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Abstract. Federated learning is a new approach to distributed machine
learning that offers potential advantages such as reducing communication
requirements and distributing the costs of training algorithms. Therefore,
it could hold great promise in swarm robotics applications. However, fed-
erated learning usually requires a centralized server for the aggregation
of the models. In this paper, we present a proof-of-concept implemen-
tation of federated learning in a robot swarm that does not compro-
mise decentralization. To do so, we use blockchain technology to enable
our robot swarm to securely synchronize a shared model that is the ag-
gregation of the individual models without relying on a central server.
We then show that introducing a single malfunctioning robot can, how-
ever, heavily disrupt the training process. To prevent such situations,
we devise protection mechanisms that are implemented through secure
and tamper-proof blockchain smart contracts. Our experiments are con-
ducted in ARGoS, a physics-based simulator for swarm robotics, using
the Ethereum blockchain protocol which is executed by each simulated
robot.
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1 Introduction

In federated learning, each agent performs local training (for example, on a
smartphone) on the data it has collected, and shares the trained model with a
centralized server that aggregates the individual models. It is a recent approach
to distributed machine learning [9] that has the advantage of keeping data local
and private, and distributing the costs of training models among the nodes in a
distributed network.

Here, we explore the decentralized implementation of federated learning for
the purpose of using it in a robot swarm. In a swarm robotics implementation
of federated learning, each robot of the swarm locally trains a model with the
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data it collects. However, instead of a central server, a decentralized and secure
data structure is required to aggregate the individual models. Virtual stigmergy
has been used for this purpose in previous research [8, 21]; however, this shared
data structure is not secure against the wide range of faults and attacks that
may occur in real-world deployments of peer-to-peer systems. As an alternative,
we employ the Ethereum blockchain [3] as a decentralized data structure main-
tained by the robot swarm, as done in previous research [23, 24, 16, 14, 28, 22].
Blockchain protocols such as Ethereum have seen widespread adoption on the
internet, and their security properties are well documented.

Even though a blockchain protocol can enable the secure synchronization
of a database and execution of smart contracts (programs which are executed
synchronously by the distributed network), there is yet the problem of securing
the federated learning algorithm from the inputs of malfunctioning or mali-
cious robots (Byzantine robots [23]) that may send incorrect individual models.
Therefore, using a blockchain serves a dual purpose: as a distributed compu-
tation platform that enables the synchronization of an aggregated model; and
as a means to implement security mechanisms that address the risks posed by
Byzantine robots for model training.

Previous research introduced blockchain-based federated learning in the con-
text of medical data to ensure data privacy and security [25]. In our approach,
we investigate the specific challenges associated with networks of mobile robots,
which are characterized by local communication capabilities and time-critical
information processing. Specifically, our robots are connected in a peer-to-peer
manner, with each robot functioning as a blockchain node that maintains the
blockchain network. Due to the limited communication range of the robots, the
network topology changes rapidly, causing information to reach different robots
at different times. This work provides a new perspective on how decentralized
machine learning can be implemented securely in robot swarms.

We begin by providing an overview of the background and related work
in Section 2. Next, in Section 3, we present the experimental implementation,
including the simulation architecture that we implemented, the environment,
the robots and their behaviors, as well as the federated learning framework, the
behaviors of Byzantine robots, and the protective measures that we designed.
Subsequently, we present the results of each experiment in Section 4. Finally,
we conclude with a discussion of our study’s implications and potential future
developments in Section 5.

2 Background

In the Flow-FL system [8], it has been shown that federated learning can be
used by a robot swarm to perform decentralized and collective learning of a
model for trajectory prediction. Flow-FL uses virtual stigmergy [19], a shared
database system that was tailored for swarm robotics and therefore is capable
of managing the network partitioning and packet losses that may occur in these
systems. However, virtual stigmergy and Flow-FL do not provide a way to man-
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age conflicts caused by Byzantine robots (e.g., if a robot sends different models
to different peers). In a real-world deployment of federated learning in robot
swarms, we can expect conflicts to occur due to unforeseen circumstances, but
they may also occur if a robot falls under the control of a malicious agent that
attempts to generate conflicts that lead to state divergence across the network.

We believe that a first step for implementing federated learning in swarm
robotics is to ensure synchronization of a conflict-free distributed data struc-
ture that accommodates the shared machine learning model. Otherwise the dis-
tributed data structure could potentially become a single point-of-failure for the
system.

The second step is to secure the federated learning algorithm from non-
conflicting, yet incorrect inputs. Our results (Section 4) show that Flow-FL [8]
is vulnerable to the introduction of a single Byzantine robot that sends random
model weights, which could occur, for example, as the result of sensor faults,
or when a malicious agent gains control of a robot and manipulates the shared
model, an attack known as model poisoning [7]. Without security mechanisms,
federated learning exposes the entire robot swarm to a high risk of failure as
soon as a single robot fails.

However, securing federated learning is a significant challenge, since the in-
dividual models are learned from private data and it is difficult to evaluate the
quality of a model without accessing this data [27]. As such, aggregation algo-
rithms such as FedAvg [9] may additionally employ security measures such as
Sybil protection [7]. Blanchard et al. [2] propose a method called Krum that
ensures Byzantine fault-tolerance up to a certain number of attackers. Multiple
variants have been proposed such as multi-Krum and median-Krum [5].

However, these techniques have been implemented through central servers.
To achieve a decentralized implementation, we integrate the federated learn-
ing framework with an existing blockchain technology framework [17, 22]. This
integration is chosen because the blockchain mechanism has proven to be effec-
tive when dealing with Byzantine robots in swarm robotics [24, 16, 28, 6, 4]. We
then show a smart contract implementation that prevents the harm caused by
Byzantine robots, enabling the secure federated learning of the shared model.

3 Methods

We use the same simulation environment and robot controllers as the Flow-
FL system [8]. The robots move in the environment and have access to GPS
coordinates. Each robot records trajectory data about other robots it meets.
The trajectory data is then used for training a machine learning model: a deep
neural network with an LSTM (long short-term memory) layer and a dense
layer (we employed the same neural network configuration as in the original
Flow-FL paper [8]). These individually learned models are then exchanged with
local peers through blockchain transactions, and aggregated into a shared model
using a smart contract that is maintained via a blockchain that is independently
executed by each robot.
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Fig. 1. Experimental arena. The Pi-
puck robots (small green circles) are
connected by cyan lines when they
are able to record each other’s tra-
jectories through their range-and-
bearing sensors. The short cyan rays
around each robot represent colli-
sion avoidance sensors used to detect
walls (delimiting the arena), obsta-
cles (gray cubes and cylinders), and
other robots.

3.1 Simulation Setup

We use the physics-based simulator ARGoS [18], the Ethereum blockchain soft-
ware [3] and the virtualization software Docker [10]. The controller of each robot
in ARGoS communicates with a corresponding Docker container that hosts an
Ethereum node. In this way, the robot controllers can send transactions and
interact with the smart contracts, while the synchronization and maintenance of
the blockchain are executed in the Docker containers in the background. Similar
setups have been used in previous research [23, 24, 16, 14, 28, 22]. The source code
for our setup and all experiments is available online [15].

3.2 Environment

Our swarm of 15 robots navigates a 5×5m2 arena, while avoiding obstacles and
other robots. Obstacles—5 cylinders with 0.15m radius and 5 boxes with 0.3×
0.3m2 base—are distributed uniformly at random in the arena. Each experiment
has a duration of 5 000 s. A visual representation of the arena can be seen in
Fig. 1.

3.3 Robot Model and Controller

The robots we use in the simulator are the Pi-pucks [11, 12], which have been
demonstrated in previous research to be capable of executing Ethereum block-
chain software [16, 22]. The Pi-pucks are equipped with an array of infrared
sensors to detect obstacles, a range-and-bearing board to obtain data regarding
the motion and identities of the other robots, and a Wi-Fi module to synchro-
nize the blockchain blocks and transactions. All communications occur within a
maximum range of 2.5 m.

Each robot moves in the environment, while avoiding other robots and obsta-
cles, and collects data regarding its own motion and the motion of its peers using
a range-and-bearing sensor. A motion trajectory is a list of x, y positions over
10 s. If the connection with another robot is interrupted during the recording,
the corresponding trajectory is discarded.
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Every 100 s, a robot enters a training state. In this state, it collects the last
aggregated model from the blockchain. This model is then trained on the latest
collected data using Tensorflow [1]. The parameters used are the same as in [8]:
a batch size of 20, a learning rate of 0.001 and 20 epochs.

Once the new local model is trained, it is included in a blockchain transaction
and broadcast so that it may contribute towards the next iteration of the shared
model. Immediately after, each robot begins collecting the next set of data.

3.4 Model Aggregation

The aggregation of the local models is performed using a smart contract whose
pseudocode is given in Algorithm 1. It contains two functions that the robots
can interact with:

– submitModel: robots can upload their locally trained models, which will be
used for updating the shared model using the FedAvg algorithm [9]. The
shared model is updated each time a certain fraction, i.e., a quorum, of the
robots have submitted their models. We selected a quorum size of ⌊q ×Nr⌋
robots, with q = 50% and Nr being the number of robots in the swarm. This
results in a quorum of 7 out of 15 robots. If the quorum size is too large,
the learning process can be slowed down by robots that fail to submit their
models (e.g., if they are not connected) [9]. Conversely, if it is too small, it
may pose a security vulnerability as the Byzantine robots might become the
majority in a single aggregation round.

– getModel: robots can retrieve the latest shared model and use it for local
training. If a robot has not synchronized its blockchain with the latest ver-
sion due to network partitioning, it may train its model using an outdated
model. This issue can be addressed by selecting adequate parameters and
making appropriate choices for the blockchain consensus protocol that ac-
commodates network properties and robot capabilities. Given the speed and
communication range of the robots, we used a block period of 10 s. By wait-
ing a minimum of 10 s between the generation of blocks, we grant enough
time for robots to synchronize the previous blocks and therefore the latest
state of the smart contract.

The shared model is calculated using a weighted average—based on the num-
ber of samples that the robots used to train their model—of the local models
submitted by the robots in that aggregation round’s quorum. In this way, models
that were trained using more data have a larger impact on the shared model.
This adaptation of FedAvg [9] is shown in Algorithm 1.

3.5 Security Mechanisms

In the federated learning literature, security mechanisms are typically studied
in a centralized setting (see Section 2), in which a model aggregation server is
in charge of qualifying and rejecting the individual models, as well as of manag-
ing the identities of the participants and protecting from Sybil attacks. In the
following, we describe how we implemented decentralized security mechanisms.
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Algorithm 1 FedAvg with Nr = 15 total robots; q = 50% quorum of robots
participating; B = 20 local mini-batch size; E = 20 local epochs; Pk data of
robot k, R aggregation rounds, loss function ℓ (mean square error), and learning
rate η = 0.001.
Init: model weights w(0)
Smart contract executes:

for round t = 1 to R do
p← max(⌊q ·Nr⌋, 1)
St ← (random set of p robots)
Ns ← 0
for each robot k ∈ St do

nk(t+ 1)← (number of samples of robot k)
Ns ← Ns + nk(t+ 1)
wk(t+ 1)← RobotTrain(k,w(t))

w(t+ 1)← 1
Ns

∑p
k=1 nk · wk(t+ 1)

RobotTrain(k,w):
B ← (split Pk in batches of size B)
for epoch e = 1 to E do

for batch b ∈ B do
w ← w − η∇ℓ(b;w)

return w

Sybil protection In order to protect the system against Sybil attacks (i.e., situa-
tions in which an attacker forges many identities in order to gain control over the
swarm), robots must transfer 5 crypto tokens (i.e., scarce units that are main-
tained on the blockchain) in order to submit their models to the smart contract.
Robots start with 21 tokens and if they remain with less than 5 tokens, they can
no longer participate in federated learning. The tokens thus act as participation
credentials which are allocated through a blockchain-based reputation system
that evaluates the quality of the models submitted by the robots.

Outlier rejection Most security measures in the federated learning literature
begin with rejecting outliers, as it is a simple yet effective method to prevent the
shared model from diverging when individual learners submit extreme inputs.
We employ a static threshold, which is compared to the distance between the
submitted model weights ws and the model weights wa aggregated in the last
round:

1

N

N∑
i=1

|ws,i − wa,i| ≤ 0.05 , (1)

The total number of trainable model weights is N = 2848, in our case. In a pilot
study, we observed that, on average, the distance between the submitted model
and the shared model was 0.01, so we established the threshold to be 5 times
this value. If a robot submits a model with weights that surpass the threshold,



Blockchain Federated Learning in Robot Swarms 7

the model will be excluded from the aggregation and the robot that submitted
it loses the tokens paid for the submission.

Ranking system The ranking systems sorts the models submitted by the robots
according to their distance from the shared model. The number of ranked models
in each aggregation round corresponds to the quorum to be reached to trigger
the model aggregation. In our case, the quorum is 7 robots and therefore we rank
7 models. The model with the distance that corresponds to the median of all
the distances is ranked first. Then the following ranks are based on the absolute
difference between a model’s distance and the first-ranked model’s distance.

The tokens sent by the robots alongside their model submissions are added
to a reward pool, that is redistributed once the shared model is updated. Robots
that submitted a model with a higher rank receive a larger reward than those
that submitted a model with a lower rank, according to a reward weights vec-
tor. The reward weights vector we use is k = [1, 1, 1, 1, 1,−1,−1], which means
that the robots that submitted the two worst-ranked models are penalized and
lose tokens, whereas the others are rewarded. In addition, we scale the rewards
proportionally to the number of data samples used to train the model, because
using more samples normally improves the training outcome but also increases
the training and data-collection costs. To perform this scaling, we first divide
the robots into a group that is rewarded R and a group that is penalized P (the
penalized group gets back fewer tokens than submitted). Then, each robot i
receives the following quantity of tokens:

Ri =


(1 + ki·si∑

j∈R

kj ·sj ) · 5 tokens if i ∈ R

(1− ki·si∑
j∈P

kj ·sj ) · 5 tokens if i ∈ P,

where ki and si are the reward weight and the number of samples submitted by
robot i, respectively. By using this reward function we can ensure that:

1. High rank and high number of samples lead to high reward.
2. High rank and low number of samples lead to low reward.
3. Low rank and low number of samples lead to low penalization.
4. Low rank and high number of samples lead to high penalization.

3.6 Byzantine robots

We consider three types of Byzantine robots: faulty, malicious, and smart.

Faulty The first type of Byzantine robot is considered to be faulty. It sends
random model weights that are uniformly distributed in the interval between
-0.5 and 0.5, which is the interval TensorFlow [1] uses when generating random
model weights at initialization. In a real-world deployment, such a behavior may
occur if a robot’s sensor is obstructed or damaged and thus yields arbitrary
values.
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Malicious The second type of Byzantine robot is considered to be a malicious
robot that sends as its trained model the model from the previous aggregation
round, stored in the blockchain. Such a behavior could occur because the robot
is hacked, and the hacker is attempting to bypass the outlier rejection threshold
and slow down the training.

Smart Finally, the third type of Byzantine robot is a smart robot. Its objective
is to achieve high ranks by exploiting the ranking system in order to increase
the number of participation tokens it holds. To do so, it predicts the most likely
next update to the shared model and submits this model, without performing any
model training or data collection. More specifically, a smart robot z computes
how much the weights changed on average during the last aggregation step (from
t− 1 to t) and applies a random variation of the same magnitude to its current
model weights w(t). The weights the smart robot sends are:

wz,i(t+ 1) = wi(t) + 2r ·∆(w(t), w(t− 1)) , (2)

where ∆(w(t), w(t− 1)) =
1

N

N∑
i=1

|wi(t)− wi(t− 1)| ,

and r is a uniformly distributed random value between 0 and 1 which is regen-
erated for every weight wz,i(t + 1), i ∈ {1, 2, . . . , 2848} in the robot’s weights
vector wz.

3.7 Metrics

Average Loss This is the loss obtained by taking a weighted average of the
validation loss of each robot’s model taking part in the aggregation round. Note
that for all plots showing the average loss we use logarithmic scale. The reason
for this is that in many cases our results for different configurations are very
similar and would not be distinguishable on a linear scale.

Tokens gained This is the number of tokens that robots have gained at the end
of an experiment due to the rewards system. Depending on the experiment, we
count separately the number of tokens gained by Byzantine robots and those
gained by non-Byzantine robots.

4 Results

4.1 Experiment 1 – No security

Storing large amounts of data on hardware-limited robots is costly, so it is im-
portant to allow for old data to expire and instead use more recent data, as long
as model quality is not compromised. In this experiment, we initially employ
15 non-Byzantine robots and vary the data expiration time from 250 s to 1 250 s,
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(a) The effect of data expiration time on
the average loss with no Byzantine robots.

(b) The effect of introducing one Byzan-
tine robot without security mechanisms.

Fig. 2. Each line shows the average loss of the aggregated model—5 runs for (a) and
10 runs for (b)—and the shaded areas depict 95% confidence intervals. (a) Increasing
the data expiration time leads to a quicker decrease of the average loss. This is expected,
as more data is used for model learning. However, it also shows that for data expiration
times of 750 s and higher, the loss curves are similar. For this reason, we select a value
of 750 s for all subsequent experiments. (b) A single Byzantine robot is sufficient to
prevent the model from converging (with a data expiration time of 750 s).

to determine how it impacts the convergence speed of the model. This experi-
ment serves as a baseline in order to compare the results to later experiments
and to the results of Flow-FL.

Figure 2a shows that increasing the data-expiration time beyond 750 s only
results in marginal improvement. Therefore, we selected the 750 s expiration
time as the data expiration time for the subsequent experiments. Comparing our
results with the ones obtained in the original article that proposed the Flow-FL
framework [8], the convergence speed of our system (Figure 2a) is quantitatively
different but qualitatively very similar: we reach the same final results with a
loss of 10−2 for the higher expiration times, but with a slower convergence speed.
This discrepancy may be caused by differences in the valuess of the parameters
(as it was not possible to retrieve all the values used in the original Flow-FL
article [8]).

After selecting an appropriate data expiration time and showing that the
system functions similarly to Flow-FL (but using a blockchain), we test the
system’s resilience to the introduction of a single faulty Byzantine robot, without
yet applying the security measures described in Section 3.5. Figure 2b shows that
the system is vulnerable to even a single faulty Byzantine robot. For this reason,
introducing security mechanisms is an obvious necessity.

4.2 Experiment 2 – With security

In this set of experiments, we use the smart contract that implements the security
mechanisms explained in Section 3.5. We conduct 20 runs for each configuration,
ranging from 0 to 7 Byzantine robots.
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(a) Average loss for different numbers of
faulty Byzantine robots.
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(b) Tokens gained by non-Byzantine
robots.

Fig. 3. (a) As the number of Byzantine robots increases, the number of aggregations
that occur within the fixed 5 000 s experiment duration decreases. Indeed, by rejecting
outlier models, we can achieve a more robust and faster convergence (in terms of aggre-
gation rounds). However, fewer aggregation rounds occur by the end of the experiment
as there are fewer robots producing reliable models and the quorum size is the same
(7 robots). (b) As the number of Byzantine robots increases, the non-Byzantine robots
gain more tokens.

Security to faulty robots Initially, we introduce faulty Byzantine robots (see
Section 3.6). We expect that a vast majority of incorrect models from faulty
Byzantine robots will be rejected by the outlier rejection mechanism (see Sec-
tion 3.5). Therefore, these experiments mainly showcase the efficacy of this mech-
anism in handling faulty Byzantine behaviors, which are not malicious in nature.

Figure 3a shows that the implemented security mechanisms are effective at
rejecting inputs from faulty Byzantine robots and the resulting average loss is
largely independent of the number of Byzantine robots. Since the secured smart
contract requires 5 tokens for robots to submit their models, and since these
tokens are later distributed among the robots whose models got accepted, we
expect that non-Byzantine robots gain tokens, whereas Byzantine robots lose
tokens. This is shown in Figure 3b: non-Byzantine robots indeed gain tokens on
average, indicating that our security mechanism is effective in distributing the
tokens supplied by the Byzantine robots among the non-Byzantine robots.

Security to malicious robots Although outlier rejection can protect the learn-
ing process from random outlier values, a malicious Byzantine robot could still
attempt to manipulate the learning process by sending slightly deviated models
that are yet within the established threshold. The impact of such an attack on the
shared model is potentially smaller, since the model deviation is smaller; how-
ever, a collusion of malicious robots could succeed at manipulating the shared
model. Our mechanism to manage this type of malicious Byzantine attack ranks
the robot submissions according to how far they deviate from the median value of
all submissions, and rewards the robots according to their rank (see Section 3.5).
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Fig. 4. Average loss for different numbers of malicious Byzantine robots. Since a large
number of models from malicious Byzantine robots are included in the aggregation,
we do not observe the steep reduction in the total number of aggregation rounds as
before. Even though the ranking mechanism secures the models’ convergence, the model
convergence becomes slower when the number of Byzantine robots increases.
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(a) Tokens gained by non-Byzantine
robots
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(b) Tokens gained by Byzantine robots

Fig. 5. With up to 3 malicious Byzantine robots, our ranking mechanism success-
fully rewards non-Byzantine robots and penalizes Byzantine robots. With 4 Byzantine
robots, this is no longer guaranteed, and with 5 or more of them, Byzantine robots will
likely gain tokens.

The results in Figure 4 show that the implementation of the ranking system
allows for model convergence, even in the presence of malicious Byzantine robots.
However, when the number of Byzantine robots increases, the model convergence
becomes slower and the loss at the end of the experiment is higher. Unlike faulty
Byzantine robots, whose models were always rejected, the models from malicious
robots are most of the time accepted, which leads to a slower convergence of the
shared model, but also to faster aggregation rounds (note that in our experi-
ments with a fixed duration of 5 000 s, the aggregation rounds when malicious
robots were present are more than in experiments with faulty robots, compare
Figures 3a and 4). Figures 5a and 5b show that the non-Byzantine robots gain
tokens up to a maximum of 3 Byzantines. After this point, the ranking system
starts to fail as the Byzantine robots can occasionally become a majority in a
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Fig. 6. Average loss for different numbers of smart Byzantine robots. The model conver-
gence speed and number of aggregation rounds does not differ much from the previous
experiment shown in Figure 4.

single aggregation round quorum (whose total size is 7 robots), which leads to
Byzantine robots maintaining or even gaining tokens.

4.3 Experiment 3 - Vulnerability to smart Byzantine robots

By using crypto tokens as participation credentials we can protect the system
from Sybil attacks and mitigate the negative impact of Byzantine robots. How-
ever, in a real-world operation, it is possible that robots temporarily exhibit
faulty behavior, becoming Byzantine robots, and then recover. For this reason,
we designed the token rewards system to not only penalize Byzantine behaviors,
but also to reward robots that contribute with valid models. This ensures that
the reputation tokens recirculate between the robots and do not run out, which
would otherwise halt the system. However, this introduces a common vulnera-
bility to reputation-based systems [20]: a smart Byzantine robot could attempt
to obtain tokens by initially sending good models, and later use these tokens to
manipulate the shared model.

We show this possibility by performing experiments using smart Byzantine
robots that try to be ranked first by sending a model that follows the current
trend of the training (see Section 3.6).4

The loss curve in Figure 6 follows the same pattern as the loss curve observed
in Figure 4: with a higher number of smart Byzantines, the training becomes
slower. Still, with up to 4 smart Byzantine robots, the number of aggregation
rounds does not decrease significantly. However, with a higher number of smart
Byzantine robots, non-Byzantine robots may begin to lose reputation tokens thus
reducing the number of learners and, therefore, slowing down the aggregation
process, which then falls under the control of the smart Byzantine robots. This
is more clearly visible in Figure 7 which shows how the smart Byzantine robots
are able to gain more tokens than the non-Byzantine robots. Although the effect

4 Simulations in this section are repeated 18 times due to time constraints.
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(a) Tokens gained by non-Byzantine
robots

(b) Tokens gained by Byzantine robots

Fig. 7. Smart Byzantine robots are able to consistently gain more tokens than the
non-Byzantine group, especially when there are 3 or more Byzantine robots.

on model convergence is not visible (Figure 6), the smart Byzantine robots, as
soon as they detain a majority of the tokens, can potentially switch behavior
and collude on manipulating the shared model.

5 Discussion and Conclusions

Federated learning is a promising approach to improve machine learning in dis-
tributed systems. However, its application in the context of swarm robotics is
hampered by the need for infrastructure that establishes secure aggregation of
the individual machine learning models. We showed that a possible solution is to
incorporate blockchain technology into robot swarms to establish a secure fed-
erated learning framework that respects the decentralization requirement and
employs security mechanisms that are a must for real-world deployments.

Our experiments showed that Byzantine robots pose a significant threat to
federated learning, hindering or potentially manipulating the training of the
shared model. We thus implemented security mechanisms to mitigate this threat.
Our results show that these mechanisms worked as intended and enabled the
learning process to maintain good results despite the presence of Byzantine
robots. The proposed mechanisms can also effectively protect the system from
Sybil attacks by limiting the number of times a robot is allowed to submit model
weights that are labeled as outliers. As faults naturally occur in robots over time,
robots would be at the risk of eventually exhausting all participation tokens. To
allow the system to autonomously recover from temporary faults (i.e., without
the need for a technician and administrator to diagnose the robots and grant
them new participation tokens), we established a reputation system that not
only penalizes, but also rewards robots when they submit good-quality models.
However, our results also show how this scheme is vulnerable to smart Byzantine
robots that attempt to gain tokens without performing any useful work. Future
work needs to address this issue.

The costs of implementing our method should also be discussed in terms of
storage and bandwidth usage. Aggregating the models in the blockchain requires
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that robots broadcast a large number of transactions that include the trained
models, which can be several KB in size. Regarding storage costs, since each
blockchain node stores the transactions in blocks, every aggregated weight sub-
mitted by a robot will be stored on the blockchain. Experimentally, we observed
that the storage cost increases linearly with time (the blockchain size increases by
approximately 16.7 KB each time a robot submits its model through a transac-
tion) and reaches on average approximately 100 MB at the end of an experiment
(i.e., after 5,000 seconds) training an artificial neural network with 2848 weights.
In this sense, blockchains can be seen as storage-efficient data structures that
scale well, given the storage capabilities of the Pi-Pucks (16 GB with a default
SD card). Still, in swarm robotics, their costs might impede their use on less
capable robots.

Our work is one of the very first steps [8, 26, 13, 29] towards the success-
ful deployment of decentralized federated learning in swarm robotics, enabling
robot swarms to agree on global information without compromising their criti-
cal properties: autonomy, decentralization, and scalability. Although this proof
of concept has demonstrated the potential of the proposed solution, further re-
search is needed to refine and enhance it, for example, in terms of security to
more sophisticated attacks.

Acknowledgements. The authors thank Carlo Pinciroli and Nathalie Majcher-
czyk for sharing the data and the code of their original Flow-FL paper. M.D.
and V.S. acknowledge support from the Belgian F.R.S.-FNRS. A.R. acknowl-
edges support from DFG under Germany’s Excellence Strategy - EXC 2117 -
422037984.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: A system for large-scale machine learning. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). pp. 265–283. USENIX Association (2016)

2. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning
with adversaries: Byzantine tolerant gradient descent. In: Advances in Neural In-
formation Processing Systems. vol. 30, pp. 118–128. Neural Information Processing
Systems Foundation (2017)

3. Buterin, V.: A next-generation smart contract and decentralized applica-
tion platform. Ethereum project white paper. (2014), https://ethereum.org/en/
whitepaper/, Accessed November 9, 2023

4. Castelló Ferrer, E.: If blockchain is the solution, robot security is the problem. Fron-
tiers in Blockchain 6, 1181820 (2023). https://doi.org/10.3389/fbloc.2023.1181820

5. Colosimo, F., De Rango, F.: Median-Krum: A joint distance-statistical based
Byzantine-robust algorithm in federated learning. In: Proceedings of the 21st ACM
International Symposium on Mobility Management and Wireless Access (Mobi-
Wac’23). pp. 61–68. ACM (2023). https://doi.org/10.1145/3616390.3618283



Blockchain Federated Learning in Robot Swarms 15

6. Dorigo, M., Pacheco, A., Reina, A., Strobel, V.: Blockchain technology for mobile
multi-robot systems. Nature Reviews Electrical Engineering 1(4), 264–274 (2024).
https://doi.org/10.1038/s44287-024-00034-9

7. Fung, C., Yoon, C.J.M., Beschastnikh, I.: The limitations of federated learning in
Sybil settings. In: Proceedings of the 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020). pp. 301–316. USENIX Association
(2020)

8. Majcherczyk, N., Srishankar, N., Pinciroli, C.: Flow-FL: Data-driven
federated learning for spatio-temporal predictions in multi-robot sys-
tems. In: Proceedings of the 2021 IEEE International Conference on
Robotics and Automation (ICRA 2021). p. 8836–8842. IEEE Press (2021).
https://doi.org/10.1109/ICRA48506.2021.9560791

9. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.:
Communication-efficient learning of deep networks from decentralized data. In:
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS 2017). pp. 1273–1282. No. 54 in PMLR, JMLR (2017)

10. Merkel, D.: Docker: Lightweight Linux containers for consistent development and
deployment. Linux Journal 239(2) (2014)

11. Millard, A.G., Joyce, R., Hilder, J.A., Fleşeriu, C., Newbrook, L., Li, W., Mc-
Daid, L.J., Halliday, D.M.: The Pi-puck extension board: A Raspberry Pi in-
terface for the e-puck robot platform. In: 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). pp. 741–748. IEEE Press (2017).
https://doi.org/10.1109/IROS.2017.8202233

12. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for edu-
cation in engineering. In: Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions. pp. 59–65. Instituto Politécnico de Castelo Branco
(2009)

13. Na, S., Rouček, T., Ulrich, J., Pikman, J., Krajník, T., Lennox, B., Arvin, F.:
Federated reinforcement learning for collective navigation of robotic swarms. IEEE
Transactions on Cognitive and Developmental Systems 15(4), 2122–2131 (2023).
https://doi.org/10.1109/TCDS.2023.3239815

14. Pacheco, A., Strobel, V., Reina, A., Dorigo, M.: Real-time coordination of
a foraging robot swarm using blockchain smart contracts. In: Swarm Intel-
ligence – Proceedings of ANTS 2022 – Thirteenth International Conference.
Lecture Notes in Computer Science, vol. 13491, pp. 196–208. Springer (2022).
https://doi.org/10.1007/978-3-031-20176-9_16

15. Pacheco, A., De Vos, S., Reina, A., Dorigo, M., Strobel, V.: Geth-ARGoS
interface: TrajectoryPrediction (2024). https://doi.org/10.5281/zenodo.13622916,
https://zenodo.org/records/13622916

16. Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm
communicating via an ad-hoc network. In: Swarm Intelligence – Proceedings of
ANTS 2020 – Twelfth International Conference. Lecture Notes in Computer Sci-
ence, vol. 12421, pp. 3–15. Springer (2020). https://doi.org/10.1007/978-3-030-
60376-2_1

17. Pacheco, A., Strobel, V., Dorigo, M.: A framework for swarm robotics experi-
mentation with Pi-puck robots and an Ethereum-based blockchain. Tech. Rep.
TR/IRIDIA/2020-001, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2020)



16 Alexandre Pacheco et al.

18. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M.,
Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-
012-0072-5, version 3.0.0-beta48

19. Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data sharing in robot
swarms. In: Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (BICT 2015). p. 287–294. ICST
(2016). https://doi.org/10.4108/eai.3-12-2015.2262503

20. Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models.
Artificial Intelligence Review 24(1), 33–60 (2005). https://doi.org/10.1007/s10462-
004-0041-5

21. St-Onge, D., Varadharajan, V.S., Švogor, I., Beltrame, G.: From design to de-
ployment: Decentralized coordination of heterogeneous robotic teams. Frontiers in
Robotics and AI 7, 51 (2020). https://doi.org/10.3389/frobt.2020.00051

22. Strobel, V., Pacheco, A., Dorigo, M.: Robot swarms neutralize harmful Byzantine
robots using a blockchain-based token economy. Science Robotics 8(79), eabm4636
(2023). https://doi.org/https://doi.org/10.1126/scirobotics.abm4636

23. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2018). pp. 541–549. International Foundation for
Autonomous Agents and Multiagent Systems (2018)

24. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology se-
cures robot swarms: A comparison of consensus protocols and their re-
silience to Byzantine robots. Frontiers in Robotics and AI 7, 54 (2020).
https://doi.org/10.3389/frobt.2020.00054

25. Warnat-Herresthal, S., Schultze, H., Shastry, K.L., Manamohan, S., Mukherjee, S.,
Garg, V., Sarveswara, R., Händler, K., Pickkers, P., Aziz, N.A., et al.: Swarm learn-
ing for decentralized and confidential clinical machine learning. Nature 594(7862),
265–270 (2021). https://doi.org/10.1038/s41586-021-03583-3

26. Xianjia, Y., Peña Queralta, J., Heikkonen, J., Westerlund, T.: Federated learning in
robotic and autonomous systems. Procedia Computer Science 191, 135–142 (2021)

27. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: Verifynet: Secure and verifiable federated
learning. IEEE Transactions on Information Forensics and Security 15, 911–926
(2019). https://doi.org/10.1109/TIFS.2019.2929409

28. Zhao, H., Pacheco, A., Strobel, V., Reina, A., Liu, X., Dudek, G., Dorigo,
M.: A generic framework for Byzantine-tolerant consensus achievement in robot
swarms. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2023). pp. 8839–8846. IEEE Press (2023).
https://doi.org/10.1109/IROS55552.2023.10341423

29. Zhou, X., Liang, W., Wang, K.I.K., Yan, Z., Yang, L.T., Wei, W., Ma, J.,
Jin, Q.: Decentralized P2P federated learning for privacy-preserving and resilient
mobile robotic systems. IEEE Wireless Communications 30(2), 82–89 (2023).
https://doi.org/10.1109/MWC.004.2200381


