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Abstract

We present a rigorous, component-based analysis of six widespread metaphor-based algorithms for tackling
continuous optimization problems. In addition to deconstructing the six algorithms into their components
and relating them with equivalent components proposed in well-established techniques, such as particle swarm
optimization and evolutionary algorithms, we analyze the use of the metaphors that inspired these algorithms
to understand whether their usage has brought any novel and useful concepts to the field of metaheuristics.
Our result is that the ideas proposed in the six studied algorithms have been in the literature of metaheuristics
for years and that the only novelty in these self-proclaimed novel algorithms is six different terminologies
derived from the use of new metaphors. We discuss the reasons why the metaphors that inspired these algo-
rithms are misleading and ultimately useless as a source of inspiration to design effective optimization tools.
Finally, we discuss the rationale often presented by the authors of metaphor-based algorithms as their moti-
vation to propose more algorithms of this type, which is based on a wrong understanding of the no-free-lunch
theorems for optimization.

Keywords: nature-inspired algorithm; particle swarm optimization; evolution strategies; novel algorithm; swarm intelli-
gence

1. Introduction

Algorithms inspired by natural, artificial, and sometimes supernatural behaviors have become
commonplace in the metaheuristics literature (Lones, 2014, 2020; Sörensen, 2015; Campelo and
Aranha, 2021). From intelligent water drops to musicians and even the COVID-19 pandemic, it
seems that virtually anything can be used as a source of inspiration to develop “novel” optimiza-
tion techniques. Although taking inspiration from natural processes has played an important role
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in the history of metaheuristics (Sörensen and Glover, 2013; Sörensen et al., 2017; Gendreau and
Potvin, 2019), in the last two decades far too many self-proclaimed “novel” metaphor-based al-
gorithms have been published in the literature. Unfortunately, in the great majority of cases, it is
not clear why the proposed metaphors are being used and what novel ideas they bring to the field
of metaheuristics.

Among the most problematic aspects in papers proposing self-proclaimed “novel” metaphor-
based techniques are the following. First, they use a metaphor to introduce new terminology to
redefine concepts that are already known in the field of optimization. Second, they derive triv-
ial mathematical models from the proposed metaphor that are only very loosely based on the
metaphor itself, so that the models do not reflect correctly the metaphors; additionally, often the
proposed algorithms do not match the mathematical models derived from the metaphor. Third,
they motivate the use of a new metaphor on reasons such as “it has never been used before”
or “the mathematical models are different from those used in the past”—rather than motivat-
ing it on a sound, scientific basis and explaining what is the optimization process represented in
the metaphor and how it was used to make effective design choices in the proposed algorithm.
Finally, they present biased evaluations and comparisons with other methods, such as an ex-
perimental evaluation based on a small number of low complexity problems and/or a compari-
son of the proposed algorithms with old techniques whose performance is far from the state of
the art.

In this paper, we present a component-based analysis of the grey wolf optimizer (GWO) (Mir-
jalili et al., 2014), moth-flame algorithm (MFA) (Mirjalili, 2015b), whale optimization algorithm
(WOA) (Mirjalili and Lewis, 2016), firefly algorithm (FA) (Yang, 2009), bat algorithm (BA) (Yang,
2010), and antlion optimizer (ALO) (Mirjalili, 2015a), which are among the most widespread
“novel” metaphor-based algorithms published in the literature. These algorithms were chosen
from the evolutionary computation-bestiary (Campelo and Aranha, 2021) using as sole criteria
that they were proposed for the approximate solution of continuous optimization problems and
that they were highly cited (data from Google Scholar retrieved on 6 June 2022, shows the fol-
lowing citation counts—GWO: 8468 citations; MFA: 2376 citations; WOA: 5407 citations; FA:
4317 citations; BA: 5201 citations; and ALO: 2096 citations.) In this paper, we analyze these al-
gorithms in order to (i) clarify what concepts are proposed in them, and (ii) understand whether
the concepts that come from the use of new metaphors are useful and novel in optimization. For
each of the metaphors used in these algorithms, we evaluate whether the following criteria are
fulfilled:

• Usefulness—Does the metaphor bring useful ideas on how to solve optimization problems?
• Novelty—Were the ideas brought by using the new metaphor novel in the field of metaheuristics

when they were proposed?

The main finding of our analysis is that, despite presenting all these algorithms as novel ap-
proaches, none of them proposes a single new idea; rather, their authors used variations of the
same algorithm components that have been for years in the literature of metaheuristics, framed
them into new metaphors, and published them as new. In particular, we found that the grey wolf
algorithm, MFA, WA, FA, and BA use the concepts proposed in the context of particle swarm
optimization (PSO), while the antlion algorithm uses those of evolution strategies (ESs).

© 2022 The Authors.
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From the analysis of the metaphors that inspired the six algorithms, we found that they cannot
be used to explain the majority of the design choices in them. The description of the metaphors in
the articles are vague for the most part; important aspects are not mentioned at all or lack suffi-
cient detail (such as what exactly is being optimized in the behavior that inspired the algorithm),
while those that are irrelevant for the purpose of designing an optimization algorithm are abun-
dant and overemphasized (e.g., how many species of fireflies/moths/whales exist and how amaz-
ing/fancy/unique they are in the opinion of the authors). Additionally, we observed that it is a
common practice for the authors of this type of publications to relate metaphors and mathematical
models using (i) ideas that do not belong to the metaphor originally described, and/or (ii) ideas
that radically change the behavior that reputedly inspired the algorithm.

The rest of this paper is structured as follows. In Section 2, we present a number of variants of
PSO (Section 2.1) and ESs (Section 2.2) that are relevant for our analysis. In Section 3, we decon-
struct the six metaphor-based algorithms into their components and compare them, one by one, to
those proposed in the context of PSO and ESs. Also, in this section, after analyzing each algorithm,
we present the metaphors that inspired the algorithms and investigate whether they meet the crite-
ria of usefulness and novelty. In Section 4, we discuss why (i) finding a novel metaphor that is both
sound and useful to devise new optimization techniques is very difficult, and (ii) why motivating
the introduction of “novel” algorithms on the no-free-lunch (NFL) theorems for optimization is
irrelevant and shows a poor understanding of the theoretical research done in the field. Last, in
Section 5, we summarize our findings and conclude the paper.

2. A few well-established metaheuristics techniques

2.1. Particle swarm optimization

PSO (Kennedy and Eberhart, 1995) is a population-based algorithm proposed for the approximate
solution of continuous optimization problems. In PSO, a swarm of particles, each representing a
solution to the problem at hand, try to identify the most promising areas of the search space by
applying a set of rules that take into account the locations of good solutions that they and their
neighboring particles have visited in the past. To do so, each particle i knows, at every iteration t,
its current position �x i

t , velocity �v i
t , and personal best position �pi

t , as well as the best position �l i
t of

the best particle in its neighborhood. The goal of using vectors �pt (called cognitive influence) and
vectors �lt (called social influence) is to combine the knowledge acquired by each particle during the
search with the knowledge of the best-informed individual in the neighborhood of the particle.

Depending on the way the neighborhood is defined in the algorithm, it is possible to create many
different population topologies. For example, if the neighborhood of a particle consists of the two
adjacent (i.e., closest) particles we have the so-called ring topology, while assigning all particles to
the neighborhood of all other particles creates a fully connected or gbest topology. In the latter, the
local best particle is called the global best and its position is indicated by �gt. When using the ring
topology, the information about where the best-so-far solution is located spreads slowly among
particles, while with the fully connected or gbest topology the entire swarm knows immediately the
position of the best-so-far solution at each iteration. Along with these two topologies, many others

© 2022 The Authors.
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have been studied in the literature, including wheels, lattices, stars, and randomly assigned edges
(Mendes et al., 2004).

Since its initial publication, PSO has been extensively studied and applied to many problems,
resulting in a plethora of variants that range from little refinements of the original algorithm to new
versions of the algorithm that contain quite elaborate changes and novel ideas. In the remaining of
this section, we present a number of PSO variants that are relevant to our study.

• Standard PSO (Shi and Eberhart, 1998, 1999)—StdPSO. In StdPSO, particles update their posi-
tions using the following rule:

�x i
t+1 = �x i

t + �v i
t+1, (1)

�v i
t+1 = ω�v i

t + ϕ1�a i
t � (�pi

t − �x i
t ) + ϕ2�bi

t � (�l i
t − �x i

t ), (2)

where ω is called inertia weight and controls the effect of the velocity vector at time t, ϕ1 and
ϕ2 are called acceleration coefficients and weigh the relative importance given to the cognitive
and social influence, �a i

t and �bi
t are two random vectors used to provide diversity to the particles’

movement, and � indicates the Hadamard (entrywise) product between two vectors.
• Standard PSO 2011 (Clerc, 2011; Zambrano-Bigiarin et al., 2013)—SPSO-2011. This variant is a

modified version of StdPSO that prevents the issue of rotation variance. The velocity update rule
of StdPSO was revised in SPSO-2011 as follows:

�v i
t+1 = ω�v i

t + �x ′ i
t − �x i

t , (3)

where �x ′ i
t is a randomly generated point in the hypersphere Hi(�c i

t , |�c i
t − �x i

t |) with center �c i
t and

radius |�c i
t − �x i

t | , and | · | indicates the vector’s L2 norm.
The computation of the center �c i

t is defined as follows:

�c i
t = (�L i

t + �P i
t + �x i

t )/3, (4)

where

�P i
t = �x i

t + ϕ1�a i
t � (�pi

t − �x i
t )

�L i
t = �x i

t + ϕ2�bi
t � (�l i

t − �x i
t )

. (5)

• Fully informed PSO (Mendes et al., 2004)—FiPSO. In FiPSO, the velocity update rule is as
follows:

�v i
t+1 = χ

⎛
⎝�v i

t +
∑
k∈T i

t

ϕ�a i
kt � (

�pk
t − �x i

t

)⎞⎠, (6)

where χ = 0.7298 is a constant value called constriction coefficient (Clerc and Kennedy, 2002),
T i

t is the set of particles in the neighborhood of i, and ϕ is a parameter. As opposed to the existing
PSO variants that use the best-of-neighborhood model, in which the social influence of a particle
comes from either �l i

t or �gt, in FiPSO, a particle is influenced by all of its neighbors. The social
influence model proposed in FiPSO is referred to as fully informed in the literature of PSO.

© 2022 The Authors.
International Transactions in Operational Research © 2022 International Federation of Operational Research Societies

 14753995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/itor.13176 by U

niversite L
ibre D

e B
ruxelles, W

iley O
nline L

ibrary on [29/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



C.L. Camacho-Villal et al. / Intl. Trans. in Op. Res. 0 (2022) 1–27 5

• Simple dynamic particle swarms (Peña, 2008a, 2008b)—SDPSs. This class of PSO algorithms
does not use the randomness induced by vectors �at and �bt in the position update rule of the
particles. Also, they are often implemented without a velocity vector �v i

t . Most SDPSs can be
instantiated from the following generalized position update rule:

�x i
t+1 = �x i

t + ε(�y − �x i
t ), (7)

where ε is a parameter and �y is a vector obtained by combining the information of two or more
particles in the swarm. Examples of how vector �y can be computed in SDPSs include:

Standard: �y = u1�x ′ 1
t + u2�x ′ 2

t

u1 + u2
, (8)

Normal: �y = N
(
�x ′ 1

t + �x ′ 2
t

2
, | �x ′ 1

t − �x ′ 2
t |

)
, (9)

where �x ′ 1
t and �x ′ 2

t are position vectors chosen according to some criterion, and u1 and u2 are two
real parameters whose value is typically set in the range (0,1]. SDPSs algorithms vary in all types
of aspects, including the number of particles participating in the computation of �y, which can be
from 1 to all particles and the way in which the current position of a particle is taken into account
in the computation of �x i

t+1.
• Extrapolation PSO (Arumugam et al., 2007, 2009)—ePSO. In ePSO, particles do not have a

cognitive influence component (i.e., vector �pt) and parameters ϕ1t and ϕ2t are replaced by two
so-called “extrapolation” coefficients. The position update rule proposed for ePSO is as follows:

�x i
t+1 = �gt + ϕ1t�gt + ϕ2t (�gt − �x i

t ), (10)

where ϕ1t = U [0, 1] k1, ϕ2t = k1ek2�
i
t , k1 = k2 = e−t/tmax , �i

t = |( f (�gt ) − f (�x i
t ))/ f (�gt )|, and f (·)

refers to the objective function of a minimization problem. This position update rule combines
the information of the global best solution (�gt) with the current position of the particles (�x i

t ) and
adjusts the displacement of the particle in terms of the difference between f (�gt ) and f (�x i

t ). Be-
cause of the way ϕ1t and ϕ2t are computed, a particle will experience a strong attraction toward
�gt when its quality is much lower than that of f (�gt ), and a weak attraction toward �gt when its
quality is similar to f (�gt ).

2.2. Evolution strategies

ESs (Rechenberg, 1971, 1973; Schwefel, 1977, 1981) are among the first evolutionary algorithms
(Fogel et al., 1966; Holland, 1975) (EAs) mainly proposed to solve continuous optimization prob-
lems. ESs use real-valued vectors to represent solutions and, similar to other EAs, they iteratively
apply a number of evolutionary operators (or just operators) to stochastically sample new solutions.
The operators typically used in ESs are as follows:

• parental selection—choice of the solutions (parents) at the beginning of each iteration that will be
used to create new solutions (offspring);

© 2022 The Authors.
International Transactions in Operational Research © 2022 International Federation of Operational Research Societies
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• recombination—mechanism used to combine the information of two or more parents in order to
create one or more offspring;

• mutation—the process of applying a small perturbation to offspring;
• survival selection—choice of the solutions that will pass to the next iteration (also known as gen-

eration).

The parental selection operator can be implemented using a deterministic scheme (one or more
specific individuals are selected) or a stochastic scheme (individuals are selected according to a prob-
ability distribution based on their quality value). The quality value is usually called fitness value of
an individual. One of the first stochastic parental selection schemes proposed in the literature is
fitness proportional (Holland, 1975; Bäck et al., 1997) and consists in assigning to each individual
a probability of being selected that is proportional to its solution quality. Among the determinis-
tic schemes, a typical option is the so-called fitness-based selection, in which only individuals with
similar solution quality are matched together to produce offspring (Hansen et al., 2015). Since
fitness-based selection drives the evolution process toward the best individuals, it is often used when
survival selection is nonelitist (see below).

The recombination operator can be implemented in many different ways. Among the most used
recombination operators are discrete recombination, where the kth component of the offspring is
taken from either of the parents, intermediate recombination, where the offspring is the result of
computing the arithmetic average of the parents’ kth component, and weighted recombination,
which is similar to intermediate recombination but parents can have different weights. Although
recombination was widely used in early ES variants, it is considered optional in most recent ESs im-
plementations.

In ESs, the mutation operator is the most important algorithm component and it is commonly
implemented by adding a point symmetric perturbation (e.g., random numbers drawn from a mul-
tivariate Gaussian/Cauchy/Lévy distribution) to the result of recombination or, if recombination
is not used, to the result of parental selection. In practice, most ESs employ the Gaussian distribu-
tion to create a perturbed vector �u ′, such as the well-known spherical/isotropic mutation, which is
defined as follows:

�u ′ = �u + N (0, C), (11)

where �u is a vector representing an individual and N (0, C) is the Gaussian distribution with
zero mean and covariance matrix C ∈ R

n×n. In the spherical/isotropic mutation, C is proportional
to the identity matrix I, and therefore, the Gaussian mutation component is often indicated as
N (0, I).

ESs use the mnemonic notation (μ +, λ) to indicate the way in which survival selection will be
implemented in the algorithm, where μ and λ are positive integers that represent, respectively, the
number of parents at the beginning of the iteration and the number of offspring generated at each
iteration. The symbols “+” and “,” are used to specify whether survival selection is elitist (μ +
λ) or nonelitist (μ, λ). In the (μ + λ) − ES, the next generation is generated by selecting the best
μ solutions from the set of μ + λ individuals, whereas in the (μ, λ) − ES the next generation is
generated by selecting the best μ solutions from the set of λ offspring.

© 2022 The Authors.
International Transactions in Operational Research © 2022 International Federation of Operational Research Societies
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3. Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms

In this section, we analyze the grey wolf algorithm, MFA, WA, FA, BA, and antlion algorithm.
For each of them, we present (i) the algorithm using the standard optimization terminology, (ii)
a component-based comparison with existing techniques, and (iii) the metaphor that inspired the
algorithm and discussion on whether it meets the criteria of novelty and usefulness. For (i) and (ii),
we avoid using the vocabulary introduced by the authors of these algorithms because, as we will
show after presenting each of them, it is unnecessary and misleading in many ways. In our view, one
of the main reasons why these algorithms have not been immediately recognized as minor variants
of well-established techniques is that they were presented using metaphor-based terminologies that
obfuscated their similarities with existing approaches. Therefore, by explaining each algorithm in
plain computational terms, we intend to make clearly visible what ideas are being proposed in
them and whether they are truly novel or not. Also, we believe that presenting first (i) and (ii) and
leaving (iii) at the end allows the reader to better appreciate whether the metaphor contributes at
all to the design of the proposed algorithm. Finally, we would like to mention to the reader that all
six algorithms discussed here have publicly available implementations. Grey wolf algorithm, MFA,
WA, and antlion algorithm can be downloaded from https://seyedalimirjalili.com/ and FA and
BA from https://nl.mathworks.com/matlabcentral/profile/authors/2652824.

3.1. Grey wolf optimizer

The GWO (Mirjalili et al., 2014) is an algorithm in which the three iteration-best solutions in the
population are used to bias the movement of the remaining solutions. This idea is implemented in
GWO by defining three vectors �s k

t (for k = 1, 2, 3) as follows:

�s 1
t = �x best1

t − ϕt (2�r 1
t −�1) �

(
2 �q 1

t � �x best1
t − �x i

t

)abs

�s 2
t = �x best2

t − ϕt (2�r 2
t −�1) �

(
2 �q 2

t � �x best2
t − �x i

t

)abs

�s 3
t = �x best3

t − ϕt (2�r 3
t −�1) �

(
2 �q 3

t � �x best3
t − �x i

t

)abs

, ∀i, (12)

where �x best1
t , �x best2

t , and �x best3
t are the three best solutions at iteration t, �r k

t , and �q k
t are two random

vectors with values drawn from U [0, 1] that induce perturbation to the components of �s k
t , ϕt is

a parameter that decreases linearly from 2 to 0, �1 is a vector of all ones, and (·)abs indicates the
entrywise absolute value of a vector. The entrywise absolute value of a vector is a transformation
that can be formally defined as (�u)abs = (|ui|, . . . |ud |)T. The position update rule combining the
information of vectors �s k

t is defined as follows:

�x i
t+1 = (�s 1

t + �s 2
t + �s 3

t )/3. (13)

© 2022 The Authors.
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3.1.1. The grey wolf optimizer is PSO
The mathematical model of GWO is a variant of the one proposed for SPSO-2011. To better explain
how GWO compares to SPSO-2011, we consider first the mathematical model of GWO without the
perturbation component ϕt (2�r k

t −�1), which is as follows:

�s 1
t = �x best1

t −
(

2 �q 1
t � �x best1

t − �x i
t

)abs

�s 2
t = �x best2

t −
(

2 �q 2
t � �x best2

t − �x i
t

)abs

�s 3
t = �x best3

t −
(

2 �q 3
t � �x best3

t − �x i
t

)abs

, ∀i. (14)

Both SPSO-2011 (Equation (5)) and GWO (Equation (14)) are based on the idea of (i) defining,
for each particle i in the population, a hypertriangle in the search space, whose vertices are a func-
tion of positions known as i, and (ii) using the centroid of the hypertriangle in the computation of
i’s new position. The main difference between the two algorithms is in the way in which the vertices
of the hypertriangle are computed. While in GWO all particles compute the vertices using the same
three iteration-best solutions, that is, �x best 1

t , �x best 2
t , and �x best 3

t , in SPSO-2011, each particle uses its
local information, that is, vectors �x i

t , �pi
t , and �l i

t .
In PSO, the goal of using vectors �v i

t , �l i
t , and �pi

t , where �l i
t is different for each neighborhood and

�pi
t is different for each particle, is to include components that allow to balance the relation between

exploration and exploitation of the search space. Adding particles’ previous velocity �v i
t to their new

positions promotes exploration, whereas attracting particles toward known good solutions, such
as �l i

t and �pi
t , promotes exploitation. In contrast, in GWO, as seen in Equation (14), the entire

swarm is attracted toward the same three solutions �x best 1
t , �x best 2

t , and �x best 3
t , which can be useful

for intensifying the search in the area defined by these vectors, but prevents particles from exploring
other regions.

Not surprisingly, the authors of GWO found that their first version of the algorithm (which
is, as far as it is understood in their article, the one using Equation (14)) resulted in a poor per-
forming implementation that “is prone to stagnation in local solutions” (Mirjalili et al., 2014, p.
50). To remediate this issue, the authors added a second perturbation component to the compu-
tation of vectors �s k

t (Equation (12)), which includes a random vector �r k
t multiplied by a linearly

decreasing parameter ϕt. This additional perturbation component produces both positive and neg-
ative random values in the range [−2, 2], determining a much stronger perturbation to the particles
movement than the one initially defined with vector �q k

t . To avoid particles divergence outside the
search space, the impact of ϕt (2�r k

t −�1) in the computation of vectors �s k
t is controlled by parameter

ϕt whose value decreases linearly from 2 to 0, allowing particles to move closer and closer to �x best 1
t ,

�x best 2
t , and �x best 3

t toward the end of the algorithm’s execution.
In addition to the computation of vectors �s k

t , the position update rule of GWO introduced in
Equation (13) is same as the computation of the center �c i

t in SPSO-2011—see Equation (4). How-
ever, in SPSO-2011, vector �c i

t is the center of a hyperspherical distribution from which a random
vector is generated, whereas in GWO the computed center becomes the new position of the parti-
cle. Because of this difference, GWO’s position update rule can also be compared to the standard

© 2022 The Authors.
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recombination rule proposed for SDPSs (Equation (8)) extended to three particles, where vectors
�x ′ 1

t , �x ′ 2
t , and �x ′ 3

t correspond to vectors �s k
t , and parameters u1, u2, and u3 are set to 1.

3.1.2. The metaphor of grey wolves hunting
The authors of GWO say in their original paper (Mirjalili et al., 2014) that they were inspired by
the way in which “grey wolves organize for hunting following a strict social hierarchy,” where the
pack is divided, from top to bottom, into α, β, δ, and ω wolves. According to their description of
grey wolves hunting behavior, while α wolves usually take part in hunting and they are in charge
of guiding the rest of wolves participating in this activity, the β and δ wolves only take part in
hunting occasionally. In GWO, vector �x best 1

t represents the α wolf, �x best 2
t represents the β wolf,

�x best 3
t represents the δ wolf, and the rest of solutions in the swarm represent the ω wolves. However,

since it is false that the entire pack always participates in hunting every time, saying that solutions
�x best 1

t , �x best 2
t , and �x best 3

t represent the α, β and δ is inaccurate, as it does not follow the description of
the “strict social hierarchy” of grey wolves that inspired the authors when proposing the algorithm.

The authors of GWO mention that there are three phases during hunting, each one composed
of a number of steps: (i) tracking, chasing, and approaching the prey; (ii) pursuing, encircling, and
harassing the prey until it stops moving; and (iii) attacking toward the prey. However, GWO con-
siders only two of the seven steps mentioned: encircling, which is modeled using Equation (13), and
attacking, which is modeled by linearly decreasing the value of ϕt from 2 to 0 in Equation (12). In
the imagery of the metaphor, when ϕt is less than 1, wolves concentrate around the prey (therefore
attacking it); and when it is greater than 1, they search for other prey. Note that, despite search
being not an activity in the hunting phases of wolves, the authors added this step to the metaphor
and explained it as “the divergence among wolves during hunting in order to find a fitter prey”
(Mirjalili et al., 2014, p. 50).

Based on the description of the “grey wolves hunting” behavior presented by the authors of
GWO and the way this behavior is used as a metaphor to develop the proposed algorithm, it is
clear that the only contribution of the metaphor is to create confusion and to hide the similarities
of the “novel” GWO with PSO. In particular, GWO does not satisfy the criterion of usefulness
because there are no components in the behavior of grey wolves that can be used as effective de-
sign choices in an optimization algorithm, as evidenced by the fact that the mathematical model
originally derived from this behavior resulted in a poor performing technique that stagnated pre-
maturely. Also, as it was shown in the previous section, GWO does not satisfy the novelty criterion
because all the algorithm components of GWO correspond to particular cases of algorithm com-
ponents previously proposed for SPSO-2011 and SDPSs.

3.2. Moth-flame algorithm

In the MFA (Mirjalili, 2015b), each solution in the population is assigned a ranking (ranki
t) based

on the quality of its current position (�x i
t ), which determines the specific neighbor of the population

that will take part in the computation of its position update rule; that is, the solution with ranki
t = 1

will compute its new position using the best overall solution �g1
t , the one with ranki

t = 2 will use the
second best solutions �g2

t , and so on. Note that the set of vectors �gt is same as the set of vectors �pt in

© 2022 The Authors.
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PSO, but ordered according to their quality, so that �g1
t corresponds to the vector �pt with the highest

quality and �gn
t to the one with the lowest quality. The equation modeling this process is

�x i
t+1 = �granki

t
t + ϕt (�g

ranki
t

t − �x i
t )abs, (15)

with

ϕt = eδ cos(2 π δ), (16)

where (·)abs denotes the entrywise absolute value, δ = ( −t
tmax

− 2)U [0, 1] + 1, and tmax is the iteration
number at which the algorithm stops. There are two things to note about Equation (16). First, the
range in which the value of δ is computed spans from [−1 1

tmax
, 1] to (−2, 1] as the value of t grows;

second, when δ → −∞, the value of ϕt → 0. Therefore, the probability of computing large values
for ϕt decreases toward the end of the execution of the algorithm, allowing solutions to move closer

and closer to their respective vector �granki
t

t .
In MFA, every tmax/n iterations, the variable ranki

t of the worst n − m solutions is set to
ranki

t = m, where m is computed as m = round(n − t (n−1)
tmax

), n is the population size, and round(·)
indicates the round to the nearest integer function. The goal of doing this is to stop using the �pt
vector of the n − m solutions to influence the position update of other solutions. Because of the
way the value of m is computed, the number of solutions influencing the position update rule of
other solutions will decrease over the course of iterations, until only the global best solution (�g1

t ) is
used to influence the movement of the entire population. It is worth mentioning that, in Mirjalili
(2015b), the equation used to compute the value of m is given by round((n − t) (n−1)

tmax
); however, this

equation is wrong as it produces negative values when t > n.

3.2.1. The moth-flame algorithm is PSO
The MFA is a variant of ePSO, where the only difference is that MFA uses a model of influence
(MoI) that assigns each particle with the personal best position of one specific neighbor depending
on its ranking. Therefore, with the exception of the MoI, the comparison between MFA and ePSO
can be done directly, since it is possible to obtain the mathematical model of MFA (Equation (15))
just by setting ϕ1t = 0 and k1 = 1 in the position update rule of ePSO (Equation (10)).

In PSO, the MoI (also known as selection of social influence (Mendes, 2004) or graph of influence
(Clerc, 2010)) refers to the way in which particles select other members of the swarm to influence
their movement and it is equivalent to the concept of parental selection in EAs. In Section 2.1,
we describe the two most popular MoIs, which are the best-of-neighborhood and the fully informed
models. However, there are many other models proposed in the literature of PSO, including random,
in which particles are influenced by a random neighbor (Kennedy, 1999), ranked-fully informed
(Jordan et al., 2008), in which the contribution of each neighbor is weighted according to its rank—
see Mendes (2004) and Montes de Oca (2011) for a detailed review.

Although to the best of our knowledge, there is no PSO variant using exactly the same MoI
implemented in the MFA, the idea of using a rank-based selection is not new at all in the meta-
heuristics literature. For example, the ranking selection mechanism used in EAs assigns to each
individual a ranking based on its fitness value that determines the probability of selecting it for the

© 2022 The Authors.
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next generation (Bäck et al., 1997; Grefenstette, 2000). In the deterministic version of the ranking
selection, the best individuals are selected from the population to pass to the next generation with
the goal of both always preserving the best solutions found at any iteration and of biasing the cre-
ation of new solutions through recombination and mutation—see Section 2.2. In MFA, the best
solution found by each particle is kept in its personal best vector (�pi

t ) and the only goal of using
rankings is to create a mapping between a particle and one of its neighbors to bias its movement.

A PSO variant that is similar to MFA in this regard is the rank-based PSO with dynamic adap-
tation (PSOrank) (Akbari and Ziarati, 2011), where each particle receives influence from multiple
neighbors and the contribution of each neighbor is weighted according to three criteria: ranking,
Euclidean distance, and the total number of neighbors. Similar to MFA, in PSOrank, the number of
neighbors influencing the particles at each iteration is controlled using a parameter that decreases
linearly according to the number of iterations, so that all particles are eventually influenced only by
the global best solution.

3.2.2. The metaphor of moths navigation
As we showed in the previous section, the MFA is same as the ePSO algorithm except for the
deterministic rank-based MoI component, which is an idea originally proposed in the context of
EAs and that is implemented in MFA in a similar way to PSOrank. Therefore, the MFA does not
meet the criterion of novelty. In this section, we analyze the behavior of moths that inspired the
algorithm to check whether it has any component that can be useful from the point of view of
designing an optimization algorithm.

The author of MFA says that the inspiration for this algorithm is the “navigation method of
moths in nature” that allows them to move in a straight line by maintaining a fixed angle with
respect to the moon—a mechanism known as transverse orientation according to Mirjalili (2015b).
For developing MFA, the author considered the case when moths are attracted to artificial lights,
not to the moon. In this case, moths engage in what the author referred to as “useless or dead spiral
fly path,” which happens because the transverse orientation method is only useful to fly in a straight
line when the light source is very far. The flight of moths around artificial lights is modeled using
Equations (15) and (16), where the set of current solutions (�xt) represent “moths,” their personal
best positions (�pt), called “flames,” represent artificial light sources, and the “useless or dead spiral
fly path” behavior is represented by computing the value of ϕt using a logarithmic spiral function.

Although the behavior that inspired MFA is moths’ inability to escape from artificial light sources
due to transverse orientation, in the algorithm, the author prevents this behavior by assigning
“moths” (current solutions) to specific “flames” (personal best solutions) and by gradually stop-
ping the use of the worst “flames” as the number of iteration grows. This is because, if “moths”
and “flames” are defined as fixed couplings in the algorithm (as they are in the metaphor), a so-
lution located in a poor quality region of the search space will most likely be incapable of moving
away from that region because the only influence the solution has is its personal best solution. The
author intended to avoid this problem by changing the specific personal best solution to which a
current solution is assigned. However, this modification puts into question the motivation to use
the metaphor of moths in the first place, since the algorithm following the “useless or dead spiral
fly path” behavior of moths is, in the words of the author, prone “to be trapped in local optima
quickly” (Mirjalili, 2015b, p. 232).

© 2022 The Authors.
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After analyzing the “useless or deadly spiral fly path” behavior of moths that inspired MFA,
the mathematical model derived from it, and the resulting algorithm that is “prone to stagnation
quickly,” it is obvious that the metaphor of “moths navigation” does not meet the criterion of use-
fulness. Also, considering the modification of assigning “moths” to specific “flames” that the author
introduced to make the algorithm actually be able to perform optimization, radically changing the
behavior of moths that inspired him to proposed MFA, the use of this metaphor of “moths naviga-
tion” in the context of optimization is rather counterproductive.

3.3. Whale optimization algorithm

WOA (Mirjalili and Lewis, 2016) is a combination of the mathematical models of GWO and MFA
algorithms (all of them proposed by the same authors), in which solutions are updated using one
of three possible position update rules (the three cases of Equation (17)) that is chosen on the basis
of stochastic criteria. The mathematical model of WOA is as follows:

�x i
t+1 =

⎧⎪⎨
⎪⎩
�x k

t − ϕ1t (2�rt −�1) � (
2 �qt � �x k

t − �x i
t

)abs
if Random_Neighbor

�x best
t + ϕ2t (�x best

t − �x i
t )abs if ¬Random_Neighbor ∧ Exp_Coefficient

�x best
t − ϕ1t (2�rt −�1) � (

2 �qt � �x best
t − �x i

t

)abs
if ¬Random_Neighbor ∧ ¬Exp_Coefficient

,

(17)

where (·)abs denotes the entrywise absolute value, �x k
t indicates the current position of a randomly

chosen neighbor k at iteration t, and vectors �x best
t , �rt, �qt, �x i

t , and parameter ϕ1t are the same ones
defined for computing vector �s 1

t in GWO (see Equation (12)). In the remainder, we will refer to
the three cases of Equation (17) as first rule, second rule, and third rule, respectively, to simplify
our analysis.

The computation of ϕ2t in Equation (17) is given by

ϕ2t = eδ cos(2 π δ), (18)

with δ = ( −t
tmax

− 2)U [0, 1] + 1, which is exactly the same as Equation (16) proposed for MFA.
The specific position update rule that a particle will use depends on the value of the logical

variables Random_Neighbor and Exp_Coefficient, which are defined as follows:

Random_Neighbor :=
{
TRUE if ϕ1t (2 r1,t − 1) > 1
FALSE otherwise

,

Exp_Coefficient :=
{
TRUE if U [0, 1] < 0.5
FALSE otherwise

,

(19)

where r1,t indicates the first element of vector �rt. Because of the way the logical variables
Random_Neighbor and Exp_Coefficient are used in Equation (17), the algorithm will select with
higher probability the first rule during the first half of its execution, and either the second rule or
the third rule (but not the first one) with the same probability during the second half. The reason

© 2022 The Authors.
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why the first rule is not selected by the algorithm during the second half of its execution is that the
value of ϕ1t is less than 1 and the probability of Random_Neighbor:=TRUE when ϕ1t < 1 is 0.

3.3.1. The whale optimization algorithm is PSO
WOA is a PSO algorithm that combines the mathematical models of SPSO-2011 and ePSO. To
explain how WOA compares with SPSO-2011, let us consider initially WOA’s first rule and third
rule. These two rules differ only in the vector that is used to bias the particles’ movement: �x k

t (first
rule) and �x best

t (third rule). In Section 3.1.1, where we compared GWO with PSO, we discussed the
fact that the computation of vector �s 1

t in GWO, which is same as WOA’s third rule, is defined in
the same way as vectors �Li

t and �Pi
t in SPSO-2011 (Equation (5)), the only difference is that there is

an additional perturbation component—ϕ1t (2�rt −�1)—that was introduced to avoid the premature
stagnation issue that affects GWO. Similarly, WOA’s first rule is a variant of the mathematical model
shown in Equation (5), but in this case there is also the difference that the local best particle (�l i

t ) is
replaced by a randomly chosen neighbor (�x k

t ).
Unlike most PSO variants, WOA does not make use of a velocity vector (�v i

t ), which is an algo-
rithm component that, among others, allows particles to diverge from moving exactly toward �l i

t
or �pi

t and to explore other areas of the search space. To compensate for the lack of a component
such as �v i

t , WOA lets particles to be occasionally biased by �x k
t (first rule) instead of by �x best

t (second
and third rules). Therefore, although WOA’s first rule is defined in the same way as vectors �Li

t and
�Pi

t in SPSO-2011, the purpose of having this rule in the algorithm is rather similar to the one of
using vector �v i

t in PSO algorithms—as it allows to introduce diversity in the solutions. To control
the impact of the first rule in the optimization process and let particles converge toward �x best

t , the
authors of WOA defined the value of the logical variable Random_Neighbor as a function of the
linearly decreasing parameter ϕ1t, which results in Random_Neighbor:=FALSE in the second half
of the algorithm’s execution when ϕ1t < 1.

Let us now consider the second rule—that is, �x best
t + ϕ2t (�x best

t − �x i
t )abs—that allows particles to

explore the area of the search space around the iteration-best solution and that uses the exponential
function to compute the value of ϕ2t. The ideas involved in the second rule of WOA are the same
ideas introduced in ePSO (Equation (10)) described in Section 2.1, where particles do not use vec-
tors �pt and the value of the acceleration coefficients is computed using the exponential function. In
fact, it is easy to see that the second rule of WOA can be obtained from the position update rule of
ePSO (Equation (10)) just by setting ϕ1t = 0 and k1 = 1, where the only difference is that, in WOA,
the displacement of a particle toward �x best

t is adjusted using a random value (see Equation (16)),
whereas in ePSO it is adjusted based on the difference between f (�x i

t ) and f (�gt ).

3.3.2. The metaphor of humpback whales’ bubble net
The authors of WOA say that the inspiration for this algorithm is the “bubble-net strategy” that
humpback whales use for hunting (Mirjalili and Lewis, 2016). According to the description they
provided in their paper, this strategy involves performing two different maneuvers. The first maneu-
ver is called “upward spirals” and consists in creating an upward spiral path of bubbles in the water,
while the second maneuver, called “double loops,” is composed of three different stages: coral loop,

© 2022 The Authors.
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lobtail, and capture loop. For developing WOA, the authors considered only the “upward-spiral”
maneuver. The “double-loop” maneuver and its three stages are not described in the WOA paper.

The authors of WOA modeled the “spirals path of bubbles” created by whales during the
“upward-spiral” maneuver by computing parameter ϕ2t in WOA’s second rule (Equation (17)) using
the exponential function. Since ϕ2t is the only component in the algorithm that can be justified in
terms of the metaphor of whales, the authors added two more maneuvers to the metaphor originally
presented, one called “shrinking encircling” and the other called “search for prey.” The “shrinking
encircling” maneuver, whose mathematical model and description are exactly similar to the “encir-
cling” step in the GWO (see Section 3.1) published by the same authors two years before WOA, is
used to justify the linearly decreasing value of ϕ1t in WOA’s first and third rules and it is based on
the idea that “whales can recognize the location of prey and encircle them”; whereas the “search
for prey” maneuver is used to justify using the position vector of a randomly chosen neighbor k in
WOA’s first rule and it is based on the idea that “humpback whales search randomly according to
the position of each other” (Mirjalili and Lewis, 2016, pp. 53–54).

There are several reasons why the metaphor of “humpback whales hunting” that inspired WOA
does not meet the criteria of usefulness and novelty. First, since the authors do not provide a com-
plete description of the humpback whales’ “bubble-net strategy” that inspired them, it is impossible
to know what exactly is the optimization behavior they observed in it, if any. Second, the only com-
ponent taken from the behavior of humpback whales’ “bubble-net strategy” presented in the WOA
paper is the idea of computing the value of parameter ϕ2t using the exponential function; however,
as we discussed in the previous section, this idea was already proposed before in the PSO literature
in a variant called ePSO. Third, the mathematical model of WOA is nothing but a combination of
the ones used in the GWO (Section 3.1) and MFA (Section 3.2) algorithms, which were proposed
by the same authors in 2014 and 2015, respectively, and that are variants of PSO.

Indeed, concerning the third point, in the WOA paper the authors mention as follows: “The
main difference between the current work [whale optimization algorithm] and the recently published
papers by the authors (particularly GWO (Mirjalili et al., 2014)) is the simulated hunting behav-
ior with random or the best search agent to chase the prey and the use of a spiral to simulate
bubble-net attacking mechanism of humpback whales” (Mirjalili and Lewis, 2016, pp. 52). Al-
though the authors acknowledge that there are similarities between WOA and GWO, they make
only a vague mention of the connection between the two algorithms and fail to mention that the
equation that models the spiral in the whales’ bubble-net mechanism is exactly the same equa-
tion they used to model the “useless or deadly spiral fly path of moths” in the MFA (Mirjalili,
2015b).

3.4. Firefly algorithm

In the FA (Yang, 2009), at each iteration t, each solution i in the population updates its position
in the search space by moving toward every other solution that has higher quality than its own.
The process of updating solutions in this algorithm is carried out in two steps. In the first step,
the population is sorted bottom-up according to the solutions’ quality, so that the first solution
to be updated is the one with the worst quality and the last one to be updated is the one with the
best quality. In the second step, following the bottom-up order established before, each solution i

© 2022 The Authors.
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determines the set W i
t of solutions with better quality than its own; sets its initial position �mi

t,s0
= �x i

t ;
and applies the following two equations:

�x i
t+1 = �mi

t,s|W i
t |
, (20)

�mi
t,s = �mi

t,s−1 + ϕ
�wi

t,s,�m
i
t,s−1

t
(
�w i

t,s − �mi
t,s−1

) + ξ�r i
t,s, (21)

where �w i
t,s is an element of the ordered set W i

t , ϕ
�wi

t,s,�m
i
t,s−1

t is an acceleration coefficient whose value
is computed as a function of the Euclidean distance between the two intermediate points �w i

t,s and
�mi

t,s−1,�r i
t,s is a vector whose components are random numbers drawn from the uniform distribution

U [0, 1], and ξ is a parameter. (In the remainder of this analysis, we will use the shorter notation ϕ
�w,�m
t

as the meaning is clear from the context.) As it can be observed by the way Equation (21) is defined,
a solution updates its position by performing |W i

t | movements, one for each solutions in W i
t , where

the position obtained in movement s − 1 (indicated by �mi
t,s−1) is the starting position for the next

one (�mi
t,s). Also, it is worth noticing that, since the best quality solution has an empty set W i

t , the
new position of this solution is obtained by adding a random vector ξ�r i

t,s to its current position.
The acceleration coefficient ϕ �w,�m is computed as follows:

ϕ �w,�m = ι · e−γ |�w−�m|2, (22)

where |�w − �m| is the Euclidean distance between solutions �w and �m, and γ and ι are two parameters
that allow to control, respectively, the weight given to |�w − �m|2 and to the exponential function.
Because of the way in which ϕ �w,�m is defined, solutions have larger displacements when they are
located close to each other and smaller displacements when they are located far away.

3.4.1. The firefly algorithm is PSO
FA is a variant of the SDPSs proposed by Peña (2008a, 2008b) using the extrapolation coefficients
of ePSO and the fully informed model of FiPSO. In order to explain why FA is a combination of
these PSO algorithms, we will consider two cases: |W i

t | = 1 and |W i
t | > 1.

In the first case (i.e., when |W i
t | = 1), a particle updates its position in only one movement, which

allows to combine Equations (20) and (21) into one single equation as follows:

�x i
t+1 = �x i

t + ϕ
i,�wi

t
t

(
�w i

t − �x i
t

) + ξ�r i
t . (23)

As it can be easily seen, it is possible to obtain Equation (23) from the position update rule of
SDPSs (Equation (7)) by setting �y = �w i

t , ε = ϕ
i,�wi

t
t , and by computing the value of ϕ

i,�wi
t

t using the
strategy proposed in ePSO (Equation (10)). The only difference is that, in FA (Equation (22)), the
value of ϕ

i,�wi
t

t is adjusted in terms of particles’ Euclidean distance, while in ePSO (Equation (10))
it is adjusted in terms of the difference between their objective function evaluation. Except for this
minor difference, when |W i

t | = 1, the position update rule of FA is a special case of the one used in
SDPSs with extrapolation coefficients (ePSO).

In the second case (i.e., when |W i
t | > 1), the mathematical model of FA (i.e., Equations (20)

and (21)) involves the recursive addition of |W i
t | exponentially weighted vectors. In this case, the

© 2022 The Authors.
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mathematical model of FA is the result of using the same algorithm components mentioned before
(i.e., the position update rule of SDPSs Equation (7) and the extrapolation coefficients of ePSO
(Equation (10)) with a particular case of the fully informed model of FiPSO (Equation (6)). Differ-
ent from FiPSO, where particles add as many vectors as their number of neighbors, in the version of
the fully informed model used in FA, particles only add the vectors of those neighbors with better
quality than their own.

3.4.2. The metaphor of fireflies flashing/brightening
Although the author of FA says that the algorithm is inspired by the “flashing behavior of fireflies,”
which consists of short, rhythmic flashes that fireflies produce (Yang, 2009, p. 171), the only idea the
author used to develop the algorithm is that “fireflies are attracted towards other brighter fireflies.”

Most of the metaphor of “fireflies brightening” (as opposed to the one of “fireflies flashing”)
is explained in terms of the different set of values that can be obtained by varying the value of
parameter γ (Equation (22)), for which the author considered two limit cases. The first case is when
γ goes to 0 and the value of ϕ �w,�m goes to 1, making the attraction among fireflies constant regardless
of their distance in the search space. In the imagery of the fireflies metaphor, this is the case when
“the light intensity does not decay in an idealized sky” and “fireflies can be seen anywhere in the
domain” (Yang, 2009, p. 174). The second case is when γ goes to ∞ and the value of ϕ �w,�m goes to
0, which makes the attractiveness among fireflies negligible and new solutions are created only by
means of the random perturbation ξ�r i

t,s (see Equation (21)). According to the author, this is the case
when fireflies are either “short-sighted because they are randomly moving in a very foggy region,”
or (for reasons not explained in the paper) “fireflies feel almost zero attraction to other fireflies.”

As we mention before, FA is not really inspired by the behavior of “fireflies flashing,” but on
the phenomenon of light attenuation (i.e., the reduction in intensity of a light beam as the beam
propagates in matter due to the joint action of the absorption and scattering of light) and the con-
nection that the author makes between light intensity and the objective function of an optimization
problem. For the author of FA, since fireflies produce light through bioluminescence, they can rep-
resent candidate solutions for an optimization problem, and since the quality of the solution can
be associated with the intensity of the light it emits, it follows that the “brighter” the “firefly,” the
better the solution it represents and the more “attractive” it becomes to other “fireflies.”

The reasons why FA does not meet the criterion of usefulness are as follows: (i) it is unclear what
is the optimization behavior that the author observed in the behavior of “fireflies flashing” that can
be used to develop a new optimization algorithm; (ii) the central elements in the “fireflies flashing”
behavior (i.e., short and rhythmic light flashes) are not considered in the algorithm design of FA; and
(iii) in the metaphor of “fireflies brightening,” the association between “fireflies” and “brightness”
adds only a new, unnecessary terminology to refer to the concepts of solution and solution quality.
In addition to this, FA does not fulfill the criterion of novelty because, as we showed in the previous
section, FA uses the same ideas that were proposed before in SDPSs, ePSO, and FiPSO.

3.5. Bat algorithm

BA (Yang, 2010) is a population-based algorithm in which new solutions are generated in two pos-
sible ways: (i) by identifying good search directions that are estimated based on the position of �gt,

© 2022 The Authors.
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or (ii) by generating a random point around �gt and accepting it on the basis of stochastic criteria.
In BA, each solution has two parameters associated: ρ i

t , which is the probability of randomly gen-
erating a solution around �gt that increases over time, and ζ i

t , which is the probability of accepting
the new solution that decreases over time. The position update rule in BA is the following:

�x i
t+1 =

{
�gt + ζ̂t �r i

t , if Generate ∧ Accept

�x i
t + �v i

t+1 if (Generate ∧ (¬Accept)) ∨ (¬Generate)
, (24)

where ζ̂t is the average of the parameters ζ i
t of all the solutions in the population, and �r i

t is a vec-
tor with values randomly distributed in U [−1, 1]. The logical variables Generate and Accept are
defined as follows:

Generate :=
{
TRUE if ρ i

t > U [0, 1]
FALSE otherwise

,

Accept :=
{
TRUE if

(
f (�z i

t ) < f (�gt )
) ∧ (U [0, 1] < ζ i

t )
FALSE otherwise

,

(25)

where f (·) refers to the objective function of a minimization problem.
In BA, at each iteration t and with probability ρ i

t , a solution i generates a random point around
�gt that it keeps in a variable �z i

t . The newly generated point �z i
t is accepted as the new position of i

only when Accept:=TRUE, which happens when two conditions are met: first, the quality of �z i
t is

higher than that of �gt, and second, �z i
t is accepted with probability ζ i

t .
In the case when either Generate:=FALSE (i.e., the random solutions was never generated) or

Accept:=FALSE (i.e., �z i
t was rejected), solution i generates a velocity vector (�v i

t ) that is added to
its current position �x i

t , as shown in the second case of Equation (24). Vector �v i
t+1 is computed as

follows:

�v i
t+1 = �v i

t + �d i
t � (�gt − �x i

t ) (26)

with

�d i
t = ϕmin + �a i

t (ϕmax − ϕmin), (27)

where ϕmin < ϕmax are two parameters and �a i
t is a vector whose values are sampled from U [0, 1].

The equations to update the probabilities ρ i
t and ζ i

t are as follows:

ρ i
t+1 = ρ0(1 − e−β1t′

)

ζ i
t+1 =

{
β2 ζ i

t if Generate ∧ Accept

ζ i
t otherwise,

(28)

where β1 > 0 and 0 < β2 < 1 are parameters, t′ is an iteration counter that is updated every time
Generate ∧ Accept := TRUE, and ρ0 is the initial value of parameter ρ. Note that, in Equation (28),

© 2022 The Authors.
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the value of ρ i
t tends to ρ0 and the value of ζ i

t tends to 0. Also, note that, as the value ζ i
t decreases

with the number of iterations, so does the value of ζ̂t; therefore, for increasing t values, the solutions
generated in the first case of Equation (24) will be closer and closer to �gt.

3.5.1. The bat algorithm is PSO
BA is a simplified variant of the StdPSO algorithm combined with a simulated annealing (SA)
acceptance criterion (Kirkpatrick et al., 1983; Černý, 1985). First, in order to show that BA is a
simplified variant of StdPSO, we compare Equations (24), (26), and (27) of BA with the position
(Equation (1)) and velocity (Equation (2)) update rules of StdPSO.

In BA, the second case of Equation (24) is exactly same as the position update rules in StdPSO
(Equation (1)), which consist in adding a velocity vector to a particle’s current position. Also, the
velocity vector is computed in the same way in both algorithms. By setting ω = 1 and ϕ1 = 0,
the velocity update rule of StdPSO (Equation (2)) simplifies to the one of BA (Equation (26)).
The perturbation component �di

t in BA (Equation (27)) is equivalent to the term ϕ2�bi
t in StdPSO

(Equation (2)). The only difference is that the value of the acceleration coefficient ϕ in Equation (27)
is computed in the range [ϕmin, ϕmax] with the goal of varying the magnitude of the perturbation
induced by �a i

t . One of the first PSO variants using the idea of varying the value of the control
parameters of PSO is the “time-varying acceleration coefficient PSO” (Ratnaweera et al., 2004), in
which the value of ϕ2 linearly increases from ϕmin to ϕmax.

Now, we will compare BA with SA (Kirkpatrick et al., 1983), which is a single solution based
algorithm for solving combinatorial optimization problems proposed in the early 1980s. As shown
in Equation (27), BA uses the concept of generating new solutions around �gt and accepting them
on the basis of a decreasing probability (parameter ζ i

t ). This idea comes originally from SA, where
a parameter called temperature (T ) that decreases over time is used to decided when to accept
a worsening solution. In the context of SA, the so-called cooling scheme is used to control the
updates of parameter T iteration after iteration (Franzin and Stützle, 2019). In BA, parameter ζ i

t
plays the same role as parameter T in SA. Also, the model used in BA to update the value of ζ i

t
(Equation (28)) is the same as the well-known geometric cooling scheme, which was proposed in the
very first version of SA by Kirkpatrick et al. (1983). One minor difference is that, in BA, the value
of ζ i

t is updated only when a solution is accepted, while in SA the value of T is typically updated at
the end of each iteration.

3.5.2. The metaphor of bats echolocation
The author of BA says that the inspiration for this algorithm is “the behavior of echolocation that
some bats species use to find preys, avoid obstacles and discriminate between different objects”
(Yang, 2010, p. 66). For developing BA, the author “idealized” several aspects of this behavior. In
the words of the author, it was assumed that (i) “all bats use echolocation for sensing distance,” (ii)
“bats are able to differentiate in some magical way between food/prey and background barriers,”
(iii) “bats can automatically adjust the frequency and rate in which they are emitting sound,” and
(iv) “the loudness of their sound can only decrease from a large value to a minimum constant”
(Yang, 2010, pp. 67–68).

© 2022 The Authors.
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To explain BA, the author considered that bats have two different flying modes, which corre-
spond to the two cases in Equation (24). In the first mode, bats fly randomly adjusting their “pulse
emission rate” ρ i

t and “loudness” ζ i
t . According to the author, small values for parameter ρ i

t and
large values for ζ i

t represent when “bats are randomly searching for a prey,” while the opposite case
(i.e., large values for ρ i

t and small ones for ζ i
t ) represent when “bats have found a prey and tem-

porarily stop emitting any sound” (Yang, 2010, p. 70). The mathematical model of bats adjusting
their “pulse emission rate” and “loudness” is given in Equation (28). For the second flying mode,
which is modeled using Equations (26) and (27), the authors considered that bats control their step
size and range of movement by adjusting their “sound frequency” (modeled by vector �di

t in Equa-
tion (27)) and by moving toward the best bat in the swarm; parameters ϕmin and ϕmax represent “the
range of frequencies in which bats emit their sound.”

As there are so many simplifications and unrealistic assumptions in the behavior of “bats echolo-
cation” as idealized by Yang (2010), it is impossible to understand how this behavior was taken
into account at all for developing BA. Consider, for example, the unlikely ideas that bats use the
location of the global best bat while hunting, or that the loudness of their sound can only decrease,
or that they have a “magical” ability to differentiate between food/prey and background barriers.
For this reason, BA does not meet the criterion of usefulness. Also, as we showed in the previous
section, BA uses concepts originally proposed in StdPSO and SA that were published, respectively,
in 1995 and 1983, thereby failing also in the criterion of novelty. Unfortunately, it seems evident
to us that the only goal of using the metaphor of “bats echolocation” has been to hide the fact
that the algorithm is unnecessary as its only contribution is a bats-inspired terminology to refer to
well-known concepts.

3.6. Antlion optimizer

In ALO (Mirjalili, 2015a), a population of μ solutions is randomly selected for recombination
with the global best solution (�gt) in order to produce λ new solutions, with λ = μ. In ALO, at
the beginning of each iteration, each solution in the population P is given a probability of being
selected for recombination with �gt as follows:

Pr(�x k
t ) = fit(�x k

t )∑|P|
z=1 fit(�x z

t )
, (29)

where Pr(�x k
t ) is the probability of selecting solution �x k

t ∈ P and fit(·) is a function that maps the
quality of a solution with a real positive value, so that the better the quality of a solution, the greater
the value returned by fit(·). It is worth noting that, since �gt is an element of P, the solution with
higher probability of being selected for recombination with �gt is the solution �gt itself.

The equation used to recombine solutions in order to create the set of λ new solutions is

�x i
t+1 = �x ′ k

t + �g′i
t

2
for i = 1, . . . , λ, (30)

where �x ′ k
t is a vector generated by perturbing solution �x k

t that has been randomly selected with
repetitions from P based on the probabilities computed using Equation (29), and �g′i

t is a vector
generated by perturbing �gt.

© 2022 The Authors.
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The computation of vectors �x ′ k
t and �g′i

t is done using an elaborated procedure that involves per-
forming a random walk of s-steps for each dimension of each vector. This procedure is defined as
follows:

u j =
(
R j

t,s=� − min
(
R j

t

))
×

(
α

j
t − η

j
t

)
max(R j

t ) − min(R j
t )

+ η
j
t , for j = 1, . . . , d; for �u ∈ {�x k

t ,�gt}, (31)

where vector �u is a variable used to iterate between vectors �x k
t and �gt, R j

t is a sequence of � values
computed using a one-dimensional random walk on Z that starts at 0 and moves to +1 or −1 with
equal probability at each step s, R j

t,s=� indicates the last value in the sequence R j
t , and functions

min(·) and max(·) return, respectively, the minimum and maximum values in R j
t . Vectors �αt and �ηt,

which are computed as

�αt =
{

(x j
u /ψt ) + u j if U (0, 1) > 0.5

(−x j
u /ψt ) + u j otherwise

, ∀ j (32)

and

�ηt =
{

(xj
l /ψt ) + u j if U (0, 1) > 0.5

(−xj
l /ψt ) + u j otherwise

, ∀ j, (33)

allow to use a fraction 1/ψt of the upper (x j
u ) and lower (xj

l ) bounds of each dimension of the vector
being perturbed to normalize the values of the random walk R j

t around them. Finally, to create the
population that will be used in the next iteration, the best μ solutions are selected from the set of
μ + λ solutions at the end of each iteration.

3.6.1. The antlion optimizer is an ES
As the reader familiar with EAs must have realized by now, the algorithm components proposed
for ALO are similar to those proposed in the context of ESs—see Section 2.2. In particular, Equa-
tion (29) corresponds to the fitness proportional parental selection, Equation (30) corresponds to
the intermediate recombination, and Equation (31) corresponds to the spherical/isotropic muta-
tion. In fact, as ALO uses the elitist (μ + λ) survival selection mechanism, it is virtually same as the
(μ + λ)−ES (Schwefel, 1981), where the only difference is that, in ALO, mutation is applied before
recombination, while in the (μ + λ)−ES it is applied after recombination.

Although most of the components in ALO can be easily recognized as evolutionary operators,
this may not be necessarily the case for the spherical/isotropic mutation. The mutation operator
implemented in ALO (Equation (31)) uses a complex procedure that involves computing a random
walk (Equation (31)) and two other equations (Equations (32) and (33)) to mutate each dimension
of a vector, whereas the procedure implemented in ESs (Equation (11)) requires sampling normally
distributed values. The one-dimensional random walk over Z implemented in ALO (that starts at 0
and adds +1 or −1 with equal probability at each time step s) is commonly known in the literature
as the simple isotropic random walk (Codling et al., 2008) and its diffusion model is given by the

© 2022 The Authors.
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Gaussian distribution with mean 0 and variance s for a sufficiently large number of time steps s.
Using this fact, the complex procedure proposed for ALO in Equation (31) to compute vectors �x ′k

t
and �g′i

t can be reformulated in a much simpler and computationally efficient way as follows:

�x ′k
t = �x k

t + N (0, ψtI), (34)

�g′i
t = �gt + N (0, ψtI), (35)

where ψt is the time-varying parameter that the authors of ALO introduced in Equations (32) and
(33).

3.6.2. The metaphor of antlions hunting
The author of ALO says that the inspiration for the algorithm is the “intelligent behavior of antlions
in hunting ants in nature” (Mirjalili, 2015a, p. 81). According to the description of this behavior
provided in the ALO paper, the strategy that antlions use for hunting consists in the following steps:
(i) digging a cone-shaped pit in the sand, (ii) hiding underneath the sand at the bottom of the pit,
and (iii) waiting for prey to fall in the pit so that they can catch it.

In ALO, the μ solutions at the beginning of each iteration represent “antlions” and the fitness
value of the solutions—computed using fit(·) in Equation (29)—represent “the size of the pit
in which the antlion constructed and is hidden at the bottom.” Accordingly, in the imagery of the
metaphor, the “fitter” the “antlion,” the larger is its pit and the higher are its chances of catching an
ant. To model the behavior of ants randomly moving in the sand, the author used Equations (31)–
(33) that involve performing a random walk on Z. For Mirjalili (2015a), the computation of vectors
�x ′ k

t and �g′i
t in Equation (31) represent the “influence of antlions pits on the random walk of ants,”

and computing the arithmetic average of those two vectors (Equation (30)) represents “the final
position of the ant.” Also, when a new solution has higher quality than the one used to create
it—that is, when f (�x i

t+1) is better than f (�x ′ k
t )—this represents the case when “an ant reaches the

bottom of the pit and is caught in the antlion’s jaw” (Mirjalili, 2015a, p. 83). Finally, the fact that
vector �gt is always used when recombining two solutions (Equation (30)) represents the fact that
“each ant can be caught by an antlion in each iteration and the elite (fittest antlion)” (sic) (Mirjalili,
2015a, p. 82).

As the reader should have realized by now, the metaphor of “antlions hunting” is nothing but
a far-fetched way to explain the proposed ALO. The “novel” ALO proposed in 2015 does not
meet the criterion of novelty because, as we showed in the previous section, it is a variant of the
(μ + λ)−ES proposed roughly 35 years before ALO. Also, the mathematical model derived from
the metaphor of “antlions hunting” resulted in an inefficient procedure to perturb solutions (Equa-
tions (31)–(33)) that produces the same type of perturbation as the simple spherical/isotropic muta-
tion (Equation (11)). Therefore, ALO does not meet the criterion of usefulness. Finally, it is worth
pointing out that, similar to what we observed for the other metaphors analyzed in this article,
many of them proposed by the same author, it is impossible to understand what is the optimization
process/component observed by the author in the behavior of antlions that inspired him to propose
this algorithm.

© 2022 The Authors.
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4. Discussion

4.1. Why some metaphors work while others do not?

In the period comprised between the early 1980s and the beginning of 2000s, the field of meta-
heuristics was characterized by a rapid growth in the number of new methods proposed to tackle
complex optimization problems and by many experimental and theoretical studies of such methods
investigating their properties and ways to extend their capabilities (Corne et al., 1999; Sörensen
et al., 2017; Gendreau and Potvin, 2019). The field also witnessed the introduction of a few very
successful techniques inspired by natural phenomena such as EAs (Fogel et al., 1966; Rechen-
berg, 1971; Holland, 1975; Schwefel, 1977, 1981), where the inspiration is the phenomenon of
evolution by natural selection and survival of the fittest; SA (Kirkpatrick et al., 1983; Černý,
1985), inspired by the metal annealing process whereby atoms reorganize themselves to mini-
mize an energy function; ant colony optimization (Dorigo et al., 1991; Dorigo, 1992), inspired
by the foraging behavior of ants; and PSO (Kennedy and Eberhart, 1995), inspired by the dy-
namics and social interaction of bird flocks. These methods not only attracted the attention
of scientists and practitioners interested in solving relevant problems for which other methods
fail to provide satisfactory results but also led to one of the most widespread beliefs in the
field, that is, “nature is a never ending source of inspiration” to tackle complex optimization
problems.

While there are examples of natural behaviors that have been useful to design new and ef-
ficient algorithms, such as those that inspired the metaheuristics mentioned above, the truth is
that finding a natural behavior that leads to useful and novel ideas on how to solve optimization
problems turns out to be very difficult. Indeed, in many cases the authors of these novel meta-
heuristics are blinded by their desire of introducing a successful novel algorithm and do not re-
alize that the behaviors they take inspiration from are irrelevant for the design of an optimiza-
tion algorithm. A clear example is given by the six algorithms analyzed in this paper. They are
all based on interesting behaviors exhibited by different species of animals; however, when these
behaviors are used as a source of inspiration to devise optimization algorithms, they turn out
to be ultimately useless or to lead to the same ideas that were explored in already published al-
gorithms. Indeed, as shown by the growing list of metaphor-based algorithms for which it was
demonstrated that they are either same or have little variations of well-known techniques (Wey-
land, 2010; Piotrowski et al., 2014; Weyland, 2015; Camacho-Villalón et al., 2018, 2019, 2020,
2022; Sörensen et al., 2019), it is common that introducing metaphors of new behaviors re-
sults in algorithms that lack significant novelty. Even worse, these algorithms are very often “in-
spired” by such unusual metaphors—for example, football, reincarnation, chickens, and zombies
(Campelo and Aranha, 2021)—that they look more like jokes than serious, scientifically motivated
algorithms.

Even in those cases in which a behavior is original, scientifically motivated and abstracted in a
proper way to design an optimization algorithm, there is still the problem that the algorithm derived
from the new metaphor may be equivalent to one that has already been published in the literature.
An example of this is the biogeography-based optimization (Simon, 2008) that, as its author showed
in a later study (Simon et al., 2011), is “a generalization of a genetic algorithm with global uniform
recombination,” which was proposed in the 1960s.
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4.2. Metaphor-based algorithms motivated on theoretical research

In many papers proposing “novel” metaphor-based algorithms for the approximate solution of
continuous problems, a common thread that is as unfortunate as it is exasperating is the mention
of the NFL theorems formulated by Wolpert and Macready (1997) for finite search spaces as the
theoretical foundation that motivates their authors, such as in the following examples:

Obviously, the No Free Lunch theorem makes this field of study highly active which results
in enhancing current approaches and proposing new meta-heuristics every year. This also
motivates our attempts to develop a new meta-heuristic with inspiration from grey wolves.
(Mirjalili et al., 2014, pp. 46–47)

Some of the most popular algorithms in this field are: Genetic Algorithms (GA), Parti-
cle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Differential Evolution
(DE), Evolutionary Programming (EP). Although these algorithms are able to solve many
real and challenging problems, the so-called No Free Lunch theorem allows researchers to
propose new algorithms.
(Mirjalili, 2015a, p. 81)

According to the “no-free-lunch” (NFL) theory, it is difficult to employ a single meta-
heuristic algorithm in striving to solve all possible optimization problems. . . . This has
been a motive for the researchers in this field, as well as ourselves, to look for new and in-
novative nature-inspired methods to solve and show superior scores on the current and new
hard real-life problems. The door is still open, and here we present a novel meta-heuristic
algorithm based on human behavior with the very famous tale of Ali Baba and the forty
thieves, as our inspiration targeting numerical optimization problems.
(“A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba
and the forty thieves” published in 2021 in Neural Computing and Applications, pp. 1–47.)

While the main implication of the NFL is that “all search heuristics have the same performance
when averaged over the uniform distribution over all possible objective functions,” the assumptions
that lead to this implication have been criticized as restrictive and unrealistic. Indeed, it has been
demonstrated that the NFL is unrealistic in black-box optimization scenarios (i.e., where the ob-
jective function can be queried but its definition remains unknown) and that the theorems do not
hold for multi-objective problems and continuous domains—being this latter the case of three al-
gorithms in the above quotations. A detailed discussion of the implications of the NFL in problems
that are relevant in practice can be found in (Auger and Teytaud, 2007, 2010) and in the references
cited in these papers.

However, beyond the real implications of the NFL, it is obvious that faster and more perform-
ing optimization methods are necessary to tackle the ever more challenging optimization problems
arising in all fields and disciplines. This necessity has stressed the urgency of establishing higher
scientific standards that allow us to develop new techniques on the basis of the understanding of
the weaknesses and strengths of the existing techniques. Unfortunately, rather than contributing
to this goal, metaphor-based algorithms are leading the field astray by filling it with noise, creat-
ing confusion in the literature, and making the use of unscientific practices to seem normal in a
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scientific field. Furthermore, as it is illustrated in the quotations above, the authors of metaphor-
based algorithms seek to convey the idea that advancing the field means finding more metaphors
to develop more “novel” algorithms, despite there is growing evidence (as the one provided in this
paper) pointing to the fact that metaphors are useless for this purpose and they only serve to hide
the lack of novelty of these algorithms.

5. Conclusions

In this paper, we perform a rigorous, component-based analysis of six widespread metaphor-based
algorithms—GWO, MFA, WOA, FA, BA, and ALO—in which we first identify the ideas pro-
posed in each of them, and then, we compare them with those that have been proposed in the
context of PSO and ESs. We show that, although the six algorithms were proclaimed as “novel”
approaches by their authors, they lack any novelty, as GWO, MFA, WOA, FA, BA are variants
of PSO, and ALO is a variant of ESs. Also, we evaluate the metaphors that inspired the six
metaphor-based algorithms according to the criteria of usefulness and novelty that we defined,
and found that none of them have been useful to develop a novel optimization algorithm, nor
is there a sound motivation that justifies their use. Finally, we discuss (i) the reasons why find-
ing a natural/artificial behavior that can be useful to design a new optimization algorithms is
something rather difficult and mostly rare; and (ii) a series of statements frequently presented as
motivation by the authors of metaphor-based algorithms, which are based on a wrong under-
standing of the NFL theorems and/or a lack of knowledge of the theoretical advances in the
field.

As we have discussed here and in several other papers (Camacho-Villalón et al., 2018, 2019,
2020, 2022; Aranha et al., 2022), the publication of metaphor-based algorithms has detrimental
effects to the field of metaheuristics, such as creating confusion in the literature, hindering our
understanding of the existing metaheuristic algorithms, and making it troublesome to compare
algorithms both conceptually and experimentally. Despite the ample evidence suggesting that the
only purpose of framing algorithms into new metaphors is to conceal their similarities with other
techniques published before and to make it difficult to see that there is nothing really novel in
them, proving that this is the case for all (or a great majority) of them would be very challeng-
ing due to the myriad of algorithms of this type already published and the fact that more ap-
pear all too often. Therefore, we consider it urgent that metaphor-based algorithms are not pub-
lished anymore unless their authors (i) present the algorithms using the standard optimization
terminology, and (ii) are able to show that the new behavior leads to new ideas that are useful
in optimization.
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