1)(na+2). Denote B+a
as the bearing Laplacian matrix of (G+a , p+a ), where p+a =
[pT

a , pT
na+1, pT

na+2]T ∈ R
d(na+2).

As a result, we can write the bearing rigidity matrix B+ as

B+ =
[

B+a
0

0
0

]

+
[

0
0

0
Bb

]

. (5)

Consider equation Bbq = 0. If Gb is not GBR-BP, then there
exists a configuration qb = [qT

na+1, . . . , qT
n ] ∈ R

d(n−na) such
that qna+1 = pna+1 and qna+2 = pna+2, but qi �= pi ∀i ∈
{na + 3, . . . , n}.

Let q′ = [pT
1 , . . . , pT

na+1, pT
na+2, qna+3 . . . , qn]T .

Equation (5) yields B+q′ = 0. Note that q′ /∈ span{1n ⊗ Id, p},
i.e., G+ is not GBR-BP, which is a contradiction. Therefore,
Gb is verified to be GBR-BP. �

Theorem 4 indicates that, for any GBR-BP graph, if there
exists a Z-link connecting two disjoint subgraphs Ga and Gb,
one of which is guaranteed to be GBR-BP, then the other sub-
graph is also GBR-BP. This lemma leads us to develop the
following splitting strategy: we first find a GBR-BP subgraph
Ga, and second, construct a Z-link between Ga and Gb. After
the removal of the Z-link edges, we obtain two GBR-BP sub-
graphs. We now present our two-step algorithm to split the
framework, exploiting the triangularity in (4).

Step 1 (Find a GBR-BP Subgraph Ga): Given a frame-
work generated by HHC with n robots, the Bearing Laplacian
submatrix of the first na robots always satisfies a triangular
structure [see the triangularity in (4)]. Therefore, we can ver-
ify Ga as GBR-BP according to the first na robots, as stated
in the following Theorem.

Lemma 7: Given a GBR-BP graph G = (V, E) generated
by HHC, let Ga = (Va, Ea) represent a subgraph describing
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Fig. 8. Example of splitting one framework G into two subframeworks Ga
and Gb when using Algorithm 5. (a) First, vertices v5 and v6 are chosen as the
leaders for Gb. Second, a Z-link (marked in red) is constructed between the
two subframeworks (newly added edges are marked as dashed arrows). Third,
the Z-link is removed, resulting in two separate frameworks. Corresponding
hierarchy layers after Z-link construction (before Z-link removal).

Algorithm 5 Splitting one GBR-BP Graph G Into m GBR-BP
Graphs: G1,G2, . . . ,Gm in R

d (d ≥ 2)

1: n0 = 0;
2: for k = 1→ m do
3: Vk ←

{
vnk−1+1, . . . , vnk−1+nk

}
;

4: Select vertex vnk−1+1 as the first leader of Gk, and denote its
parents as vp1

k
and vp2

k
;

5: Select vertex vnk−1+2 as the second leader of Gk;
6: G ← Remove the ingoing edges of vnk−1+2;
7: G ← Construct Z-link by adding two ingoing edges to

the second leader: ek1 =
(
vnk−1+1, vnk−1+2

)
and ek2 =(

vp1
k
, vnk−1+2

)
;

8: h
(
vnk−1+2

)← h
(
vnk−1+1

)+ 1;
9: h(vi)← h(vi)+ 2, ∀i ∈ {

nk−1 + 3, . . . , nk−1 + nk
}
;

10: for i = nk−1 + 3 to nk−1 + nk do
11: for vj ∈ Pi do
12: if vj /∈ Vk then
13: G ← remove edge eji;
14: G ← add new edge eqi, where vq ∈ Vk is chosen such

that vq /∈ Pi and h
(
vq

)
< h(vi);

15: end if
16: end for
17: Update h(vi) according to the hierarchy of its parents;
18: end for
19: Ek ←

{
eij ⊂ E |vi, vj ∈ Vk

}
;

20: end for
21: G ← Remove all constructed Z-links by deleting two ingoing

edges of vnk−1+1 and edge ek2 ;
22: return G1,G2, . . . ,Gm;

the interactions corresponding to first na vertices, i.e., Va =
{v1, . . . , vna}. Then, Ga is GBR-BP.

Proof: Denote B as the bearing rigidity Laplacian matrix
of (G, p), where p ∈ R

nd is a configuration. Then, B can be
partitioned as

B =
[

Ba 0
Bb1 Bb2

]

(6)

where Ba ∈ R
dna×dna denotes the bearing Laplacian matrix

for the first na vertices. Then, we can apply statement (5) of
Lemma 3 to verify the rank of matrices on diagonal of Ba,
which shows that Ga is GBR-BP. �

Step 2 (Construct a Z-Link Between Two Subgraphs): Let
Gb = (Vb, Eb) represent the interactions among the remain-
ing vertices, i.e., Vb = {vna+1, . . . , vn}. Corresponding to

Definition 4, Z-link construction comprises the following two
parts.

1) Let Pna+1 = {vp1, vp2}. Remove the ingoing edges of
vna+2, then add edges e(na+1)(na+2) and ep1(na+2).

2) ∀vi ∈ Vb\{vna+1, vna+2}, if its parent vj ∈ Va, then
remove eji. To preserve rigidity, add new edge eki, where
new parent vk ∈ Vb is chosen such that vk /∈ Pi and
h(vk) < h(vi).

Here, Lemma 6 is repeatedly employed to satisfy
Definition 4, therefore, the resultant graph is still GBR-BP.

Finally, we can use the above splitting strategy for the
case of m graphs, as summarized in Algorithm 5. Similar
to the merging process, according to the for-loop structure
of the splitting algorithm, the time complexity can be cal-
culated as O(mn). Note that multiple splitting processes can
happen in parallel. This is because the robots have been
divided into m subsets Vk = {vnk−1+1, . . . , vnk−1+nk}, and each
follower is required to change its parent vertex such that
∀vi ∈ Vk,Pi ⊂ Vk. For instance, we can simultaneously apply
the splitting algorithm to all subsets m; then the time com-
plexity will be determined by the maximum subset size, so
it will be reduced to O(max{nk}). Therefore, in practice, the
time complexity will often be lower than O(mn). A splitting
example is presented in Fig. 8. Note that Algorithm 5 can split
the framework into at least two subgraphs with arbitrary size
no less than 2, which provides flexibility in managing the size
of the framework.

VI. VALIDATION WITH EXAMPLE CONTROL LAW

In this section, to demonstrate and validate our theoreti-
cal results, we couple our proposed hierarchical frameworks
with an example formation control law and then apply them
to four example scenarios of reactive formation control in an
aerial robot swarm with moving leaders. In the first scenario,
we establish a target formation based on our proposed hier-
archical framework and validate Theorem 1. In the second,
we merge two formations under Algorithm 2 and validate
Theorem 2. Third, we show robot departure from a formation
under Algorithm 3 and validate Theorem 3 and Corollary 1.
Fourth, we split a formation under Algorithm 5 and validate
Theorem 4 and Lemma 7.

We consider a group of n mobile robots moving in R
d

(d ≥ 2), the model of which is described by a single inte-
grator ṗi = ui, where pi ∈ R

d is the inertial position of the ith
robot and ui ∈ R

d is the control input. The main purpose of
this section is to validate our proposed construction and recon-
struction algorithms, when coupled with an example control
law, using experimental results in simulation. Therefore, only
a single-integrator model is considered. (For further results on
formation control with two-leader directed frameworks, please
refer to [22] and [23].)

A. Example Scenario 1: Achieving the Desired Formation

Consider a swarm with n robots with a hierarchical topol-
ogy, characterized by a directed graph G = (V, E) generated
by Algorithm 1. The robots are located at p1, . . . , pn in R

d,
and each robot does not know the global position pi but can
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sense the bearing vectors with regard to its parent robots, i.e.,
{gij|vj ∈ Pi}. We assume that the positions of the neighboring
robots do not coincide, i.e., ∀eij ∈ E and t ≥ 0, pi(t) �= pj(t),
which guarantees the bearing vectors to be well defined.

In our hierarchical framework, two robots denoted by v1 and
v2 are chosen as the leaders, while the others are followers.
Given a set of feasible desired bearings {g∗ij|eji ∈ E} among the
robots,2 the desired robot formation is uniquely characterized,
but for rigid translation and scaling. This last ambiguity of
the graph is resolved by fixing the position of the first robot,
and the distance of the first two robots. Define p∗(t) as the
vector of the desired position of the robots over time, and
d∗ij(t) = ||p∗i (t) − p∗j (t)|| as the distance between the desired
position of robot i and of robot j. The relationship between
p∗(t) and {g∗ij|eji ∈ E} is characterized by [26, Lemma 1].

According to [26, Lemma 1], given the position of two
leaders, a framework constructed by HHC can be uniquely
determined. Moreover, the desired translational and scaling
maneuvers of the formation are uniquely determined by the
reference motion of the first two “leader robots.” This inher-
ent property also shows the possibility of using centralized
decision-making behaviors with our self-organized hierarchi-
cal frameworks, because we can control the translation and
scale of the formation via two leader robots, which reduces
the complexity of formation management.

In this article, for the sake of simplicity, we do not consider
the motion control of leaders, and we assume that the two lead-
ers move along predefined trajectories, i.e., p1(t) = p∗1(t) and
p2(t) = p1(t)−d∗2,1(t)g

∗
2,1, at all time t > 0.3 In order to drive

the followers to achieve the desired formation, the following
bearing-only formation control law for robot vi (i ≥ 3) is used:

ṗi = ui = −c
(

Pgijg
∗
ij + Pgik g∗ik

)
+ ṗ∗i (7)

where c is a positive constant to be tuned and ṗ∗i is a
feedforward term given as follows:

ṗ∗i (t) =
(

Pg∗ij + Pg∗ik

)−1(
Pg∗ij ṗ

∗
j (t)+ Pg∗ik ṗ∗k(t)

)
(8)

and each agent can compute ṗ∗i (t) by receiving ṗ∗j (t) and ṗ∗k(t)
from its parents.

Remark 3: The control law (7) is inspired by [26], in which
the formation is static. To extend this zero-velocity control
law to moving formations, we introduce the feedforward term
ṗ∗i (t) to guarantee zero steady-state error. Note that trans-
mission and computation of feedforward terms through the
hierarchy is not instantaneous and will introduce delays. There
are several approaches to handle such delays (e.g., sufficient

2The feasibility conditions are specified in [26, Assumption 2].
3Note that this assumption is not limitative and that all the results of this

article hold true by using suitable control laws for the two leaders ensuring
convergence to the desired trajectories.

Fig. 9. Simulation results in example scenario 1: Achieving the desired
formation. (a) Trajectories of robots. (b) Formation tracking errors of robots.

preview of the reference signal, or relaxing the perfect track-
ing requirement and proving ISS-like properties assuming a
purely reactive control law). However, such analyses are non-
trivial and are beyond the scope of this article. The specific
control law used (7) is just an example to demonstrate the
effectiveness of our proposed framework; any control law that
makes use of bearing rigidity could in principle be coupled
with our frameworks.

By employing a similar stability analysis as shown in
[26, Th. 1], we can also demonstrate that the formation track-
ing error ei(t) = p(t) − p∗(t) asymptotically converges to
zero using the control law (7). Note that the implementa-
tion of control law (7) requires only local measurement and
local communication from parents to children, which supports
the decentralized coordination targeted in a reactive swarm
approach.

Remark 4: The only parameter to be tuned in (7) is the
control gain c. c should be positive, and an increase of c will
speed up the formation achievement, but will also result in a
larger velocity amplitude. Therefore, the tradeoff between con-
vergence speed and velocity amplitude should be considered
when defining c.

A simulation example is shown in Fig. 9. We consider a
group of eight robots with a hierarchical framework shown
in Fig. 4(a), and the target formation is a cube. The motion
of leader v1 and time-varying distance d∗2,1 are shown at the
bottom of the page (9). The controller parameter is chosen
as c = 5. Fig. 9(a) depicts the trajectory of eight robots.

⎧
⎪⎨

⎪⎩

p1(t) =
[
0.3t, 40 sin(π t/200), 40 sin(π t/200)

]T
, d∗2,1(t) = 20− 10 sin(π t/200), t ≤ 100

p1(t) = [0.3t, 40, 40]T , d∗2,1(t) = 10, 100 ≤ t ≤ 300

p1(t) =
[
0.3t, 40 sin(π(t − 200)/200), 40 sin(π(t − 200)/200)

]T
, d∗2,1(t) = 20− 10 sin(π(t − 200)/200), t ≥ 300

(9)
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Fig. 10. Formation evolution in example scenario 2: Formation merging.

Fig. 11. Formation evolution in example scenario 3: Robot departure from
the formation.

As can be seen, the target formation can be achieved while
the centroid and scale of the framework is time-varying in
order to pass through narrow passages. In this example, the
trajectories of leaders are predefined (but known only to lead-
ers). In practical missions, the leaders can generate trajectories
in realtime according to task requirements and environment
constraints. The formation tracking errors in Fig. 9(b) also
converge to zero asymptotically, but with various convergence
rates. Robots v3 and v4 have lower hierarchy and, therefore,
will converge faster than the others. The simulation results in
Fig. 9 validate Theorem 1 of our proposed approach.

B. Example Scenario 2: Formation Merging

Consider two robot swarms (Swarm A and Swarm B),
with graphs constructed by Algorithm 1, that need to merge.
Following Algorithm 2, three directed edges need to be added
for the two frameworks to be merged, such that the two leaders
of Swarm B become followers of Swarm A. Then, having been
given a new target formation with desired bearing vectors such
that the post-merged framework is IBR and BP, the robots of
the post-merged swarm will move under the formation control
law to achieve the target formation.

A simulation example is shown in Fig. 10. In the first 50 s,
the two frameworks each achieve the target square via con-
trol law (7), but with different scales. From 50 s, following
Algorithm 2, three edges are newly added to merge the two
frameworks, and the target cube is achieved at 150 s. Note
that the scale of Swarm B is increased to that of Swarm A

Fig. 12. Formation evolution in example scenario 4: Formation splitting.

after performing the merging operation, which also demon-
strates that Swarm B integrates successfully into Swarm A.
The simulation results in Fig. 10 validate Theorem 2 of our
proposed approach.

C. Example Scenario 3: Robot Departure From Formation

In this example, the robot departure shown in Fig. 6 will
be validated. In other words, robot v4 will be removed, and
then Algorithm 3 will be performed to guarantee both the
hierarchy and rigidity of the framework. Fig. 11 depicts the
simulation results. From 0 to 50 s, the target formation will be
achieved via the control law (7). From 50 s, robot v4 will keep
moving along a straight line, and then robot v5 will replace
the position of v4 in the framework, while v7 will further
replace the position of v5, since v5 is not an outer node robot.
The simulation results show that the rigidity of the resulting
framework is preserved because the formation is not destroyed
after the removal of robot v4, thus, validating Theorem 3 and
Corollary 1 of our proposed approach.

D. Example Scenario 4: Formation Splitting

This example validates the splitting process as presented
in Fig. 8(b), where a framework (G, p) (i.e., presplit Swarm
in Fig. 12), including eight robots is split into two subframe-
works (Ga, pa) (i.e., Swarm A in Fig. 12) and (Gb, pb) (i.e.,
Swarm B in Fig. 12), each with four robots.

The simulation result is given in Fig. 12. At t = 50 s, Z-link
is constructed. From 50 s to 100 s, it can be noticed that the
formation of the framework is maintained after Z-link con-
struction, and also that the Z-link construction does not affect
the rigidity of the framework. At t = 100 s, Z-link will be
removed and two subframeworks will result. Thus, from 100 s
to 200 s, robots v5 and v6 will be the leaders of Swarm B and
the two subframeworks will move separately. The simulation
results show that two subframeworks satisfy the bearing rigid-
ity because the formations are maintained after splitting, thus,
validating Theorem 4 and Lemma 7.

VII. CONCLUSION AND FUTURE WORK

A. Conclusion

In this article, we demonstrated the construction of self-
reconfigurable hierarchical frameworks for formation control
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of robot swarms, based on bearing rigidity under directed
topologies.

Self-organized hierarchical control had previously been
identified as a promising approach to ease the design and
management of collective behaviors in robot swarms [40],
and hierarchical frameworks had already been demonstrated in
practical studies using the MNSs paradigm [1], [12]. However,
strong theoretical foundations were still needed, especially, for
self-organized hierarchy to be viable for large-scale swarms of
fast robots. In this article, we provided the first systematic and
mathematically analyzable protocol for the implementation of
self-reconfigurable hierarchical frameworks in robot swarms.

To enable self-organized hierarchical control with math-
ematically provable properties, we introduced a hierar-
chy property into the conventional Henneberg construction
and extended bearing rigidity to directed graphs with
lower-triangular structure. We studied self-reconfigurable hier-
archical frameworks in three-key reconstruction problems:
1) merging; 2) robot departure; and 3) splitting. Finally, we
demonstrated our frameworks by combining them with an
example formation controller and validated our theoretical
results concerning hierarchy and rigidity preservation during
reconfiguration via simulation experiments in four example
scenarios.

B. Future Work

This article studied bearing rigidity of directed frameworks
with lower-triangular structure, which is an important initial
step toward extending [25] into a general bearing rigidity the-
ory that encompasses directed graphs. In future work, special
cases of directed graphs that are IBR but do not have a lower-
triangular structure, and that are relevant to formation control,
would also need to be solved to complete a general bearing
rigidity theory.

While in this article, we presented a simple control law,
mostly for demonstrative purposes, future works could also
explore new control laws for formations that are uniquely
determined by two leaders and bearing constraints, to address
important issues, such as navigation in obstacle-constructed
environments. For instance, a protocol could be developed for
formation parameters (e.g., translation, scale, and rotation) to
be optimized online by two leaders, subject to obstacle con-
straints. As another example, a local path planner could be
designed for followers to determine the interagent bearing
vectors needed to avoid collisions.

APPENDIX A
PROOF OF LEMMA 3

Proof: According to the definitions of infinitesimal bear-
ing rigidity and bearing persistence, (1) ⇔ (3) ⇔ (4) is
straightforward. We, therefore, only show (2) ⇔ (3) and
(4)⇔ (5).

(2) ⇒ (3): To demonstrate Null(B) = span{1n ⊗ Id, p}, it
is equivalent to show ∀q = [qT

1 , . . . , qT
n ]T ∈ Null(B), q =

ap+ 1n ⊗ b, where a ∈ R \ {0} and b ∈ R
d.

For robot 1, q1 can be chosen randomly according to (3),
thus, it is always possible to find a and b, such that q1 =
ap1 + b.

For robot 2, q2 satisfies B2,1(q2 − q1) = 0. If B2,1 = 0, there
is no bearing constraint for robot 2, thus, robot 2 can be placed
randomly, which contradicts statement (2). Therefore, q2 −
q1 ∈ Null(B2,1) = span{p2 − p1}, i.e., q2 − q1 = α(p2 − p1)

with α ∈ R \ {0}. Now, we claim that qi = q1 + α(pi − p1)

for all 1 ≤ i ≤ n, and use mathematical induction to check
whether this claim is true.

For robot 3, the constraint is (B3,1 + B3,2)q3 = B3,1q1 +
B3,2q2. Using q2 − q1 = α(p2 − p1), the constraint can be
rewritten as

(
B3,1 + B3,2

)
q3 =

(
B3,1 + B3,2

)
q1 + αB3,2(p2 − p1)

= (
B3,1 + B3,2

)
(q1 + α(p3 − p1)) (10)

where the last equality uses B3,1(p3 − p1)+B3,2(p3 − q2) = 0.
Under Lemma 2, B3,1 + B3,2 is not singular if and only if
g3,1 and g3,2 exist, and are not collinear. If g3,1 (or g3,2)

does not exist, robot 3 only has one bearing constraint, thus,
it has a noninfinitesimal bearing motion [such as robot 3
in Fig. 3(c)], thus, the framework cannot be uniquely deter-
mined. If g3,1 are collinear with g3,2, robot 3 still only has
one bearing constraint, and the framework will not be unique.
This implies that B3,1 + B3,2 is not singular, and we obtain
q3 = q1 + α(p3 − p1).

Now, we assume that qk = q1 + α(pk − p1) is true for 1 ≤
k ≤ i− 1. For robot i, we have

i−1∑

j=1

Bijqi =
i−1∑

j=1

Bijqj

=
i−1∑

j=1

Bijq1 + α

i−1∑

j=1

Bij
(
pj − p1

)

=
i−1∑

j=1

Bij(q1 + α(pi − p1)) (11)

where the last equality uses
∑i−1

j=1 Bij(pi − pj) = 0. Via
similar analysis for robot 3, the uniqueness of the frame-
work ensures that

∑i
j=1 Bij is nonsingular and further that

qi = q1 + α(pi − p1).
By the above induction, we prove that qi = q1+α(pi − p1)

is true for all robots. Moreover, it can be derived that q =
αp + 1n ⊗ (q1 − αp1). This implies that ∀q ∈ Null(B), q ∈
span{1n ⊗ Id, p}.

(3)⇒ (2): Consider an IBR and BP framework (G, p). For
a configuration q ∈ R

n, we say q is a realization of directed
graph G, if Ppi−pj(qi − qj) = 0 for all eij ∈ E . Denote the set of
all realizations of G as SG . Our objective is to demonstrate that
∀q ∈ SG , q ∈ span{1n ⊗ Id, p}. This can be directly verified
via the bearing Laplacian. Given that

Bq =

⎡

⎢
⎢
⎣

...
∑i−1

j=1 Bij
(
qi − qj

)

...

⎤

⎥
⎥
⎦ = 0 (12)

then q ∈ Null(B) = span{1n ⊗ Id, p}.
(4)⇒ (5): According to (2), rank(B2,2) = d−1 if e12 ∈ E ,

and rank(B2,2) = 0 otherwise. Assume e12 /∈ E , then p1 and p2
can be placed arbitrarily, which is a contradiction with state-
ment (2). For robot i (i ≥ 3), under Lemma 2, we assume
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rank(Bi,i) �= d, then robot i only has at most one bearing
constraint, such that it can either be randomly placed in R

d

if card(Pi) = 0, or randomly placed along a line, if either
card(Pi) = 1 or ∀vj, vk ∈ Pi, gij = gik. In each of these cases,
the framework cannot be unique. Therefore, rank(Bii) = d.

(5) ⇒ (4): By the property of block matrices, rank(B) ≥∑n
i=2 rank(Bii) = dn− d− 1. Note that rank(B) ≤ dn− d− 1

exists, hence, rank(B) = dn− d − 1. �

APPENDIX B
PROOF OF LEMMA 4

Proof (Necessity): If G is GBR-BP, there exists a configu-
ration p such that (G, p) is IBR and BP. Therefore, statement
(5) in Lemma 3 should be satisfied. Since rank(B2,2) = d−1,
robot 1 should be the parent of robot 2. For i ≥ 3, rank(Bi,i) =
d if and only if at least two of {gik}k∈Pi are not collinear. Thus,
card(Pi) ≥ 2.

Sufficiency: If card(P2) = 1 and card(Pi) ≥ 2 exists, we
should find a configuration p = [pT

1 , pT
2 , . . . , pT

n ] ∈ R
dn, such

that (G, p) is IBR and BP. For p1, it can be selected randomly.
For p2, because robot 1 is the parent of robot 2, we only
need to select p2 �= p1, which guarantees rank(B2,2) = d − 1.
For pi (i ≥ 3), because the position of its parents have been
determined, pi can be selected such that there exist at least
two vertices vj, vk ∈ Pi with gij �= gik, which guarantees
rank(Bi,i) = d. In this way, we find one configuration p,
such that statement 5 in Lemma 3 is satisfied. Thus, G is
GBR-BP. �
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