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Abstract
Collective decision making using simple social interactions has been studied in many types of multiagent systems, including robot 
swarms and human social networks. However, existing multiagent studies have rarely modeled the neural dynamics that underlie 
sensorimotor coordination in embodied biological agents. In this study, we investigated collective decisions that resulted from 
sensorimotor coordination among agents with simple neural dynamics. We equipped our agents with a model of minimal neural 
dynamics based on the coordination dynamics framework, and embedded them in an environment with a stimulus gradient. In our 
single-agent setup, the decision between two stimulus sources depends solely on the coordination of the agent’s neural dynamics 
with its environment. In our multiagent setup, that same decision also depends on the sensorimotor coordination between agents, via 
their simple social interactions. Our results show that the success of collective decisions depended on a balance of intra-agent, 
interagent, and agent–environment coupling, and we use these results to identify the influences of environmental factors on decision 
difficulty. More generally, our results illustrate how collective behaviors can be analyzed in terms of the neural dynamics of the 
participating agents. This can contribute to ongoing developments in neuro-AI and self-organized multiagent systems.
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Introduction
Collective decision making is important to the normal function
ing of human and animal groups (1, 2), and is also used in groups 
of artificial agents such as robots (3–5). Decisions can refer to 
physical actions, such as the direction of movement of animal 
groups (6), or symbolic questions that are disconnected from 
physical situations, such as those studied in collective estima
tion tasks in humans (7, 8). Collective decisions that are made 
by the group itself without external intervention typically 
require that a consenus emerge in the group. Consensus entails 
that all or at least a large majority of individuals agree, either on 
an approximate continuous value (e.g. a position in continuous 
space (9, 10)) or a discrete option (e.g. voting for an arbitrary item 
from a list (11)).

Consensus is achieved through a distributed process that is 
not under the control of any single agent (5). Multiagent models 
have been instrumental in investigating how the distributed in
teractions of individuals can result in a consensus. The individ
ual agents used in most models behave according to rather 
simple rules or heuristics. For example, in the well-known 

“opinion dynamics” models, agents typically update their opin
ion according to the majority or to the voter rule (12–14). Some 
recent models aim to replicate human cognitive processes more 
closely by using neuro-inspired approaches such as the drift- 
diffusion model (15–18). These opinion dynamics models have 
greatly advanced our understanding of how peer-to-peer interac
tions can give rise to collective phenomena such as polarization 
or consensus.
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Another class of multiagent models addresses collective dy
namics in physical space rather than opinion space (19). Such 
models pertain to, for example, animals choosing a new nest 
site or humans finding an exit during an emergency evacuation 
(20–22). Also, in these more embodied models, behaviors are typ
ically governed by simple rules or heuristics (9, 23). These models 
have illuminated, for example, how animals can resolve differen
ces in initial movement directions and move to a single location 
using only local, implicit communication.

The simple behavioral rules that agents use in these models 
are approximations of more elaborate brain processes that 
underlie behavior in biological organisms. Thanks to recent ad
vances in multibrain neuroscience, it is now possible to simul
taneously measure the brain activity of multiple interacting 
agents during collective behaviors (24). Despite these innova
tions, it remains unclear how the combined neural activity of 
multiple agents is involved in producing collective behavior. 
Computational models can be of help, by simulating how certain 
patterns of neural activity across agents produce collective be
haviors (25). However, current multibrain models typically do 
not link the neural activity of agents to their behavior in an envir
onment; so far, only a handful of multiagent models use 
brain-inspired mechanisms rather than simple heuristics to gen
erate collective movements (26–28). In this study, we propose a 
multiagent model of collective decision making by embodied 
agents that are controlled by an oscillatory model of brain dy
namics. Our goal with this approach is to pave the way for com
putational approaches that bridge neuroscience and the 
burgeoning field of collective behavior.

Considerations of the brain–body–environment interplay have 
gradually permeated cognitive science, culminating in the 4E cog
nition framework, which sees cognitive processes as being em
bodied, enactive, embedded, and extended (29, 30). Similar 
considerations have become increasingly common in computa
tional neuroscience and artificial intelligence research (31, 32). 
Largely inspired by the enactive approach to embodied cognition, 
we constructed minimalist agents that simulate important attrib
utes of biological agents: (i) intrinsic neural dynamics produced 
autonomously by the agent and (ii) a constant sensorimotor 
loop with the environment (33–35). We studied how such agents 
can reach a consensus by continuously adjusting to one another’s 
movements in a simple environment. We are not proposing that 
other approaches to modeling collective decision making are in
valid. Rather, we wish to complement prior approaches, by pro
viding a way of incorporating important and understudied 
aspects of embodied cognitive processes.

In order to successfully operate in an environment, the neural 
activity of a biological agent must be attuned to the characteris
tics of that environment. In neuroscience, brain activity is typical
ly studied in terms of oscillations. Neural oscillations (also 
referred to as brain rhythms) have been linked to perception, 
movement, and even abstract cognition (36, 37). Across taxa, evo
lution has selected a subset of rhythms that allow organisms to 
adequately interact with their environment (38). Moreover, brain 
rhythms can rapidly shift to accommodate changing environ
ments and task demands (39, 40).

Large-scale brain rhythms are produced by the coordinated os
cillatory activity of many interacting brain regions. The coordin
ation dynamics framework has been widely used to study how the 
activity of these dynamically interacting components is coordi
nated (41–43). One important advantage of the coordination dy
namics approach is that it can be used to study the metastable 
regime in which the brain usually operates (44). If coordination 

among brain regions were always stable, its dynamics could not 
be adequately modulated by the environment so as to allow the 
agent to engage in any adaptive behavior. On the other hand, over
ly unstable dynamics would result in the brain being too easily 
overwhelmed by environmental input, again preventing adaptive 
behavior. A metastable regime resolves this problem by allowing 
the brain to dynamically switch between several stable oscillatory 
states, thereby being neither completely stable nor completely 
unstable.

The Haken–Kelso–Bunz (HKB) equations provide a straightfor
ward way to model metastable dynamics among interacting com
ponents, such as two populations of oscillating neurons in the 
brain (42, 45). Two oscillating components, when modeled with 
the HKB equations, show in-phase attraction (similar to the 
Kuramoto model (46)) and also antiphase attraction. The simul
taneous existence of in-phase (symmetrical) and antiphase 
(asymmetrical) attraction produces a simple form of metastability 
(47). The HKB equations were first implemented as a neural con
troller of an embodied agent by Aguilera et al. (48), to model the 
sensorimotor interactions of a situated agent with its environ
ment. The authors illustrated the importance of taking into ac
count embodied interactions when studying brain dynamics, by 
showing that the simulated neural dynamics of the agent were 
qualitatively different when sensorimotor interactions with the 
environment were disrupted. In this study, we adopted the HKB 
agent of Aguilera et al. (48) and modified it so that it could support 
embodied collective decision making. By making our agent sensi
tive to both the environment and other agents, we could study the 
oscillatory neural dynamics of agents when coordinating with 
both each other and the environment.

In studies of continuous collective decision making, an often- 
studied question is: under which conditions can agents with differ
ent preferred movement directions reach a consensus? For ex
ample, two influential modeling approaches have shown that 
reaching a consensus is facilitated by the presence of a subgroup 
of unopinionated individuals (9, 49). In this study, we investigated 
how this ability to reach consensus is modulated by the agents’ 
neural dynamics. In line with the enactive approach to embodied 
cognition, we expected that an agent can operate in its environment 
when it balances (i) its intrinsic neural activity with (ii) its sensori
motor coordination with the environment. To investigate this, we 
first assessed how a single agent’s movement towards one of 
two local optima in its environment depended on the relative 
strength of the internal coupling of its brain oscillators versus 
its coupling to the environment. Agents involved in collective de
cisions must additionally balance interaction with other agents. 
Therefore, when we embedded a group of agents with varying 
initial states in an environment, we assessed how the success 
of collective decisions depended on a balance of not only intra- 
agent and agent–environment coupling but also interagent 
coupling (i.e. social influence). Lastly, we connected our model 
to previous models of collective decision making, by assessing 
how consensus is influenced by differences in (i) the quality of 
the two stimulus sources in the environment and (ii) differences 
in individuals’ initial states.

Model
Task environment
We created a simple environment in which agents could move 
and sense a stimulus. The environment contained one or more 
stimulus sources (i.e. sites), at which stimulus concentration is 
maximal (Fig. 1B and C). The stimulus concentration in the 
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environment was inversely proportional to the distance from the 
stimulus source. Thus, the stimulus concentration followed a gra
dient from low to high concentration when approaching the 
stimulus source. A simple task that agents could perform in this 
environment was that of gradient ascent, i.e. following the gradi
ent towards maximal stimulus concentration (Fig. 1B) (48). If one 
imagines the stimulus as “light,” and the stimulus source as a 
light source, then this behavior is reminiscent of the light- 
seeking behavior of organisms such as fireflies (50) or zebrafish 
(51). When two sources of stimulus are present, the scenario 
could be considered a binary decision-making task (Fig. 1C). In 
this scenario, an agent could successfully reach a stimulus 
source if it could “decide” between the two sources. In the multi
agent scenario, the task became a collective binary decision- 
making task. In this scenario, 10 agents started at the same pos
ition, but had different initial orientations (Fig. 2B). Due to these 
different initial orientations, agents could end up at different 
sites (Fig. 2C). However, agents had some social information 
about each other’s position (Fig. 2A; see below), and their task 
was to use this information to aggregate at the same site. We 
quantified performance of collective decision making according 
to how closely the agents collectively approached a single candi
date site (see Methods).

Agent
We modeled an agent with minimal neural dynamics that could 
use sensorimotor coordination with the stimulus sources and 
the movements of other agents in order to move towards a candi
date site. Our agent architecture was based on a minimal 
Braitenberg vehicle (52), which is a self-driven agent with a very 
simple architecture: two sensors directly control two motors. To 
give our agent intrinsic neural dynamics, we connected two oscil
lator nodes to the sensors (loosely representing sensory brain re
gions; nodes 1 and 2 in Fig. 1A) and two oscillator nodes 

connected to the direction of the movement of the agent (loosely 
representing motor regions; nodes 3 and 4 in Fig. 1A). This design 
resembles the situated HKB agent of Aguilera et al. (48), which had 
two oscillator nodes (one sensory and one motor). Our agents have 
four nodes, so that they can use stereovision and differential drive 
to move directly to a stimulus source, rather than approaching it 
in a spiraling motion (cf. (48)).

To model the interaction between the oscillators, we used an 
update rule for the phase of each oscillator, based on the following 
version of the HKB equation (53):

φ̇vi
= δωvi

+ cIvi
−
􏽘N

j=0

avi ,vj
sin ϕvi ,vj

−
􏽘N

j=0

bvi ,vj
sin 2ϕvi ,vj

, (1) 

where φ̇i is the phase change of node vi, and ωvi 
is the intrinsic fre

quency of oscillator vi. Parameters avi ,vj and bvi ,vj represent the 

contribution of, respectively, in-phase attraction, and antiphase 
attraction between oscillators vi and vj. Lastly, c parameterizes 

how strongly the oscillator phase is modulated by sensory input 
Ivi

. This parameter is set to zero for each motor oscillator, because 
it is not connected to a sensor. (See Methods for the version of the 
update equation used for each oscillator.)

Our agent moves at a constant speed and the activity of the mo
tor oscillations is linked to the agent’s movement direction. The 
heading is updated according to the phase angle between the 
two motor oscillators, such that

θ̇ = ηϕv3,v4
, (2) 

where θ is the orientation of the agent in the environment and η is 
a scaling factor. Together, these equations create a closed sensori
motor loop between the agent’s internal oscillator dynamics and 
the external environment.

In the multiagent scenario, we gave agents the added behavior 
of emitting the same stimulus that they observed to be present in 

A B C

D E

Fig. 1. Single-agent behavior and neural dynamics. A) The agent architecture: two sensors, each connected to a sensory oscillator, nodes 1 and 2 (v1 and 
v2), that are each in turn connected to a motor oscillator, nodes 3 and 4 (v3 and v4). The traveling orientation θ of the agent is determined by the angle 
difference ϕv3 ,v4 

between motor oscillators. B) Gradient ascent: the agent’s trajectory in the environment (brighter colors indicate higher stimulus 
concentration). C) Decision making: two stimulus sources are present in the environment and the agent’s performance is measured by its ability to 
approach one of the two. D) Internal phase locking of oscillators (contralateral sensor–motor and motor–motor) in (B). E) Internal phase locking of 
oscillators in (C).
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the environment. The stimulus concentration emitted by social 
agent j was perceived by agent i as:

Iij = S∗e−λaDij , (3) 

where Dij is the Euclidean distance between agent i and agent j, S is 

the strength of social influence between agents (identical for all 
agents), and λa is the decay rate of the emitted stimulus. Note 
that an agent did not perceive its own emitted stimulus. This re
flects the attenuation of self-produced stimuli in many animal 
species (54, 55).

Results
We performed both single-agent simulations and multi-agent 
simulations. For the single-agent simulations, we quantified neur
al coordination dynamics in terms of integration and metastabil
ity. The integration of brain regions by means of phase-locked 
activity is a central mechanism of brain function (56, 57), and 
can be quantified using the phase-locking value (PLV), see 
Section ‘Measures of coordination dynamics’. Brain function sup
portive of adaptive behavior relies on switching between different 
brain states. To quantify this aspect of neural dynamics, we used 
the standard deviation of the Kuramoto order parameter SD(KOP) 
(58, 59), see Section ‘Measures of coordination dynamics’.

For the multiagent simulations, we additionally quantified the 
coordination dynamics occurring across the different agents. We 
analyzed agents’ movement trajectories using the KOP as a meas
ure of alignment, and SD(KOP) as a measure of alignment variabil
ity between agents’ movements (58, 59). Lastly, we also quantified 
the degree of coordinated activity between the neural dynamics of 
the different agents by using the weighted phase-lag index (wPLI), 
a measure of phase locking that discards zero-phase coupling and 

can be interpreted as the co-variance between two signals (60), see 
Section ‘Measures of coordination dynamics’.

Single-agent simulations
We first performed a series of single-agent simulations to assess 
how an individual agent’s neural dynamics are related to its abil
ity to move towards a stimulus source in its environment. In the 
single-agent setup (see Fig. 1), an agent tried to climb a gradient 
towards a global maximum. To simulate different types of neural 
dynamics, we varied the internal coupling strength between the 
agent’s oscillator nodes (avi ,vj 

in Eq. 1), and varied whether or not 
it was sensitive to external stimuli. For each agent configuration, 
we performed 50 runs with different random initial oscillator 
phases. In Fig. 3, we characterize the neural dynamics associated 
with each agent configuration. The top panel shows the average 
level of integration (i.e. phase locking) between the agent’s oscilla
tors, measured by the mean PLV, and the bottom panel shows the 
degree of metastability among the agent’s oscillators (measured 
by SD(KOP); see Methods).

It is notable that, in the absence of sensory input, the system 
quickly found a stable state with minimal variation in oscillator dy
namics: agents without stimulus input (squares in Fig. 3) consistent
ly had values close to PLV = 1 and SD(KOP) = 0. Conversely, agents 
with sensory input (circles in Fig. 3) had a broad range of parameter 
values that resulted in lower PLV and higher SD(KOP). This shows 
that, as expected, sensory input can alter the coordination regime 
of the neural dynamics. In the presence of sensory input, PLV de
creases as internal coupling increases from 0 to 1, indicating that 
the neural dynamics at low internal coupling are mostly driven by 
stimulus input, without being significantly modulated by the inter
actions among the agent’s own oscillators. Simultaneously, 
SD(KOP) remained relatively high, indicating that, at low internal 

A B C

D E

F G

Fig. 2. Agent behavior and intra-agent neural dynamics during collective decision making. A) Agents emit stimulus that can be perceived by other agents. 
B) Higher social stimulation allows agents to converge onto the same stimulus source in their environment. C) With lower social stimulation, agents do 
not converge on the same source. D and E) Movement angles of agents (thin lines) and KOP of the group, indicating the degree of alignment (thick line). 
Alignment increases when all agents are moving towards the same stimulus source and decreases when they are not. F and G) Intra- and interagent 
neural dynamics: average intra-agent wPLI and average interagent wPLI.
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coupling, sensory input caused the system of oscillators to quickly 
cycle between oscillatory states.

As the agent’s internal coupling increases further, the interac
tions between the agent’s oscillators become strong enough to 
meaningfully modulate sensory input, which results in a lower lev
el of apparent oscillator integration, with PLV decreasing to 0.75 
while the degree of metastability plateaus. Beyond an internal 
coupling level of avi ,vj

= 1.4, the internal coupling of the agent’s os
cillators started to dominate, which resulted in highly integrated 
oscillators, indicated by higher PLV. At an internal coupling level 

of avi ,vj
= 1.7, the effect of internal coupling became strong enough 

that it nullified the effect of any sensory input, resulting in PLV = 1 
(indicating no variation in inter-oscillator dynamics). This increase 
in integration was accompanied by a sharp drop in metastability, 
indicating that the system tends to get stuck in a single stable state. 
Such a stable state of high integration between oscillators pre
cludes changes in movement direction in response to sensory in
put, inhibiting the agent from approaching the stimulus source.

The colors of the data points in Fig. 3 indicate agent perform
ance: brighter colors indicate that the agent was better able to 

A

B C D

Fig. 3. A) Intra-agent neural dynamics: the mean PLV and SD(KOP) of each agent during its run (y-axis), according to the internal coupling degree in its 
neural controller (x-axis). The values on the x axes represent the strength of in-phase coupling (avi ,vj

); antiphase coupling (bvi ,vj
) was always set to 0.5∗avi ,vj

. 
Squares represent agents without sensory input and dots represent agents with sensory input. Lighter colors represent higher performance. For each 
configuration (i.e. internal coupling degree and stimulus sensitivity), 50 runs were performed with random initial phases of the oscillators. Each data 
point represents the average of one run. B–D) Trajectories at low (avi ,vj

= 0.1), medium (avi ,vj
= 1.1), and high (avi ,vj

= 2.2) internal coupling. Upper panels 
represent the agent trajectory during one trial. Middle panels represent performance (degree to which agent reaches the stimulus maximum) during that 
same trial. The bottom panels represent the KOP during the trial.
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approach the stimulus. The distribution of colors shows that 
agents performed best in the range avi ,vj

∈ {0.8, . . . , 1.5}. At these 
intermediate coupling values, there was a decrease in oscillator 
integration (as shown by PLV) and moderately high metastability 
(as shown by SD(KOP)). In short, these results show that at low 
internal coupling, neural dynamics are mostly driven by sensory 
input, and the oscillatory coordination states do not enable the 
agent to maintain a coherent travel direction (Fig. 3B). At moder
ate internal coupling, neural dynamics modulate sensory input 
without fully dominating it. In this intermediate range with rela
tively low integration and high metastability, the agent displays 
adaptive behavior. For example, Fig. 3C shows how oscillators 
are initially largely in sync while the agent travels up the gradi
ent, and metastability allows the agent to approach the max
imum. At high internal coupling, neural dynamics nullify the 
effect of sensory input and agent behavior cannot change in re
sponse to the environment (Fig. 3C). (See the supplementary, 
text S2 for a more elaborate analysis of gradient climbing and de
cision making by single agents, as well as its relation to neural 
dynamics.)

Multiagent simulations
We ran two sets of multiagent simulations. In the first set of sim
ulations, we varied parameters related to the agent configuration 
(internal coupling, environmental sensitivity, and social influ
ence) and observed the effects on decision-making performance 
and collective dynamics. In the second series of experiments, we 
kept the agent configuration constant and modified the quality 
difference between the two stimulus sources in their environ
ment, as well as the starting angles between the agents.

Consensus as a function of internal, environmental, and 
social influences
We conducted a series of simulations with groups of 10 agents in 
an environment with a fixed quality (brightness) ratio of r = 0.8 be
tween the two stimulus sources (Fig. 2). For each simulation run, 
we quantified the performance as the degree to which agents 
could approach the same stimulus source (as in Fig. 2B) rather 
than going to different sources (as in Fig. 2C; see Methods). 
Throughout each simulation, we track the coordination dynamics 
among agents’ movements (Fig. 2D and E), as well as measures of 
coordination between the neural dynamics of the different agents 
(Fig. 2G and H).

We conducted simulations for different parameter values of in
ternal coupling strength (avi ,vj 

in Eq. 1), sensitivity to the environ
ment (c in Eq. 1), and the degree of social influence (S in Eq. 3). For 
each combination of parameter values, we display the final per
formance in a ternary plot (Fig. 4A). Each of the three corners of 
the ternary plot corresponds to one of the parameters being 
maximal and the others zero. We also display the corresponding 
measures of movement coordination and neural coordination 
dynamics for each parameter combination in adjacent plots 
(Fig. 4B–E).

We assessed movement coordination in terms of the move
ment alignment (KOP) and the variability in movement alignment 
(i.e. “alignment variability”; SD[KOP]). To assess the coordination 
dynamics within and between agents’ neural dynamics, we used 
a measure of phase covariance (wPLI), rather than the PLV used 
for the single-agent case. In contrast to the PLV, the wPLI does not 
take into account zero-lag coupling between oscillators. Measures 
with this property are preferred in multibrain neuroscience, since 

A B C

D E

Fig. 4. Ternary plots illustrating how collective behavior and neural dynamics depend on the agent configuration. Each point in the triangle corresponds 
to a certain weighting of environmental stimulus, social information, and internal motor coupling. In each simulation, the parameters fulfill the 
condition stimulus sensitivity + social sensitivity + internal coupling = 100. The scale [0, 50] for each dimension corresponds to respective parameter 
values of c ∈ {0, . . . , 10} for stimulus sensitivity, S ∈ {0, . . . , 5} for social sensitivity, and av3,v4 ∈ {0, . . . , 1} for internal coupling. The top corner corresponds 
to maximal social sensitivity, the left corner to maximal environmental sensitivity, and the right corner to maximal internal coupling. The brightness 
(yellowness) in panel A) indicates the performance of collective decision making. A performance of 0 indicates that agents failed to reach either of the two 
stimulus sources. A performance of 0.5 indicates that half of the agents reached the same stimulus source. A performance of 1 indicates that all agents 
reached the same stimulus source and thus that a consensus was reached. The brightness in panels B)–E) indicate the strength of, respectively, the 
movement alignment, alignment variability, inter-brain covariance, and intra-brain covariance.
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they discount spurious coordination due to, e.g. common input 
from the environment (61, 62). In our simulations, spurious coord
ination between oscillators could similarly have been caused by 
identical initial phases of agents’ oscillators (see Methods).

The middle region of the plots in Fig. 4 corresponds to a param
eter range in which internal, environmental, and social influences 
are appropriately balanced for reaching consensus, as indicated 
by the bright yellow area in Fig. 4A. This region was accompanied 
by high movement alignment and low alignment variability, indi
cating that agents could use environmental and social information 
to coherently move towards the same stimulus source. Part of this 
region corresponds to a narrow area of increased inter-brain covari
ance, indicating that this aligned movement was accompanied by 
coordinated neural dynamics across agents. The lower right corner 
of the plots corresponds to a region of increased internal influences 
and decreased social influences. As long as social influences are 
nonzero, performance remains relatively high in this parameter 
range. Movement alignment is decreased and alignment variability 
is increased relative to the middle part of the plot. This indicates 
that, when internal coupling increases, agents’ movements become 
less aligned, but can still result in consensus. Interestingly, the low
er right corner of the plot corresponds to a decrease in both intra- 
brain covariance (between different oscillator nodes within the 
same agent) and inter-brain covariance (between the same oscilla
tor nodes across different agents). More alignment variability 
among the agents’ movements is thus accompanied by brain dy
namics that are more independent.

A last and interesting observation in Fig. 4 can be made at the left 
edge of the plots, where internal coupling is low. In this region, agents 
are driven entirely by a combination of social and environmental in
fluences. This region in parameter space was accompanied by high 
movement alignment and low alignment variability, but was associ
ated with a decrease in performance. This suggests that agents 
moved in a highly aligned manner, but failed to collectively approach 
either of the two stimulus sources. This outcome highlights the 

importance of balancing external influences with sufficient internal 
coupling. When agents are overly coupled to external stimuli with
out enough counteracting internal coupling, they struggle to move 
towards an increasing stimulus concentration.

Figure 5 illustrates how some social influence can aid collect
ive decision making, but too much social influence can prevent 
agents from reaching any option at all. At low social influence 
(Fig. 5A), agents are attracted to the stimulus that is in line 
with their original travel direction. At medium social influence 
(Fig. 5B), there is initially enough social influence to group 
the agents together before they come close to an option. At 
high levels of social influence (Fig. 5C), social influence can tem
porarily guide the movement direction of some agents so strong
ly that they steer away from any option. Figure S5 illustrates this 
phenomenon further.

Taken together, these results show that agents reach a consen
sus when their configuration facilitates a balanced integration of 
environmental, social, and internal influences, and this is re
flected in neural and behavioral dynamics. The parameter values 
that are conducive to consensus are dependent on the initial start
ing positions and orientations of the agents (see supplementary, 
section S4).

Consensus as a function of environment configuration
If the ability to reach a consensus depended on the features of the 
environment, we would expect that binary decision making should 
be easier (and thus performance higher) when the difference be
tween the two stimulus sources is larger, and when the initial angle 
between the agents is smaller. We performed simulations with 10 
agents with a fixed architecture, and varied the initial starting an
gle between agents and the brightness ratio between the two 
stimulus sources (see Methods).

The results in Fig. 6 show that, overall, performance depended on 
a combination of starting angle and stimulus ratio. Performance was 
maximal when agents had identical starting orientations and only 

A B C

Fig. 5. Illustration of agent trajectories, stimulus input for each agent, and orientation (output) each agent. In panel A), agents experience low social 
influence (S = 1.1), medium influence (S = 1.6) in panel B), and high influence (S = 2.4) in panel C). The upper row of plots shows agent trajectories during 
one trial. The middle row shows the stimulus experienced by each agent during that same trial. The bottom row shows each agent’s orientation during 
that trial. In each panel, the trajectories of two focal agents during one trial are highlighted.
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one stimulus source was present (top left of Fig. 6). In accordance 
with our expectations, performance decreases as the second stimu
lus source became brighter and the starting angle between agents 
increased.

It should be noted that performance did not increase linearly as 
the decision-making task became easier. Rather, there was a re
peating pattern of sharp decreases in performance followed by 
short plateaus. This was most likely due to a combination of our 
performance measure and the relatively small number of agents 
(see Methods). Each drop in performance was caused by one of 
the ten agents moving away from the global maximum and to
wards the competing local maximum (i.e. to the stimulus source 
with lower brightness). Figure S3 provides a more detailed account 
of this pattern. Overall, these simulations show that the ease 
with which the agents reach a consensus depends not only on 
their architecture but also on the environment in which they 
operate.

Discussion
We have modeled collective decision making with embodied neural 
agents that are controlled by simple oscillatory brain dynamics. We 
first showed that the ability of an agent to move towards a stimulus 
source was reflected in the intra-brain dynamics of that agent. In an 
intermediate parameter range where agents were neither over
whelmed by environmental stimulus nor insensitive to it, neural dy
namics could become sufficiently uncoupled and metastable to 
allow the agent to approach its target. Furthermore, multiple agents 
with different initial heading directions could overcome their differ
ences and converge on one of the two available options. Agents were 
able to do this within a parameter range that adequately weighted 
environmental, social, and internal influences. When one influence 
was too high with respect to the others, the agents failed to converge 
on a decision. In this regard, our model differs from more disembod
ied multiagent models (14). In disembodied cognition models of col
lective decision making, increasing social influence to an arbitrarily 
high degree would lead to a fast and efficient convergence on any of 

the possible decision options. The option selected may be of greater 
or lesser quality, but the ability of agents to reach any option at all 
has rarely been studied. Our results showed that, when increasing 
social sensitivity too much, the agent’s neural dynamics may be
come saturated with social information—to such a degree that it 
cannot adequately interact with the environment and move to
wards one of the options. This is reminiscent of real-world situa
tions in which agents that are too consumed by interacting 
socially with one another lose adaptive interactions with the envir
onment (see Strasbourg dancing plague (63) or circular milling in 
army ants (64)). This example illustrates how our model can be 
used as one possible framework (among many) to examine how cer
tain collective behaviors emerge.

Our model also differs from the more embodied multiagent 
models of movement-based collective decisions by animals. In 
most such models, agents have a parameter that explains their 
preferred target location or movement direction (6, 27, 49). In 
our simulations, agents had different initial movement directions 
but did not have a parameter representing a preferred movement 
direction. Rather, their movement direction emerged from their 
interactions with each other and with their environment. Our re
sults showed that the more an agent’s initial movement direction 
was between the two sources rather than pointing to one of them, 
the more likely agents were to reach a consensus. These results 
are somewhat in line with previous findings that a larger propor
tion of unopinionated individuals promotes consensus in models 
of movement-based decisions made by groups of animals?) (6, 49).

Our simulations also showed that a larger difference between 
the quality of stimulus sources in the environment generally re
sulted in a higher proportion of agents reaching a consensus. 
This is in accordance with studies of discrete decision making be
tween a few options in an environment, where models have shown 
how the speed and accuracy of collective decisions depend on dif
ferences between environmental stimuli (5, 65). Models that do not 
take into account the quality of options in the environment, or that 
consider options of equal quality, often observe agents traveling in 
a compromise direction (49). Since agents’ neural dynamics were 
strongly influenced by the environment in our simulations, such 
compromises only occur in a small region of the parameter space. 
The closer agents came to a stimulus source, the higher the stimu
lus concentration they observed, causing agents to almost always 
go to one of the two stimulus sources instead of taking a comprom
ise direction. Our simulations also showed some surprising emer
gent collective behaviors, such as “overshooting” in response to 
social influence and, as a result, moving towards an option that 
corresponds neither with the initial movement direction nor with 
the option chosen by other agents (see Fig. S5A).

In the current paper, we performed deterministic simulations of 
agents that started from the same position and moved towards one 
of two stimulus sources. In future work, our model could be studied 
in environments with a higher number of stimulus sources, with
out changes to the agent architecture (27). Furthermore, agents 
might be allowed to visit multiple options of stimulus sources be
fore converging on one, as is common in collective decisions of 
ants and honeybees (22, 66). In this setting, it might be interesting 
to let the social stimulus emitted by the agents decay more slowly 
(instead of instantaneously), allowing the agents to influence each 
other asynchronously. Such stigmergic coordination is often ob
served in social insects such as ants (67). Another extension of 
our simulations could be to let agents start from different spatial 
locations. Using the HKB equations to maintain asymmetric pat
terns of coordination between different agents’ oscillators, future 
work could study a rudimentary allocentric way of using social 

Fig. 6. Dependence of the collective decision-making performance on the 
environment and initial orientations of agents. The leftmost extreme of 
the x-axis represents the cases with only one stimulus source present in 
the environment. Moving towards the right, the brightness of a second 
stimulus source increases until the two have equal brightness. The agents 
always start with equal angles between them. At the bottom of the y-axis, 
the agents are spread so that the outermost two of the 10 agents are at a 
180◦ angle. At the top of the y-axis, all agents start with angles of 0◦

between them. All agents have identical parameters; stimulus sensitivity 
is c = 3, social sensitivity is S = 1, and internal coupling is avi ,vj

= 0.5.
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information (68). Future work could also study the influence of 
noise on collective performance of embodied neural agents, espe
cially in environments with many local optima, as random fluctu
ations are often an important aspect of self-organized systems and 
collective intelligence (69, 70).

Inspired by the brain dynamics of biological agents, we used os
cillator models to study neural dynamics in a multiagent system. 
Recent swarmalator models have also combined collective move
ment with oscillator dynamics (71, 72). In these models, an agent’s 
behavior is based on the directly observed oscillator phases of the 
surrounding agents. In our model, the oscillators represent brain 
dynamics that are not directly available to an outside observer. 
The brain dynamics of the agents can only become coordinated 
by intermediary of their behavior. Moreover, since the stimulus 
emitted by agents was indistinguishable from stimulus originat
ing in the environment, agents could not selectively react to in
stantaneous social stimulation. Yet, agents could interact by 
mutually reacting to local changes in stimulus concentration 
caused by their respective movements in the environment. This 
situation reflects a form of social interaction in which agents can
not use any social cognition capabilities other than those involved 
in the interaction itself. Such situations are also studied with hu
man participants in perceptual crossing experiments, and have 
led some to argue that social interaction can be constitutive of so
cial cognition (73, 74).

Using oscillators to model brain dynamics allows us to use 
phase-locking and phase-covariance measures to quantify the 
degree of coordination between the brain dynamics of different 
agents (61). Experimental studies with multiple animals or hu
mans have suggested that coordination between brain dynamics 
of different agents, typically quantified in terms of inter-brain 
synchronization (IBS), might have an important role in supporting 
collective behaviors (75, 76). A few computational models have 
provided initial mechanistic explanations for the emergence of 
such inter-brain synchrony by using the Kuramoto model, show
ing that the strength and frequencies at which IBS takes place de
pend on a combination of agents’ individual brain dynamics and 
their interagent coupling (77, 78). Although our results cannot 
conclusively show whether collective decision-making perform
ance depended on interagent synchrony, our models could 
provide a way to study the complex brain–brain behavior dynam
ics that can give rise to IBS. Furthermore, our results replicate an 
interesting finding of Kuramoto models of interpersonal syn
chrony, namely that some degree of intra-agent coupling is re
quired to achieve rich patterns of interpersonal coordination 
(79). While previous studies (e.g. (79)) have shown this require
ment when a pair of agents were coupled to each other directly, 
we have confirmed it for multiple agents embedded in a spatial 
environment.

A major challenge in the development of artificial agents is co
ordinating social interactions with both humans and other artifi
cial agents. Recent developments in Social NeuroAI attempt to 
bring social interaction into the realm of AI by advancing artificial 
agents’ social embodiment, temporal dynamics, and biological 
plausibility (80). In this work, we accommodate (i) social embodi
ment, as collective decisions are movement-based and agents can 
be reciprocally influenced by each other’s movements; (ii) tem
poral dynamics, through continuous intra-agent, interagent, 
and agent–environment interactions; and (iii) biological plausibil
ity, by using oscillations to control agent behavior. Our approach 
could be a starting point for developing social-neural agents that 
collaborate on a wider range of collective tasks through the impli
cit coordination of their neural dynamics.

Methods
Experiment setup
Each experiment took place in a 2D environment in which every 
position had an associated stimulus concentration. Depending 
on the experiment type, each environment contained one or 
more stimulus sources of different quality. The stimulus concen
tration at a certain position was exponentially proportional to its 
closeness to the stimulus source:

I(x, y) = e−λD(x,y), (4) 

where D(x, y) is the Euclidean distance to the stimulus source and 
λ = 0.02 is the exponential decay rate of the environmental stimu
lus. In setups with two stimulus sources, each had stimulus con
centrations defined by Eq. 4, and the overall stimulus 
concentration at a certain position was the combination of the two:

I(x, y) = e−λD1(x,y) + re−λD2(x,y), (5) 

where r indicates the quality ratio of the two stimulus sources. 
When there were multiple agents in an environment, the stimulus 
level that an agent perceived was a combination of the stimulus 
concentration in the environment and the stimuli concentrations 
emitted by other agents, such that

Ii(x, y) = e−λD1(x,y) + re−λD2(x,y) + S∗
􏽘

j

e−λsDij . (6) 

In all experiments, the environment was 300 by 400 cm, the radius 
of each agent’s body was 2.5 cm, and each agent has a fixed velocity 
of 10 cm/s. Simulations were performed with a timestep of 0.01 s. 
All experiments ended after 30 s, which provided sufficient time 
for agents to reach a stimulus source in the environment. All simu
lations were performed in Python version 3.9.2 (81), and the agents 
were implemented in Pytorch version 1.12.0 (82). 

Agent design
In our agents, sensory input did not directly control motor activity. 
Sensory information (in the form of stimulus concentration) was first 
integrated into the oscillator phase of two sensory nodes. These sen
sory nodes were dynamically connected to two motor nodes.

The situated agent designed by Aguilera et al. (48) consisted of one 
motor oscillator and one sensory oscillator, and thus could only per
form gradient ascent with spiraling movement. We resolved this by 
giving our agent two sensory oscillators for stereovision (v1 and v2, 
see nodes 1 and 2 in Fig. 1A) and two motor oscillators for differential 
drive steering (v3 and v4, see nodes 3 and 4 in Fig. 1A). The sensors are 
directionless and are placed at the front of the agent, 90◦ apart as 
measured from the agent’s center (see Fig. 1A). The orientation θ of 
the agent in the environment is determined by the angle between 
the two motor oscillators (v3 and v4, see nodes 3 and 4 in Fig. 1A).

Altogether, the dynamics of the agent are governed by the fol
lowing set of equations:

φ̇

φ̇v1
=ωv1 + cIl −

􏽐
j av1,vj

sin ϕv1,vj
−
􏽐

j bv1,vj
sin 2ϕv1,vj

,

φ̇v2
=ωv2 + cIr −

􏽐
j av2,vj

sin ϕv2,vj
−
􏽐

j bv2,vj
sin 2ϕv2,vj

,

φ̇v3
=ωv3 −

􏽐
j av3,vj

sin ϕv3,vj
−
􏽐

j bv3,vj
sin 2ϕv3,vj

,

φ̇v4
=ωv4 −

􏽐
j av4,vj

sin ϕv4,vj
−
􏽐

j bv4,vj
sin 2ϕv4,vj

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7) 

θ̇ = ηϕv3,v4
= η(φv3

− φv4
), (8) 

where we fixed the ratio k = b
a = 2 so that the HKB equations are bi

stable (see supplementary, text S1).
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In our neural controller, the oscillators influenced each other over 
the following connections: the contralateral ones (av1,v4 = av4,v1 and 
av2,v3 = av3,v2 ) the one between the motor regions (av3,v4 = av4,v3 ), as 
well as their antiphase counterparts. Thus, we kept the two sensory 
oscillators independent and incorporated the contralateral sensori
motor connections present in the Braitenberg vehicles (52) and in 
many of the biological neural organizations (83). The intrinsic fre
quencies of all oscillators were set to 5 Hz, to resemble the frequency 
of the theta oscillations in biological brains. In our model, the next 
phase of each oscillator is calculated at each time step, by integrat
ing the differential equations using the fourth-order Runge–Kutta 
method.

Single-agent experiments
In the single-agent gradient ascent setup, the agent initiated 
movement at xy position (0, −100) and the stimulus source was lo
cated at xy position (−100, 0). To study the link between a single 
agent’s behavior and its intra-agent neural dynamics, we varied 
the sensory sensitivity (c = 0 or 5, in Eq. 7) and the coupling 
strength of all connections (avi ,vj 

values from 0.05 to 2.5, in steps 
of 0.05, in Eq. 7). For each variation combination, we performed 
50 runs with random initial phases of the oscillators.

In the single-agent binary decision making setup, the first 
stimulus source was located at xy position (−100, 0), the second 
at xy position (100, 0), and the brightness (i.e. quality) ratio of 
the two stimulus sources is r = 0.95 (see Eq. 6). The agent initiated 
movement equidistant to the two stimulus sources, at xy position 
(0, −100) with all internal oscillators starting as in-phase. To 
evaluate the dependence of performance on agent behavior, we 
varied the stimulus sensitivity of the agent (c values from 0 to 
10, in steps of 1, in Eq. 7) and the internal coupling (avi ,vj 

values 
from 0.05 to 2.5, in steps of 0.05, in Eq. 7). To evaluate the import
ance of internal coupling, we also varied whether the motor re
gions were connected or not (av3,v4 = 0, in Eq 7). We ran one 
simulation for each variation combination, since we did not intro
duce an element of randomness in the simulation.

Multiagent experiments
Each multiagent experiment had a group of 10 agents and an envir
onment with two stimulus sources, located at xy positions (−100, 0) 
and (100, 0). To study consensus achievement under divergent 
starting opinions, we evenly distributed the initial orientations of 
the agents (between angle −θmax and θmax, θmax ∈ [0◦, 180◦]). Thus, 
each agent faced a different initial direction, with half facing more 
towards the left-hand stimulus source and half facing more to
wards the right-hand one. Following (49, 84), the agent behavior in 
these experiments was deliberately deterministic. Although noise 
can be highly beneficial to the self-organization of complex systems 
(70), our focus in this study was specifically on the relationship be
tween interagent dynamics and consensus, rather than exploring 
how noise might modulate these dynamics. Physical collisions 
were not considered in these simulations: agents only reacted to 
stimulus; their bodies could not collide with one another.

We ran two groups of multiagent experiments. In the first 
group, to study the influence of the intra- and interagent coordin
ation regimes, we varied the degree of internal coupling between 
the motor oscillators (avi ,vj 

values from 0 to 1, in steps of 0.02, in Eq. 
7), the social sensitivity (S values from 0 to 5, in steps of 0.1, in Eq. 
3), and the stimulus sensitivity (c values from 0 and 10, in steps of 
0.5, in Eq. 7). In these experiments, the starting angle between 
agents was 10◦ and the brightness (i.e. quality) ratio of the two 
stimulus sources was r = 0.8. This ratio is lower than that in the 

single-agent case, to facilitate a wider range of collective behav
iors. With a higher ratio, agents initially oriented towards the least 
bright stimulus source did not deviate enough from their initial 
movement path for collective dynamics to occur.

In the second group, to study the influence of the environmen
tal and initial conditions, we varied the brightness (i.e. quality) 
ratio of the two stimulus sources (r values from 0 to 1, in steps 
of 0.02) and the starting angles of the agents (from 0◦ to 18◦, in 
steps of 0.36◦). In these experiments, the stimulus sensitivity 
was c = 3, social sensitivity is S = 1, and internal connection was 
avi ,vj = 0.5.

Evaluation
In single-agent setups, performance is based on the agent’s end 
position relative to a stimulus source. Note that, in these experi
ments, the agent could continue moving after reaching a source, 
so the performance metric includes how well the agent remained 
close to a source after initially approaching it. For gradient ascent, 
we evaluated performance based on how closely the agent ap
proaches the stimulus source:

performance = 1 −
D(tend)
D(t0)

, (9) 

where D(t0) and D(tend) represent the agent’s distance to the stimu
lus source at the beginning and end of the simulation. For binary 
decision making, we evaluate how closely the agent approaches 
its closest stimulus source, regardless of the source’s brightness 
level:

performance = 1 −
min Dsource1 (tend), Dsource1 (tend)

􏼈 􏼉

D(t0)
, (10) 

where Dsource1 (tend) and Dsource2 (tend) represent the agent’s distance 
to source1 and source2 at the end of the simulation. In multi
agent setups, performance is based on whether agents reach a 
consensus. Note that, in these experiments, an agent could no 
longer move once it came within 5 cm of a stimulus source, so 
any changes in agent angle and position due to agents circling 
around the stimulus source after arrival did not influence the 
decisions of the other agents. We evaluated performance based 
on the smallest average distance to one of the two stimulus 
sources:

performance

= min
1
N

􏽘N

n=1

1 −
Dn
source1

(tend)
D(t0)

􏼔 􏼕

,
1
N

􏽘N

n=1

1 −
Dn
source2

(tend)
D(t0)

􏼔 􏼕􏼨 􏼩

, (11) 

with N being the number of agents and Dn
source1

(t) being the 

Euclidean distance from source1 to agent n at time t.

Measures of coordination dynamics
To evaluate the intra-agent neural dynamics, interagent neural 
dynamics, and interagent behavioral (i.e. movement) dynamics, 
we used the following measures: KOP (58), PLV (85), and wPLI (60).

First, we calculated KOP (i.e. the parameter R(t) (58)) as

Z(t) = R(t)eiΘt =
1
N

􏽘N

i=1

eiφi(t), (12) 

where N is the number of oscillators and φi is the phase angle of 
each oscillator (which, in this study, can be either the oscillator no
des of the neural controller or the movement directions of agents). 
KOP quantifies the extent to which several oscillating components 
are in phase. If KOP is 1, all components are completely in phase, 
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whereas low KOP values indicates an absence of synchronization 
between components. KOP values remaining constant over time in
dicate that the system has resorted to a stable dynamic (whether 
synchronized or not), whereas variation in the parameter indicate 
that the system is passing through various coordination states. 
Therefore, the standard deviation (SD) of KOP can be used as a 
measure of the metastability of coordination between oscillating 
components (59, 86). We used metastability to assess the agents’ 
neural dynamics but also to evaluate the collective movements in 
the multiagent simulations. In the latter case, we used the measure 
of metastability to quantify the degree of “alignment variability,” 
with which we mean the degree to which the collective switches be
tween aligned and unaligned movement directions.

Based on (85), we calculated sliding PLVij for the connection be
tween vi and vj as

PLVij =
1
T

􏽘T

t=1

eiϕij(t)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
, (13) 

where T is the number of samples in a window. PLV is different 
from KOP in that it is maximal if the phases of the two oscillators 
are “locked,” i.e. the relative phase of oscillators remains constant 
over time. We use PLV as a measure to indicate the degree of inte
gration of the oscillating components, i.e. the degree to which their 
phases are co-determined. PLV is often used as a measure of con
nectivity between brain components (56) as well as functional 
connectivity between the brains of different individuals during so
cial interaction (75).

Finally, wPLIij for the connection between vi and vj is calculated 
as follows (60):

wPLIij =

1
T
􏽐T

t=1 Iij(t)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌sgn(Iij(t))

􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

1
T
􏽐T

t=1 Iij(t)
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌

, (14) 

with

Iij(t) = Imag(eiϕij(t)). (15) 

Like the PLV, the wPLI characterizes to what degree different oscil
lators are integrated (60) and has been used in several hyperscan
ning studies to quantify synchronization between brain regions 
(e.g. (62)). wPLI differs from PLV in that its weighting of phases 
puts more emphasis on the covariance of phases than simple 
“locking.” When zero-phase locking (i.e. completely synchronized 
activity) driven by common input needs to be distinguished from 
locking between other phases, wPLI provides a more robust char
acterization of oscillator integration than PLV.
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