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a b s t r a c t

This paper addresses formation control of underactuated autonomous underwater vehicles in three-
dimensional space, using a hybrid protocol that combines aspects of centralized and decentralized
control with constraints that are particular to underwater vehicles, including switching topologies,
unmeasurable velocities, and system constraints. Using a distributed leader–follower model, the hybrid
formation protocol does not require velocity sensing, access to global information, or static and
connected topologies. To handle switching jointly connected networks—that is, to tolerate temporary
disconnections—a distributed observer is designed for followers to cooperatively estimate leader states
using local measurements and local interactions. On this basis, a compound formation control strategy
is proposed to achieve geometric convergence. Firstly, cascaded extended state observers are developed
to recover the unmeasurable velocities and unknown dynamic uncertainties induced by internal model
uncertainty and external disturbances. Secondly, an improved three-dimensional line-of-sight guidance
law at the kinematic level is used to address the underactuated configuration and the nonzero attack
and sideslip angles. Thirdly, to overcome potential instability as a result of system constraints, including
velocity constraints and input saturations, two adaptive compensators in the dynamic controller are
used to address the negative effects of truncation. Using the proposed approach, the estimation errors
and formation tracking errors are proved to be uniformly and ultimately bounded. Additionally, the
numerical simulation results verify the performance of the approach and demonstrate improvement
over both distributed and centralized state-of-the-art approaches.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In distributed control of robot swarms, both opinion dynamics
nd physical coordination have been widely studied. Consensus
chievement in swarm robotics has, for instance, been stud-
ed in flocking problems and in opinion formation in collective
ecision-making (e.g., [1]). Formation control, by contrast, is more
ntensively studied in control theory [2], as noted in [3]. Swarm
obotics has advanced significantly in recent years, especially
oncerning swarms of small, simple ground or aerial robots man-
ged primarily by kinematic control (e.g., [4,5]). However, swarms
f other robot types such as autonomous underwater vehicles
AUVs) require the consideration of new practical challenges,
s do tasks such as formation control that have not frequently
een studied in swarm robotics. These challenges are difficult to
ddress with purely decentralized control, even from a swarm
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robotics perspective—instead, they are well-suited to hybrid con-
trol approaches that combine aspects of centralized and decen-
tralized control, and which are recently becoming more common
in swarm robotics research [e.g., with hierarchy6–8]. Likewise,
formation protocols for AUVs are becoming more widespread, but
some important practical challenges of underwater swarms have
not yet been integrated theoretically.

1.1. Motivations

Although formation control of AUVs has received much recent
attention (as reported in [9]), the state of the art still has several
important gaps that prevent theoretical studies from being trans-
ferred to applications. The paper addresses the following three
challenges that are of practical importance for formation control
of AUV swarms:

• Network reliability: To achieve the desired behavior coop-
eratively, AUVs are required to exchange information us-
ing wireless communication. In underwater environments,
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the most commonly used technique is acoustic commu-
nication, due to its low attenuation. In addition to in-
trinsic constraints such as limited bandwidth and range,
acoustic communication is not perfectly reliable. As with
many communication techniques, the occurrence of occa-
sional link failures is inevitable. Additionally, the reliabil-
ity of acoustic communication can be greatly affected by
environmental conditions such as temperature and salin-
ity [10]. Overall, network unreliability in underwater con-
ditions means that it is difficult or impossible to maintain
a connected and static communication topology in an AUV
swarm in practice. It is therefore of great importance to
study not only graphs with switching topologies, but also
graphs that can have disconnections.

• Position and velocity measurement: Formation protocols
in the literature normally require both global position and
velocity measurements, essentially transforming the prob-
lem of formation control of the swarm into simple single-
vehicle trajectory tracking for each AUV separately. How-
ever, in underwater robot swarms there are problems with
assuming that both the global position and velocity mea-
surements will be available. Regarding the former, real
global position information needs to be based on pre-
deployed and localized infrastructures, and in practice it
is difficult for AUVs to consistently make use of widely
available infrastructure such as GPS, due to signal attenua-
tion problems [11]. Realistically, underwater robot swarms
should be assumed to operate (at least some of the time)
in GPS-denied environments, in which AUVs need to di-
rectly measure their relative positions to their neighbors
(e.g., using simultaneous localization and mapping, monoc-
ular vision feature matching, or baseline acoustic position-
ing [12]). Regarding the latter, if real AUVs can be equipped
with velocity sensors at all (which might be prohibitively
too costly and/or heavy), accurate velocity measurements
are still an unresolved challenge due to sensor noise and
oceanic disturbances [13]. This motivates the development
of a velocity-free formation protocol using relative posi-
tion measurements, which is important for reliability in a
challenging environment such as deep water.

• Velocity constraints: In order to meet safety and for-
mation tracking performance requirements, a formation
protocol must keep the velocities and control inputs of
AUVs within certain compact sets. Any violation of these
system constraints could result in degraded or even unsta-
ble behavior [14]. In the literature, control input constraints
have been covered extensively (e.g., [15]), but velocity con-
straints in AUVs have rarely been discussed. The exceptions
are some optimization-based methods (e.g., reference gov-
ernor [14,16] or model predictive control [17]) to meet
velocity constraints. However, because these approaches
solve the optimization problem online, their efficacy is de-
pendent on whether the formulated optimization problem
can be solved reliably and quickly enough in real time. In
this sense, existing protocols do not necessarily guarantee
velocity constraint satisfaction. Therefore, AUV formation
protocol with guaranteed system constraint satisfaction,
which is crucial for the practical handling of real AUVs, can
be considered an unsolved challenge.

To address the challenge of network reliability, this paper
studies formation control for AUV swarms that can have switch-
ing jointly connected topologies. To address the challenges of
position and velocity measurement and velocity constraints, it
studies formation control that does not require velocity sens-
ing but still guarantees velocity constraint satisfaction. In other
words, instead of being exclusive to velocity sensing, this paper
studies formation control that can be combined with any sensing
technique that can be used to calculate relative position.
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1.2. Related work

Approaches to the formation control problem are numerous,
but few of them are suitable for AUVs. Table 1 summarizes the
state of the art in terms of the main contributions of this paper—
i.e., summarizes existing approaches in terms of the topology
types that were considered, the measurements required for the
approach, the constraints for which satisfaction can be guaran-
teed, and the dimensions handled. For marine vehicles, leader–
follower strategies have been widely studied because of their
simplicity and scalability, ranging from two-dimensional (2D)
plane (e.g. [18,19,22,23,26]) to three-dimensional (3D) space (e.g.
[17,20,21,24,25,27]).

Note that the above approaches are applicable only if the
communication topology is static. Such an assumption does not
hold practically in an underwater environment. In [28], sufficient
conditions were derived to achieve the target formation under
both fixed and switching topologies, and in [29,30], Yan et al.
addressed discrete-time formation control for AUVs subject to
weak communication constraints, including switching topologies
and packet losses. Even so, all possible topologies in [28–30]
are supposed to be connected. Therefore, it is more relevant to
investigate formation control under switching jointly connected
topologies–topologies that might be disconnected.

One key limitation of existing approaches for AUVs is the
reliance on mandatory velocity measurements for each vehicle
(as shown in Table 1), despite velocities being unmeasurable.
Velocity sensors, e.g., Doppler Velocity Log, are active sensing de-
vices with high energy consumption, and are difficult to integrate
in small and low-cost vehicles with limited payload capacity.
In addition, velocity information cannot be calculated via direct
derivative/filtering of global position for the following reasons: i)
accurate global position measurements should be performed at
a relatively high update rate, which is not possible when AUVs
are in deep underwater conditions; and ii) even if GPS signals
are available near the surface, the numerical differentiation of
noisy position measurements leads to chattering of the actuators,
and the use of low-pass filters on the numerically reconstructed
velocities could deteriorate the tracking performance. An ad-
missible way to recover the unmeasurable states is by using
observers [31]. In [26], velocity sensors were replaced by intro-
ducing an auxiliary finite-time velocity observer, however only
AUVs in a horizontal plane were considered. The velocity observer
design in 3D space is more complicated due to highly coupled
kinematics and strong nonlinear dynamics. An initial study on
this topic is presented in [27], wherein a state-transformation-
based velocity observer was designed based on neural networks.
However, global position should still be consistently measurable
in order to employ the velocity observer proposed by [27]. To the
best of the authors’ knowledge, velocity-free formation control
of AUV swarms is still an open challenge in 3D space, especially
when only relative position measurement is available. This is an
important gap to address, as velocities are often unmeasurable
and there are many alternatives (i.e., velocity-free GPS-denied
positioning techniques) available [12].

Another shortcoming of the existing methods is that they
cannot preserve optimal control performance under system con-
straints comprehensively. As seen in Table 1, input saturations
have been investigated for formation control of AUVs, for instance
in [22–25], but none of these studies have included velocity
constraints. By contrast, in [17], a receding horizon algorithm
was designed to achieve a prescribed geometric pattern with
satisfaction of velocity saturations, but input constraints were
not studied. In [14,16], reference governors (RGs) were used to
optimize command signals within system constraints, to handle
both velocity and input saturations. Note that, because both of
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Table 1
Differences among existing formation control approaches for AUV swarms.

Required measurements Guaranteed Constraints Dimension Reference

Position Velocity Input Velocity 2D 3D

Topology
Fixed

✓ ✓ ✓ [18,19]
✓ ✓ ✓ [20,21]
✓ ✓ ✓ ✓ [22,23]
✓ ✓ ✓ ✓ [24,25]
✓ ✓ ✓ ✓ [17]
✓ ✓ ✓ [26]
✓ ✓ [27]

Switching and connected
topologies

✓ ✓ ✓ [28]
✓ ✓ ✓ [29,30]
these are optimization-based methods, a feasible solution must
be newly found in each control cycle. Therefore, in cases where
it is non-trivial to solve the formulated optimization problem in
real time, constraint satisfaction is not in this sense guaranteed.

1.3. Contributions

Motivated by the current gaps in the state of the art, this
esearch proposes a hybrid formation protocol for underactuated
UVs in 3D space. The main contributions are summarized as
ollows:

• The proposed formation protocol is verified to be effective
under switching jointly connected topologies (i.e., topolo-
gies that might be disconnected at any time), thus re-
laxing the assumptions in the existing literature of static
topologies [17–27] or switching but connected topologies
[28–30]. This is realized by the proposed distributed ob-
server (DO), through which each follower estimates the
leader’s information.

• The proposed formation protocol removes the limitation
of reliance on velocity sensing, as compared to [17–25].
The unmeasurable velocities, as well as the dynamic uncer-
tainties, are recovered by the proposed cascaded extended
state observer (CESO), which is constructed by state and
coordinate transformations to satisfy a standard integral-
chain form.

• In addition to input saturation as covered in [22–26], the
proposed approach simultaneously guarantees velocity
constraint satisfaction, without relying on optimization-
based methods [14,16,17] that are not guaranteed to be
effective due to the need of finding a solution in every con-
trol cycle. To this end, two adaptive wind-up compensators
are introduced to alleviate the negative effect of nonlinear
saturations on system stability.

.4. Paper organization

The paper is organized as follows. First, Section 2 introduces
he preliminaries, including graph theory and underactuated AUV
odeling, and formulates the formation control problem. Then

he proposed hybrid formation protocol is introduced in two
arts: the design and analysis of the DO (Section 3) and com-
ound velocity-free formation control (Section 4). Finally, the
losed-loop system stability under the proposed method is an-
lyzed (Section 5), the comparative simulation results are pre-
ented (Section 6), and the paper is concluded.

otation. Rn×m denotes the set of n × m real matrices. |·| and
·∥ denote the L1-norm and L2-norm. λmin (·) is the smallest
igenvalue of a square matrix. RB

A (α, β) = Rz (α)Ry (β) is the
otation matrix from frame {A} to frame {B} with Rz (α) =

[cosα,− sinα, 0; sinα, cosα, 0; 0, 0, 1] and Ry (β) =

[cosβ, 0, sinβ; 0, 1, 0; − sinβ, 0, cosβ]. sgn(·) is the sign func-
tion, and sigα(x) = sgn(x)|x|α , where α ≥ 0.
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2. Preliminaries and problem formulation

2.1. Graph theory

In leader–follower formation control, the interactions among
N followers can be modeled by an undirected graph G = (V, E), in
which V = {1, . . . ,N} is a set of nodes, E = {(i, j) : i, j ∈ V , i ̸= j}
is a set of edges. The adjacency matrix of graph G is denoted
by A =

[
aij
]

∈ RN×N with nonnegative weights. If (i, j) ∈ E ,
aij = 1, otherwise aij = 0. Note that aii = 0, ∀i ∈ V . The
neighbor set of follower i is Ni = {j ∈ V, (i, j) ∈ E}. The Laplacian
matrix L =

[
lij
]
N×N is defined as follows: lij = −aij if i ̸= j,

and lij =
∑N

j=1 aij if i = j. Communication links between the
leader and followers can be characterized by adjacency matrix
B = diag {b1, . . . , bN}, where bi = 1 if follower i connects to the
leader. Let the leader be represented by node 0, and derive the
augmented graph Ḡ =

(
V̄, Ē

)
, where V̄ = V ∪ {0} and Ē includes

E and also includes edges between leader and followers. Denote
matrix H ∈ RN×N as H = L + B.

The graphs of the AUVs are assumed to be dynamically switch-
ing. Denote all possible graphs of multiple AUVs as S ={
Ḡq : q ∈ Q

}
, where Q is an index set of S. Consider an infinite

sequence of non-overlapping bounded time intervals [tk, tk+1)
with k = 0, 1, . . . and t0 = 0. In [tk, tk+1), there exists a finite time
sequence t0k , t

1
k , . . . , t

lk−1
k , where t0k = tk and t lkk = tk+1 for some

integer lk > 0. The graph switches at time t jk, j = 0, 1, . . . , lk − 1
and is time-invariant in the subinterval [t jk, t

j+1
k ). Assume that

there exists a constant number τ > 0 called dwell time, such that
t j+1
k − t jk > τ for all time intervals. Denote σ (t) : [0,+∞) → Q
as the switching signal. The undirected graph Ḡ and matrix H at
σ (t) are therefore noted respectively as Ḡσ(t) and matrix Hσ(t).
Note that Ḡσ(t) is allowed to be disconnected. A collection of
graphs across the time interval [t, t + T ] with T > 0 is jointly
connected if

{
Ḡσ(s)|s ∈ [t, t + T ]

}
is connected. For each q ∈ Q, Hq

has N eigenvalues denoted as λ1q, λ
2
q, . . . , λ

N
q based on the labeling

rule given in [32]. Define C (q) =
{
k|λkq ̸= 0, k = 1, 2, . . . ,N

}
and

note the following lemma:

Lemma 1 ([32]). The graphs are jointly connected across [tk, tk+1),
if
⋃

t∈[tk,tk+1) C (σ (t)) = {1, . . . ,N}.

2.2. Model of underactuated AUV

Allow the subscript i to represent the variables associated
with the ith follower, for the remainder of this paper. To de-
scribe the AUV’s motion, three reference frames are employed
(see Fig. 1(a)): earth-fixed frame {I}, body-fixed frame {Bi} and
resultant velocity frame {Wi}. For i = 1, . . . ,N , assume the
origins of {Bi} and {Wi} coincides with the center of gravity of
the AUV Mi. The 5-DOF kinematic and dynamic model described
in [33] is used for the ith AUV:{

ζ̇i = T (θi, ψi) νi ,
M iν̇i + C i (νi) νi + Di (νi) νi + g i = τ i + τdi
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Fig. 1. (a). Frame definitions of an underactuated AUV. (b) Leader–follower formation control problem.
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T =

⎛⎜⎜⎜⎝
cos θi cosψi − sinψi sin θi cosψi 0 0
cos θi sinψi cosψi sin θi sinψi 0 0

− sin θi 0 cos θi 0 0
0 0 0 1 0
0 0 0 0 1/cos θi

⎞⎟⎟⎟⎠ (1)

where ζi = [xi, yi, zi, θi, ψi]T , with xi, yi, zi being the coordi-
nates of Mi in frame {I}, and θi and ψi being the pitch and
yaw angles. νi = [ui, vi, wi, qi, ri]T denotes the velocity vector
on surge, sway, heave, pitch, and yaw directions expressed in
frame {Bi}. M i ∈ R5×5 is the inertia matrix with added mass,
C i ∈ R5×5 is the centripetal and Coriolis matrix, Di ∈ R5×5 is
the damping matrix, g i ∈ R5 denotes the restoring forces and
moments due to gravity and buoyancy, τ i ∈ R5 is the control
input vector, τdi =

[
τdui, τdvi, τdwi, τdqi, τdri

]T denotes the dynamic
uncertainties, including unmodeled hydrodynamics and external
disturbances.

Concerning the controllability and observability of AUVs, the
following assumption is made.

Assumption 1 ([33]). (a) The torpedo-shaped AUVs have
port/starboard and bottom/top symmetries so that M i and Di are
diagonal and C i is skew-symmetric. (b) The center of gravity and
the center of buoyancy are located vertically on the zBi axis. (c)
|θi| ̸= π/2.

Under Assumption 1, the dynamic model can be reformulated
in the following differential form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i =(mviviri − mwiwiqi − duiui)/mui + sat (τui)/mui + τdui/mui

= sat (τui)/mui + Dui

v̇i =(−muiuiri − dvivi)/mvi + τdvi/mvi = Dvi
ẇi =(muiuiqi − dwiwi)/mwi + τdwi/mwi = Dwi

q̇i =
(
(mwi − mui) uiwi − dqiqi − Gi∇i sin θi

)
/mqi + sat

(
τqi
)
/mqi

+ τdqi/mqi = sat
(
τqi
)
/mqi + Dqi

ṙi =((mui − mvi) uivi − driri)/mri + sat (τri)/mri + τdri/mri

= sat (τri)/mri + Dri

,

(2)

where m(·)i and d(·)i are inertia and hydrodynamic damping coef-
ficients, respectively; Gi is submerged weight; ∇i is the distance
between the center of gravity and the center of buoyancy; D(·)i
denotes the lumped uncertainties including unknown hydrody-
namics and environmental disturbances; and sat (·) is the input
saturation function to be defined later.

Given the inherent operation ranges of the propeller and con-
trol surfaces of AUVs, τ(·)i are naturally bounded [24]. νi is ex-
pected to remain within certain prescribed compact sets for per-
formance and safety considerations. Therefore, the saturation
348
nonlinearity is given by

sat (xi) =

⎧⎨⎩ xmax
i , xi > xmax

i
xi, xmin

i ≤ xi ≤ xmax
i

xmin
i , xi < xmin

i

, x = u, q, r, τu, τq, τr ,

(3)

where xmax
i and xmin

i are the upper and lower bounds, respectively.
Note that there are no control inputs in the sway and heave
directions. It is commonly assumed that vi and wi are passively
bounded, and therefore will not be considered in the controller
design [2,18].

From Eq. (2), it can be observed that AUVs suffer from varia-
tions in the sway and heave directions. Therefore, the resultant
velocity direction of an AUV is not parallel to the surge direc-
tion, which causes nonzero and time-varying attack angle αi =

arctan (wi/ui) and sideslip angle βi = arctan
(
vi/

√
u2
i + w2

i

)
.

Define νWi = [Ui, 0, 0]T , with Ui =

√
u2
i + v2i + w2

i , νBi =

ui, vi, wi]T , which represents the resultant velocity of an AUV in
rames {Wi} and {Bi}. Then, the following transformation exists:
Wi = RWi

Bi
(−βi, αi) νBi .

.3. Leader–follower formation tracking error dynamics

The leader–follower formation control problem is illustrated in
ig. 1(b), wherein a group of AUVs is required to achieve a desired
ormation with respect to the leader M0. Note that the motion
ontrol of the leader is not considered, and the leader is assumed
o move on a predefined trajectory. Denote the position of M0 in
I} frame as p0 (t) = [x0 (t) , y0 (t) , z0 (t)]T . Associated with M0,
erret–Frenet frame {F} is built. Let RF

I =
(
R I

F (χ0, υ0)
)T

denote
he rotation matrix from frame {F} to frame {I}, where χ0 =

tan2 (ẏ0 (t) , ẋ0 (t)) and υ0 = arctan
(

−ż0 (t)/
√
ẋ20 (t)+ ẏ20 (t)

)
.

Define pi = [xi, yi, zi]T as the inertial position of Mi and hi =

dxi, dyi, dzi
]T as the desired relative position between Mi and M0.

Then, the formation tracking error built in frame {F} is given by
epi =

[
exi, eyi, ezi

]T
= RF

I (pi − p0 − hi).

Remark 1. The formation tracking error in [34,35] is defined
as epi (t) =

∑
j∈Ni

(pi (t)− hi)−
(
pj (t)− hj

)
. Note that this re-

quires that the neighbor set Ni is not empty (i.e., that no vehicle
is temporarily disconnected from all other vehicles at any time).
By contrast, our formation tracking error is directly defined be-
tween leader and followers and a distributed observer will be de-
signed later for followers to cooperatively estimate leader infor-
mation over jointly connected topologies (as shown in Assump-
tion 2), which tolerates temporary isolations of AUVs. Therefore,
the assumption of consistently connected graphs in [34,35] is
relaxed.
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Differentiating epi with respect to time yields

ėpi = SF
I epi + RF

I ṗi − ν0

= SF
I epi + RF

I R
I
Bi (ψi, θi) νBi − ν0

= SF
I epi + RF

Bi (ψei, θei) vWi − ν0 + f pi

(4)

where ν0 = [U0, 0, 0]T , with U0 =

√
ẋ20 + ẏ20 + ż20 , SF

I =( 0 χ̇0 cos υ0 −υ̇0
−χ̇0 cos υ0 0 −χ̇0 sin υ0

υ̇0 χ̇0 sin υ0 0

)
, ψei and θei are rotation

angles, and f pi =
[
fxi, fyi, fzi

]T
= RF

I R
I
Bi

(
vBi − νWi

)
. Eq. (4) can

then be expanded as⎧⎨⎩
ėxi = eyiχ̇0 cos υ0 − eziυ̇0 + Ui cosψei cos θei − U0 + fxi
ėyi = −exiχ̇0 cos υ0 − eziχ̇0 sin υ0 + Ui sinψei cos θei + fyi
ėzi = exiυ̇0 + eyiχ̇0 sin υ0 − Ui sin θei + fzi

. (5)

Remark 2. The nonlinearity f pi is induced by the nonzero attack
angle αi and sideslip angle βi, because f pi will be equal to zero
if αi = βi = 0. From Eq. (5), the effect of attack angle αi
and sideslip angle βi on the formation tracking performance can
clearly be identified. It is therefore important to fully consider this
nonlinearity in the controller design.

Remark 3. Conventional tracking error dynamics (e.g., as seen
in [36,37]), introduce αi and βi in the rotation angles ψei and
θei, defined as ψei = χi − χ0 and θei = υi − υ0, where χi =

i + βi and υi = θi + αi are rotation angles from frame {Wi}

o frame {I}. Note that although this definition is rigorous in a
D plane, it cannot always be used in 3D space. Therefore, this
aper instead puts forward kinematic nonlinearity f pi, based on
quivalent coordinate transformation, by which the effects of αi
nd βi are considered in position error dynamics rather than
ngle error dynamics.

.4. Problem formulation

The formation control objective in this paper is that, when
ollowing a leader moving on a smooth trajectory, a group of un-
eractuated AUVs is able to form a desired 3D geometric pattern,
egardless of unmeasurable velocities, system constraints, and
witching topologies. This general objective can be partitioned
nto the following two sub-objectives.

The first is a distributed estimation objective. Under switching
opologies, the information of the leader, e.g., relative position
ei = pi − p0, might not be known by all followers, therefore
he formation tracking error epi is not be available for the control
esign. To address this issue, each follower should estimate the
nformation of the leader in a distributed manner, such that
imt→∞

η̂i0 (t)− ηi0 (t)
 = 0, where ηi0 is the later-defined

nformation of the leader, and η̂i0 represents the estimation of ηi0
y the ith follower.
The second is a geometric objective. Under unmeasured ve-

ocities, lumped uncertainties, and system constraints, the AUVs
hould form a desired formation prescribed by d i, such that
imt→∞

epi (t) < ϵp, where ϵp is a small positive constant.
In consideration of physical constraints, three practical as-

umptions are made.

ssumption 2 ([23,31]). For lumped uncertainties in Eq. (2), there
xists a positive constant D̄, such that

D(·)i ≤ D̄ and
Ḋ(·)i ≤ D̄.

emark 4. From a practical point of view, lumped uncertainties
˙

(·)i and D(·)i are time-varying and unpredictable, but are limited

349
Fig. 2. An overview of the proposed hybrid formation protocol for AUV swarm.

in the sense of energy. To determine an accurate upper bound D̄,
extensive computational fluid dynamics analysis or tower tank
experiment analysis should be performed under various vehicle
operating conditions, therefore it is normally difficult to know D̄
beforehand. It is worth noting that the proposed method can be
performed without this prior knowledge (refer to Theorem 2).

Assumption 3 ([32]). The graphs are jointly connected across
each interval [tk, tk+1).

Remark 5. Only joint connectivity is required and the graphs are
permitted to be disconnected across some subintervals of time.
This is distinct from switching topologies in [28–30].

Assumption 4 ([23]). There exists a positive constant p̄, such that⏐⏐ṗ0

⏐⏐ ≤ p̄ and
⏐⏐p̈0

⏐⏐ ≤ p̄.

Remark 6. Assumption 4 is made because followers need to es-
timate the information of the leader under switching topologies,
and in this case it is indispensable to assume these states to be
bounded. Note that ṗ0 and p̈0 are the desired translational speed
and acceleration of the formation. To determine the upper bound
p̄, the formation maneuver requirements as well as the velocity
and control input constraints of each AUV need to be taken into
account.

To solve the 3D formation control problem outlined here, a
hybrid formation protocol is proposed, as shown in Fig. 2. Firstly,
to achieve the distributed estimation objective, a DO is designed
for followers (see Section 3). Secondly, a compound velocity-free
formation tracking control strategy is developed to achieve the
geometric objective (see Section 4).

3. Distributed observer design

Under the leader–follower structure, the information of the
leader must be integrated such that followers can track the mo-
tion of the leader and maintain the target geometric pattern.
This need has inspired the use of AUV interactions to collabo-
ratively estimate leader information using a distributed observer
(DO), under static topologies [38] and switching but connected
topologies [39]. Note that, in underwater conditions, it should
be assumed that the topology will sometimes be disconnected.
Efforts to design a DO under switching jointly connected topolo-
gies can be found in [40,41]. However, the leader in these two
approaches [40,41] was assumed to be a linear system. Note
that, in an AUV swarm, the kinematics are nonlinear and the
attitudes are not static. This motivates the following contribution:
the design of a DO for an AUV swarm under switching jointly
connected topologies.

Define the information related to the leader as ηi0 (t) =

[pei (t) , s0 (t)]
T , where s0 = [χ0, υ0,U0]T . Then, assign η̂i0 (t) =[

ˆ ˆ
]T
pei (t) , si0 (t) to each follower as the estimation of ηi0 (t),
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here ŝi0 = [χ̂i0, υ̂i0, Ûi0]
T . Finally, define consensus-based

neighborhood information estimation error µηi as µηi =
∑N

j=1

ij (t)
(
η̂i0 − η̂j0

)
+ bi (t) η̂i0 + Φηi, where Φηi =

[
Φpi,Φsi

]T ,
ith Φpi =

∑N
j=1 aij

(
pj − pi

)
+ bi (p0 − pi) and Φsi = −bis0.

ote that p0 − pi and s0 are available for a vehicle if and only if
i = 1. Under Assumption 4 and bounded velocities, there exists
positive constant γΦ such that

⏐⏐Φ̇ηi
⏐⏐ ≤ γΦ .

emark 7. If velocity constraints are known,
⏐⏐ṗi

⏐⏐ ≤
⏐⏐R I

Bi

⏐⏐ ⏐⏐νBi

⏐⏐ ≤

3 (umax + vmax + wmax) = ṗmax can be derived. Assumption 4
further implies that

⏐⏐Φ̇pi
⏐⏐ ≤ (2N + 1) ṗmax + p̄ and

⏐⏐Φ̇si
⏐⏐ ≤ 2+ p̄.

Therefore, a possible solution for γΦ is γΦ = (2N + 1) ṗmax +

2 (p̄ + 1).

Then, the DO is proposed as

˙̂ηi0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
αi

⎛⎝−K ηµηi+

N∑
j=1

aij ˙̂ηj0−κ1sgn
(
µηi
)
−κ2sigς (µηi)

⎞⎠ ,
αi > 0

0, αi = 0

,

αi =

N∑
j=1

aij + bi (6)

where K η ∈ R6×6 is a diagonal positive definite matrix, κ1 is
a positive constant to be determined, and κ2 > 0, ς satisfies
0 < ς = ς1/ς2 < 1 with ς1 and ς2 being positive odd integers.

The observer is implemented in a cooperative manner as fol-
lows. If the jth follower is the neighbor of the ith AUV, η̂j0 and ˙̂ηj0
are sent to the ith follower via a given underwater communica-
tion technique. Meanwhile, the sensor of the ith AUV can measure
the relative position pi − pj. If the leader is the neighbor of the
ith follower, s0 and pi − p0 will be available. Subsequently, the
ith follower can calculate µηi with local information, and update
the observer as in Eq. (6). In this sense, the proposed DO is a
coordination mechanism in which AUVs directly cooperate using
local inter-AUV communication and local measurements.

Theorem 1. Let κ1 ≥γΦ . If Assumptions 3 and 4 hold, with the
roposed DO in Eq. (6), then the followers can estimate the infor-
ation of the leader accurately under switching topologies, i.e., the
stimation error η̃i0 (t) = η̂i0 (t)− ηi0 (t) converges to zero in finite
ime. (The proof is given in Appendix A.)

With the proposed DO Eq. (6), each follower is able to estimate
he information of the leader in finite time denoted by TF . That
s, ηi0 (t) = η̂i0 (t) for t ≥ TF . Thus, we can employ η̂i0 (t) directly
n the formation tracking control strategy.

. Formation tracking control strategy

In this section, a compound velocity-free formation tracking
ontrol strategy is designed to achieve the geometric objective.
irst, a cascaded extended state observer (CESO) is proposed
o recover unmeasurable velocities and approximate dynamic
ncertainties. Second, an improved 3D nonlinear guidance law
s developed at the kinematic level. Third, a constrained robust
ontroller is designed at the dynamic level to guarantee the
erformance of disturbance rejection as well as stability under
onstraints.

.1. Cascaded ESO design

The ESO is an essential method in active disturbance rejec-
ion control and requires minimal information about a dynamic
350
ystem, thus it has already been used for AUVs in a horizontal
lane [23,31]. However, this conventional ESO cannot directly be
sed for AUVs in 3D space, for the following two reasons. (i)
he kinematics in the yaw direction do not satisfy the integral-
onnected form. (ii) The conventional ESO requires absolute po-
ition measurements, which cannot be guaranteed to be feasible
or AUVs in deep water. Therefore, this paper designs a cascaded
SO (CESO) for AUVs in 3D space.
As the first step, for pitch direction, the following ESO is

esigned to estimate qi and Dqi:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
˙̂
θ i = −kq1

(
θ̂i − θi

)
+ q̂i

˙̂qi = −kq2
(
θ̂i − θi

)
+ τqi/mqi + D̂qi

˙̂Dqi = −kq3
(
θ̂i − θi

) , (7)

where θ̂ , q̂i, and D̂qi are the respective estimations of θ , qi, and
Dqi. kq1, kq2, and kq3 are positive constants.

In the second step, in order to construct the integral chain
form in yaw direction, a state transformation is performed. Let
ξri = ψi cos θi, then the following ESO to estimate ri and Dri can
be designed:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˙̂
ξ ri = −kr1

(
ξ̂ri − ξri

)
+ r̂i − q̂iψi sin θi

˙̂ri = −kr2
(
ξ̂ri − ξri

)
+ τri/mri + D̂ri

˙̂Dri = −kr3
(
ξ̂ri − ξri

) , (8)

where ξ̂ri, r̂i, and D̂ri are the estimations of ξri, ri, and Dri. kr1, kr2,
and kr3 are positive constants.

In the third step, instead of employing absolute position, the
relative position to the leader pei is utilized and an equivalent
coordinate transformation is performed. pei can be expressed in
frame {Bi} as ξpi = RBi

I pei and the dynamics can then be derived as
follows: ξ̇pi = SBi

I (ri, qi, θi) ξpi +νBi −RBi
I ṗ0, ν̇Bi = τpi +Dpi, where

τpi = [τui/mui, 0, 0]T , Dpi = [Dui,Dvi,Dwi]T , R
Bi
I =

(
R I

Bi (ψi, θi)
)T
,

SBi
I =

( 0 ri −qi
−ri 0 −ri tan θi
qi ri tan θi 0

)
, ζi = [xi, yi, zi, θi, ψi]T . Based

on the above dynamics, the following ESO is designed:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̇pi =−K p1

(
ξpi−ξepi

)
+SBi

I

(
r̂i, q̂i, θi

)
ξepi+ν̂Bi −RBi

I ṗ
e
0

˙̂νBi= −K p2

(
ξ̂pi − ξepi

)
+ D̂pi + τpi

˙̂Dpi =−K p3

(
ξ̂pi − ξepi

) , (9)

where K p1 ∈ R3×3, K p2 ∈ R3×3 and K p3 ∈ R3×3 are diagonal
positive definite matrices; and ξ̂pi, ν̂Bi =

[
ûi, v̂i, ŵi

]T , and D̂pi =

[D̂ui, D̂vi, D̂wi]
T are respective estimations of ξpi, νBi , and Dpi. ξepi =

RBi
I p̂ei and ṗe

0 = Ûi0
[
cos χ̂i0 cos υ̂i0, sin χ̂i0 cos υ̂i0,− sin υ̂i0

]T are
defined based on the estimation results of the DO.

Let the velocity estimation error vector be ν̃i =[
ũi, ṽi, w̃i, q̃i, r̃i

]T and the uncertainty estimation error vector be

D̃i =

[
D̃ui, D̃vi, D̃wi, D̃qi, D̃ri

]T
, where ρ̃i = ρ̂i − ρi and D̃ρi =

D̂ρi −Dρi, (ρ = u, v, w, q, r). Then the CESO Eqs. ((7), (8), (9)) has
the following property.

Theorem 2. Considering the CESO Eqs. (7), (8), (9) under Assump-
tions 1–4, ν̃i and D̃i are ultimately bounded. (The proof is given in
Appendix B.)
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.2. Improved 3D kinematic guidance law

Line-of-sight (LOS) guidance is commonly used in motion con-
rol of marine vehicles. However, conventional LOS has limited
obustness against external disturbances. To enhance the perfor-
ance, improved LOS guidance laws were developed, as summa-

ized in [42]. However, most methods in [42] only considered a
D plane. In the research, the existing methods are extended to
D space.
Before proceeding with the guidance law, define the

stimation-based information needed as êpi =
[
êxi, êyi, êzi

]T
=(

R I
F

(
χ̂i0, υ̂i0

))T (p̂ei − d i
)
, f̂ pi =

[
f̂xi, f̂yi, f̂zi

]T
=
(
R I

F

(
χ̂i0, υ̂i0

))T
R I

Bi

(
v̂Bi − v̂Wi

)
, Ûi =

√
û2
i + v̂2i + ŵ2

i and ν̂Wi =

[
Ûi, 0, 0

]T
, where

ˆpi, Ûi, µ̂Wi
, and f̂ pi are the estimations of epi, Ui, µWi

, and f pi.
efine the desired rotation angles ψd

ei and θ
d
ei such that

ψd
ei = tan−1 (

−
(
êyi + δyi

)
/∆y

)
, θdei = tan−1 ((êzi + δzi

)
/∆z

)
,

(10)

where ∆y and ∆z can be termed look-ahead distances, satisfying

∆z =

√
∆2

y +
(
êyi + δyi

)2. The auxiliary terms δyi and δzi take the
orm

yi =

(
êyiγ 2

yi+γyi

√
∆2

y

(
1−γ 2

yi

)
+ê2yi

)
/
(
1 − γ 2

yi

)
,

δzi =

(
êziγ 2

zi +γzi

√
∆2

z

(
1−γ 2

zi

)
+ê2zi

)
/1 − γ 2

zi , (11)

here γyi = f̂yi/Ûi and γzi = f̂zi/Ûi.
To steer ψei and θei to the desired angles ψd

ei and θdei, recall
R I

F

(
χ̂i0, υ̂i0

)
RF

Bi

(
ψd

ei, θ
d
ei

)
= R I

Bi

(
ψd

i , θ
d
i

)
, thus the desired orien-

tation angles can be derived as θdi = arcsin
(
sin υ̂i0 cos θdei cosψ

d
ei

+ cos υ̂i0 sin θdei
)
, ψd

i = atan2
(
ψ

dy
i , ψ

dx
i

)
, where ψdy

i = sin χ̂i0

cos υ̂i0 cosψd
ei cos θ

d
ei + cos χ̂i0 sinψd

ei cos θ
d
ei − sin χ̂i0 sin υ̂i0 sin θdei

and ψdx
i = cos χ̂i0 cos υ̂i0 cosψd

ei cos θ
d
ei − sin χ̂i0 sinψd

ei cos θ
d
ei −

cos χ̂i0 sin υ̂i0 sin θdei.
To steer ψi and θi to ψi

d and θid, the kinematic controller is
designed as⎧⎪⎪⎨⎪⎪⎩

ud
i =

(
−bxêxi + Ûi0 − f̂xi

)
cosαi cosβi∆i

qdi = −bθ
(
θi − θdi

)
+ θ̇di

rdi =
(
−bψ

(
ψi − ψd

i

)
+ ψ̇d

i

)
cos θi

, (12)

where bx, bθ and bψ are positive constants and ∆i =√
∆2

y +
(
êyi + δyi

)2
+
(
êzi + δzi

)2
/∆y.

emark 8. From Eq. (12), the derivatives of commands are re-
quired to implement the kinematic controller. Therefore, the
command filter is employed to approximate the derivatives [15]:
ˆ̇θdi =

w2
ns

s2+2ξwns+w2
n
θdi , where ˆ̇θdi is the estimation of θ̇di , and wn > 0

and ξ > 0 are the natural frequency and damp ratios.

4.3. Constrained robust dynamic controller

In this section, a constrained robust controller is designed at
the dynamics level, wherein two anti-windup compensators are
introduced to address saturations and potential unstable behav-
ior. Due to the similarity of the dynamics models of τui, τqi, and
τri, only the design process details for τqi in the pitch direction
will be given in detail.
 0
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Firstly, note that qdi may violate the velocity constraint. To
keep the command signal within the constraint, design the ve-
locity command truncation as ∆qi = sat

(
qdi − φqi

)
−
(
qdi − φqi

)
,

here φqi is as an anti-windup compensator to regulate the
elocity command signal, to be designed later.
Secondly, the control input is intrinsically subject to saturation

henomena. To keep the control input from reaching saturation,
esign the control input truncation as ∆τqi = τqi − τ sqi =

at
(
τqi
)
− τ sqi, where φτqi is an anti-windup compensator to reg-

late the control input, to be designed later. Then, the following
onstrained dynamic controller is proposed:

qi = mqi

(
−cq

(
sqi − φτqi

)
+ q̇di − D̂qi − φ̇qi

)
, (13)

here sqi = qi−qdi +φqi is the regulated velocity tracking error and
q is a positive constant, to be determined. q̇di can be calculated by
ommand filter. The adaptive laws for φqi and φτqi are as follows:

˙qi=

⎧⎪⎨⎪⎩−

(
w1+

w2∆q2i
2
⏐⏐φqi

⏐⏐2
)
φqi+w2∆qi,

⏐⏐φqi
⏐⏐ ≥ µq

0,
⏐⏐φqi

⏐⏐ < µq

,

φ̇τqi=

⎧⎪⎪⎨⎪⎪⎩
−

⎛⎝l1 +

⏐⏐gτqi⏐⏐+ l2∆τ2qi
2⏐⏐φτqi⏐⏐2
⎞⎠φτqi+l2∆τqi,

⏐⏐φτqi⏐⏐≥µτq
0,
⏐⏐φτqi⏐⏐ < µτq

, (14)

where w1, w2, l1, l2 are positive constants; µq, µτq are small
positive constants; and gτqi = sqi∆τqi/mqi.

Theorem 3. Let cq > 0, 2w1 > w2, and 2l1 > cq + l2, under
Assumptions 1–4, with the proposed constrained dynamic controller
Eq. (13) and the anti-windup compensators Eq. (14), then it follows
that sqi, φqi, and φτqi are ultimately bounded. (The proof is given in
Appendix C.)

Let velocity command tracking error eqi = qi − qdi . It follows
from Theorems 2 and 3 that

⏐⏐eqi⏐⏐ =
⏐⏐sqi − q̃i − φqi

⏐⏐ ≤
⏐⏐sqi⏐⏐+⏐⏐φqi

⏐⏐+
q̃i
⏐⏐, thus, eqi is guaranteed to be ultimately bounded.

. Stability analysis of the closed-loop system

heorem 4. Considering the switching topology Ḡσ(t) and the for-
ation tracking error system Eq. (5), under Assumptions 1–4, with

he proposed formation protocol consisting of DO Eq. (6), CESO
qs. ((7), (8), (9)), kinematic controller Eq. (12), and dynamic con-
roller Eq. (13) with compensators Eq. (14), then it follows that the
ormation tracking error epi is ultimately bounded. (The proof is given
n Appendix D.)

. Simulation results

The performance of the proposed formation protocol is evalu-
ted in numerical simulation and compared to three state-of-the-
rt control methods. Moreover, two simulation examples are per-
ormed to substantiate the effectiveness of the proposed method
n large-scale AUV swarm.

.1. Simulation setup

The simulated experiments are conducted with a group of
nderactuated AUVs comprising one leader and six followers,
ith model parameters replicated from [36]. The constraints are
nforced as umax = −umin = 1.2, qmax = rmax = −qmin = −rmin =

max min
.4, and τρ = −τρ = 200 (ρ = u, q, r).
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Table 2
Differences between the four methods compared in simulation.

Positioning Communication Leader Info Velocity Info Guidance Constraints Ref.

Method 1 Relative Switching Jointly DO CESO Improved LOS AC –
Method 2 Relative Switching DO CESO Conventional LOS RG [16]
Method 3 Absolute Static Known Measured Sliding-based – [21]
Method 4 Relative Static Known Measured PP – [20]

Notations: DO = Distributed Observer; CESO = Cascaded Extended State Observer; LOS = Line-of-Sight;
C = Anti-windup Compensator; RG = Reference Governor; PP = Prescribed Performance-based.
Table 3
Parameters of the proposed Method 1 (also partly utilized in Method 2).
Components Parameters

DO Eq. (6) Kη = 15I6 , κ1 = 8, κ2 = 0.1, ς = 7/9
CESO Eqs. (7), (8), (9) kq1 = kr1 = 60, kq2 = kr2 = 1200, kq3 = kr3 = 8000, Kp1 = 30I3 , Kp2 = 300I3 , Kp3 = 1000I3
LOS guidance law Eq. (10) ∆y = 4
Kinematic law Eq. (12) bx = bθ = bψ = 0.3, ξ = 2, wn = 10
Dynamic laws Eqs. (13) and (14) w1 = 30, w2 = 50, l1 = 10, l2 = 1e − 5, cρ = 2, µρ = 0.01, µτρ = 1, (ρ = u, q, r)
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The trajectory of the leader is predefined as p0 (t) =[
0.4t, 10 + 10 sin( π

100 t),−20 + 10 sin( π
100 t)

]T , and the desired
ormation is specified as h1 = [−4 cos (π/12) cos (π/6) ,
cos (π/12) sin (π/6) , 4 sin (π/12)]T , h2 = [−4 cos (π/12)
os (2π/3) ,−4 cos (π/12) sin (2π/3) ,−4 sin (π/12)]T , h3 = 2
1, h4 = 2h2, h5 = 3h1 and h6 = 3h2.
The initial positions of the followers are set away from the

eader, as p1 (0) = [−10, 15,−5]T , p2 (0) = [5, 3,−5]T , p3 (0) =

5, 5,−5]T , p4 (0) = [−5, 0,−5]T , p5 (0) = [−10,−5,−5]T ,
6 (0) = [−10, 2,−5]T . The initial orientations are set to zero.
he dynamic uncertainties, consisting of second-order nonlin-
ar hydrodynamic damping terms and environmental distur-
ances, are simulated as τdui = −dui|ui| |ui| ui + 0.2mui sin (0.3t),
dvi = −dvi|vi| |vi| vi + 0.05mvi sin (0.2t), τdwi = −dwi|wi| |wi|wi +

.05mwi sin (0.2t), τdqi = −dqi|qi| |qi| qi + 0.2mqi sin (0.3t) and
dri = −dri|ri| |ri| ri + 0.2mri sin (0.3t), where d(·)i|(·)i| are damping
arameters. In order to test the robustness of the proposed
ethod, certain variations are added to these damping terms,
iven by d(·)i|(·)i| = {200, 133, 100, 80, 66, 57}.
The simulations are conducted in Matlab 2016b with the

olver ode3(Bogacki–Shampine) and a fixed step size of 0.01s, on
PC with an Intel i5-7200 CPU, with 8 GB RAM, and running Win
0 64-bit OS.

.2. Four methods for comparison

The proposed formation protocol (Method 1) is compared
ith three alternative protocols (Methods 2–4), as summarized

n Table 2.
Method 1: The proposed formation protocol. The controller pa-

ameters used in the experiments are presented in Table 3. To test
he performance under switching jointly connected networks, the
ommunication topologies in the experiments switch between Ḡ1,
¯2, and Ḡ3, according to signal σ (t), as shown in Fig. 3.

Method 2: A distributed velocity-free tracking controller with
onventional LOS guidance, incorporating a reference governor
RG) to address system constraints. The controller parameters
sed in the experiments are the same values as those used for
ethod 1, except for those of the RG, which are set accord-

ng to [16]. The topologies in the experiments switch between
¯1
⋃

Ḡ2 and Ḡ2
⋃

Ḡ3, and each phase is active for 10 s.
Method 3: A centralized formation control approach [20],

herein each follower connects directly (and only) to the leader
ehicle. This formation protocol was designed based on inte-
ral terminal sliding mode control. The parameters are tuned
ccording to [20].
352
Fig. 3. Switching jointly connected communication topologies. (a) Three
disconnected topologies. (b) Switching signal σ (t).

Method 4: A distributed formation approach proposed in [21],
wherein the controller was designed by concerning the pre-
scribed transient and steady-state control performance. The con-
troller parameters are tuned according to [21], and the topology
is Ḡ1

⋃
Ḡ2.

.3. Results

The simulation results are presented in Figs. 4–10, where
i (i = 1, 2, . . . , 6) is the ith follower. The control performance
of the four methods is assessed according to maneuverability
performance, tracking accuracy, and constraint satisfaction. Addi-
tionally, the estimation accuracies of the proposed DO and CESO
in Method 1 are assessed, with a comparison to an existing DO
from the literature.

Maneuverability performance: Fig. 4 shows the formation evo-
ution of the AUV swarm under each method. Methods 1, 3, and 4
ach achieve smooth formation maneuvers, while Method 2 leads
o shaking. The observed difference between Methods 1 and 2
ccurs because the conventional LOS guidance law in Method 2
as limited robustness against nonzero sideslip and attack angle,
hile the improved LOS guidance law in Method 1 achieves
moother maneuvers by introducing compensation terms.
Tracking accuracy: Fig. 5 shows the evolution of formation

racking errors epi under each method. The convergence rates
f all methods are similar, with Methods 3 and 4 converging
lightly more quickly (with Method 1 being slightly worse than
ethod 2). The zoom-in inserts show that Method 2 leads to
oticeably larger steady state errors than the other methods and
hat Method 1 has the smallest steady state errors (slightly better
han Methods 3 and 4).

In Table 4, tracking accuracy is also compared in terms of
ntegral Absolute Error (IAE), Integral Time Absolute Error (ITAE)
or the entire evolution, and Root Mean Square Error (RMSE) for
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Fig. 4. Formation evolution of AUV swarm with (a) Method 1, (b) Method 2, (c) Method 3, and (d) Method 4.
Fig. 5. Formation tracking error of Followers 1–6 (a–f) in the four methods.
Table 4
Performance comparison of the four methods.
ith AUV IAE =

∫
∥epi∥dt (×102) ITAE =

∫
t∥epi∥dt (×104) RMSE = (

∫
∥epi∥2/T )0.5

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

1 1.008 2.991 1.462 1.804 0.263 4.207 1.088 1.724 0.027 0.569 0.125 0.204
2 1.340 2.952 1.300 1.623 0.329 4.435 1.029 1.544 0.027 0.603 0.119 0.182
3 3.096 4.136 2.146 2.620 0.571 4.680 1.088 1.572 0.028 0.624 0.116 0.171
4 1.618 3.600 1.872 2.023 0.337 4.715 1.067 1.38 0.028 0.637 0.116 0.16
5 4.519 6.188 3.454 4.090 0.780 5.163 1.239 1.641 0.029 0.649 0.114 0.156
6 3.824 5.726 2.796 3.192 0.691 5.143 1.156 1.693 0.029 0.656 0.115 0.188
AVG 2.567 4.266 2.172 2.559 0.495 4.7238 1.111 1.592 0.028 0.623 0.118 0.177
p
i
s
c

the steady phase. Method 3 has the lowest average IAE value,
benefiting from its faster transient response. However, in the case
of ITAE and RMSE, Method 1 preserves the lowest error values
due to its minimal steady state errors. Method 2 has the highest
error values for all three indicators.
353
Constraint satisfaction: The profiles of velocity and control in-
uts in the surge direction (i.e., ui and τui respectively) are given
n Figs. 6 and 7. Methods 1 and 2 are capable of achieving velocity
atisfaction, while both Methods 3 and 4 violate the velocity
onstraints at the initial stage, as seen in the zoom-in inserts
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Fig. 6. Profile of surge velocity ui of Followers 1–6 (a–f) in the four methods.
Fig. 7. Profile of surge input τui of Followers 1–6 (a–f) in the four methods.
Fig. 8. Estimation result of the leader’s information (a) pei and (b) s0 by Follower 1 using the proposed DO in Method 1.
n Fig. 6. This corresponds to Methods 3 and 4 having faster
onvergence rates than Methods 1 and 2. The input profiles in
ig. 7 show that the surge inputs in all four methods inevitably
aturate due to the large initial tracking error.
Estimation accuracy: The estimation performance of the pro-

osed DO in Method 1 is presented in Fig. 8. Using the DO of
ethod 1, the leader’s information can be estimated by Fol-

ower 1 within a few seconds, so that the distributed estimation
354
objective is achieved. For comparison, an existing DO [38] is
also evaluated in Fig. 9, under the same topologies used in the
experimental conditions of Method 1 (i.e., under switching jointly
connected topologies). In Fig. 9, only the estimation signals of
the first five seconds are provided, because these signals will
diverge with t increasing. The DO of [38] deteriorates under a
lack of topology connectivity, as might be present in underwater
communications, while the proposed DO of Method 1 achieves
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Fig. 9. Estimation result of leader’s information (a) p0 and (b) s0 via DO in [38] under switching jointly connected topologies.
Fig. 10. Estimation result of (a) unmeasurable velocities and (b) unknown disturbances by Follower 1 via the proposed CESO in Method 1.
Fig. 11. Simulation with a robot swarm of 27 AUVs. (a) The trajectories of AUVs under the proposed formation protocol. (b) Formation tracking error of followers.
he estimation objective under the same conditions. Fig. 10 shows
he estimation results of the proposed CESO in Method 1. It can be
een that the unmeasurable velocities and unknown disturbances
an be precisely recovered, and therefore velocity sensors are not
equired.

.4. Scalability of the proposed method

Scalability is an important advantage of distributed control
trategies. In order to substantiate the scalability of our proposed
rotocol, we perform two simulations with larger robot swarms:
swarm of 27 AUVs and a swarm of 100 AUVs.
In the first scenario, the target formation is a cube with 27

odes and 52 edges. The initial position and trajectory of the
eader AUV are those defined in Section 6.1. The initial positions
f the followers are distributed in a grid on the surface of the sea.
s can be seen in Fig. 11(a), the target formation can be achieved
ithin 100 s, and the formation tracking errors converge to the
eighborhood around the origin, as presented in Fig. 11(b).
In the second scenario, the target formation is a cuboid with
× 5 × 4 nodes and 235 edges. The initial positions of the
355
followers are distributed in a 30m radius circle around the leader.
The leader moves straight forward, at a linear velocity of 0.5 m/s.
The resulting trajectories of all followers in Fig. 12(a) show that
our proposed formation control method can steer a swarm of
one hundred AUVs to achieve the target formation. As can be
seen in Fig. 12(b), which shows the formation tracking error
of 25 arbitrary followers, the target formation can be achieved
within 150 s and the formation tracking errors converge to the
neighborhood around the origin.

We can notice that, in each scenario, the convergence rate is
similar for all followers. This occurs because our proposed DO de-
composes the formation control problem of the AUV swarm into
decentralized trajectory tracking using local inter-AUV commu-
nication and local measurements. Thus, the convergence speed is
mainly determined by the guidance-based kinematic control law,
as discussed in Appendix D.

6.5. Discussion

The following conclusions can be drawn from the simulation
results.
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Fig. 12. Simulation with a robot swarm of 100 AUVs. (a) The trajectories of AUVs under the proposed formation protocol. (b) Formation tracking error of 25 arbitrary
followers.
0
ρ

L

• Compared with Method 2, the proposed Method 1 guaran-
tees smooth formation evolution and minimal steady state
errors, which substantiates the improved performance of
the proposed LOS guidance law in Method 1.

• Compared with Methods 3 and 4, the proposed Method
1 performs better in terms of steady state errors and
constraint satisfaction. In addition, the proposed CESO in
Method 1 removes dependence on velocity sensors and the
assumption of static topologies, which cannot be guaran-
teed in practice.

• Compared with the existing DO in [38], Method 1 is ver-
ified to be applicable under switching jointly connected
topologies. The proposed DO in Method 1 removes depen-
dence on the common assumption of constant connectivity,
which cannot be guaranteed in practice.

It can be concluded that the proposed formation protocol is
proved to have the desired maneuverability performance, im-
proved tracking accuracy, and guaranteed constraint satisfaction,
in comparison to the state of the art. Moreover, the proposed
DO and CESO handle several practical constraints for formation
control of underactuated AUVs that have not previously been fully
considered: switching jointly connected topologies and unavail-
able velocity measurements. Regarding scalability and large-scale
swarms, it should be noted that the simulation experiments in
this research were performed in an ideal environment. For in-
stance, time delays of communication techniques in real oceanic
environments are not considered, but are inevitable in prac-
tice. In addition, collision avoidance is an important issue for
large-scale robot swarms, posing substantial challenges in forma-
tion achievement and maintenance. Addressing these challenges
for deployment of large-scale AUV swarms will require future
research or extensions, for instance using multi-leader protocols.

Remark 9. This research firstly defines some of the research
gaps in formation control of AUV swarms by classifying existing
approaches in terms of topology, measurements, constraints, and
dimensions, as shown in Table 1. Secondly, this research proposes
a formation protocol that addresses each of the defined gaps,
then assesses the proposed method in comparative simulations,
in terms of maneuverability performance, tracking accuracy, con-
straint satisfaction, and estimation accuracy. Quantitative factors,
including IAE, ITAE and RMSE, are employed in the assessment.

7. Conclusion

This paper addresses distributed formation control of underac-
tuated AUVs moving in 3D space and subject to switching jointly
connected topologies, unmeasurable velocities, and system con-
straints. A hybrid formation protocol that incorporates aspects of
both centralized and decentralized control is proposed such that
the objectives of distributed estimation and geometric conver-
gence are achieved. The notable features of the proposed method
356
can be summarized as follows. Firstly, the proposed method uses
decentralized control in the sense that it assumes access to only
local communication and local sensing, and therefore can be
promoted to large-scale AUV swarms. Secondly, there is potential
for wide real-world applicability, as the method does not have
to rely on velocity sensing, and can instead make use of any
relative positioning technology [12]. Thirdly, limitations in prac-
tice, such as switching but occasionally disconnected topologies,
external uncertainties, and system constraints, have been com-
prehensively considered in the proposed formation protocol. The
comparative simulation results substantiate the effectiveness of
the proposed method and its improvements over the state of the
art. Future work will still be required for practical deployments of
large-scale AUV swarms, including collision avoidance and man-
agement of time delays. In addition, real experiments are still rare
in multi-AUV research in general. It is of great importance that
the community begin implementing state-of-the-art theoretical
contributions on real AUVs to be verified in real environments.
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Appendix A. Proof of Theorem 1

First, take note of the following two lemmas.

Lemma 2 ([43]). A continuous positive definite function V (t) is
finite-time stable at the origin if there exist positive constants ρ1 >
, ρ2 > 0, and 0 < c < 1, such that V̇ (t) ≤ −ρ1V (t) −

2V c (t) , t ≥ t0, and the settling time is given by Tf ≤ T0 +

1
ρ1(1−c) ln

ρ1V1−c (T0)+ρ2
ρ2

.

emma 3 ([44]). Consider a group of systems ẋ(t) = f σ (x), f σ (0) =

0, x ∈ Rn, where σ : [0,∞) → {1, 2, . . . ,M} is a piecewise
constant function of time, f is a continuous function with respect
i
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o x for any fixed index i ∈ {1, 2, . . . ,M}. If the switched system is
symptotically stable and ẋ(t) = f i(x) is finite-time stable for any
ixed i, then system is finite-time stable.

roof. Let µη =

[
µT
η1,µ

T
η2, . . . ,µ

T
ηN

]T
and η̃0 =

η̃T
10, η̃

T
20, . . . , η̃

T
N0

]T
. It follows that µη (t) = Pσ(t)η̃0 (t), where

σ(t)=
(
Hσ(t) ⊗ I6

)
. Consider Lyapunov function Vη = µT

ηµη/2,
which is continuously differentiable at any non-switching instant.
Following Lemma 3, the proof will be presented in two steps.

Step 1: We will show that η̃0 is asymptotically stable at the
origin. Firstly, assume that graph Ḡq is active at non-switching
time t . Differentiating µηi and substituting Eq. (6) yields µ̇ηi =

K ηµηi + Φ̇ηi − κ1sgn
(
µηi
)

− κ2µ
ς

ηi if αi > 0, and µ̇ηi = 0 if
αi = 0.

Note that αi = 0 is equivalent to i /∈ C (q) [32]. Therefore,
aking the time derivative of Vη yields

V̇η =

∑
i∈C(q)

−µT
ηiK ηµηi + µT

ηiΦ̇ηi − κ1
⏐⏐µηi⏐⏐− κ2|µηi|

1+ς

≤

∑
i∈C(q)

−µT
ηiK ηµηi − (κ1 − γΦ)

⏐⏐µηi⏐⏐− κ2(µT
ηiµηi)

ς+1
2

≤ −λmin
(
K η

) ∑
i∈C(q)

µT
ηiµηi ≤ 0,

(A.1)

here we use the fact that |µηi|
2(ς+1)

≥ (µT
ηiµηi)

ς+1 in the first
nequality (based on Lemma 2 in [43]). Eq. (A.1) implies that
imt→∞ Vη (t) exists.

Secondly, it is shown that limt→∞ µη (t) = 0. Consider-
ing the infinite sequences Vη (tk) , k = 0, 1, . . ., and recall-
ng Cauchy’s convergence criteria, it can be derived that for
ny ε > 0, there exists a positive integer kε such that, for
k > kε ,

⏐⏐Vη (tk+1)− Vη (tk)
⏐⏐ < ε, i.e.,

∫ tk+1
tk

−V̇η (t) dt <

. This can be rewritten into the following sum of integrals
lk−1
l=0

∫ t l+1
k

t lk
−V̇η (t) dt < ε. For each integral, following Eq. (A.1)

ields that
t l+1
k

t lk

−V̇η (t) dt ≥

∫ t l+1
k

t lk

λmin
(
K η

) ∑
i∈C

(
σ

(
t lk

))µT
ηiµηidt

≥ λmin
(
K η

) ∫ t lk+τ

t lk

∑
i∈C

(
σ

(
t lk

))µT
ηiµηidt

. (A.2)

hus, limt→∞

∫ t+τ
t

∑lk−1
l=0

∑
i∈C

(
σ

(
t lk

)) µT
ηi (s)µηi (s)ds = 0. Due to

the joint connectivity of the graph during [tk, tk+1), Lemma 1
implies that limt→∞

∫ t+τ
t

∑N
i=1 aiµ

T
ηi (s)µηi (s) ds = 0, where ai

(i = 1, . . . ,N) are some positive constants. Following Eq. (A.1),
µη (t) are uniformly bounded, and thus µ̇η (t) is bounded. Thus,
µT
ηµη is uniformly continuous. Applying Barbalat’s Lemma, it can

be derived that limt→∞ µη (t) = 0.
Thirdly, it will show that limt→∞ η̃0 (t) = 0. Without loss of

generality, consider only the first element of µηi and η̃i0 in the

proof, denoted by µx
ηi and η̃x

i0. Let µx
η =

[
µx
η1,µ

x
η2, . . . ,µ

x
ηN

]T
and η̃x

0 =
[
η̃x
10, η̃

x
20, . . . , η̃

x
N0

]T . Thus, µx
η = Hσ(t)η̃

x
0. Assume that

the jointly connected graph across [tk, tk+1) is denoted by Ḡk.
Due to the symmetry of Hk, there exists an orthogonal matrix
U k, such that U kHkU T

k = Λk = diag
{
λ
i1
k , λ

i2
k , . . . , λ

iN
k

}
, where

λ
i1
q , λ

i2
k , . . . , λ

iN
k are the N eigenvalues of Hk, i1, i2, . . . , iN and

form a permutation of 1, 2, . . . ,N . Let ε = U qη̃
x
0, then

(
η̃x
0

)T
µx
η =

η̃x
0

)THkη̃
x
0 = εTΛkε ≥ δmin

∑ ( (
l
)) ε2i ≥ 0, where l =
i∈C σ tk
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, 1, . . . , lk −1 and δmin=min
{
λmin

(
Hq
)
|q ∈ Q

}
. Following from

the joint connectivity, Lemma 1, and limt→∞ µ
x
η (t) = 0, it can be

inferred that limt→∞

∑lk−1
l=0

∑
i∈C

(
σ

(
t lk

)) ε2i = limt→∞

∑N
i=1 aiε

2
i

0. This implies that limt→∞

∑N
i=1 εi = 0, i.e., limt→∞ η̃x

0 = 0.
hus, it can be concluded that limt→∞ η̃0 (t) = 0.
Step 2: We will show that, for a fixed index q ∈ Q, the

stimation error η̃i0 is finite-time stable. Note that the switching
opologies are jointly connected, and the ith follower cannot
lways be isolated. In other words, there exists at least one graph
¯q′ with q′

∈ Q such that αi > 0. Thus, we consider the
yapunov function candidate Vηi = µT

ηiµηi/2 under graph Ḡq′ .
ollowing Eq. (A.1), the derivative is given by V̇ηi ≤ −µT

ηiK ηµηi −

κ1 − γΦ)
⏐⏐µηi⏐⏐−κ2(µT

ηiµηi

) ς+1
2

≤ −λmin
(
K η

)
Vηi −κ22

ς+1
2 V

ς+1
2

ηi .
t follows from Lemma 2 that µηi → 0 in finite time Tfi ≤ T0 +

2
λmin(Kη)(1−ς)

ln
λmin(Kη)2

−
ς+1
2 V

ς+1
2

ηi (T0)+κ2
κ2

. The remaining proof is
similar to that of Step 1. According to Lemma 3, we can conclude
that the estimation error η̃0 converges to zero in finite time. ■

Appendix B. Proof of Theorem 2

Proof. Step 1: Let πqi =

[
θ̃i, q̃i, D̃qi

]T
. It follows from Eqs. (1),

(2), and (7) that π̇qi = Lqπqi + N qi, where Lq =

(
−kq1 1 0
−kq2 0 1
−kq3 0 0

)
and N qi =

[
0, 0,−Ḋqi

]T
. The stability of the error dynamics is

guaranteed if there exist a positive definite matrix Q q ∈ R3×3

and a positive constant ϵq > 1 such that LT
qQ q + Q qLq ≤ −ϵqI3.

Consider the Lyapunov function Vqi = πT
qiQ qπqi, with its

derivative as V̇qi = πT
qi

(
LT
qQ q + Q qLq

)
πqi + 2πT

qiQ qN qi ≤ −ϵq

πT
qiπqi + 2

πqi
 Q q

 N qi
 ≤ −

πqi
 (ϵq πqi

− 2
Q q

 N̄q
)
. It

can then be derived that
πqi

 ≤ 2
Q q

 N̄q/ϵq and that the upper
bound can be decreased by choosing appropriate parameters.

Step 2: Define πri =

[
ξ̃ri, r̃i, D̃ri

]T
, where ξ̃ri = ξ̂ri − ξri. It can then

be deduced that π̇ri = Lrπri + N ri, where Lr =

(
−kr1 1 0
−kr2 0 1
−kr3 0 0

)
and N ri =

[
−q̃iψi sin θi, 0,−Ḋri

]T
. Step 1 and Assumption 2

guarantee the boundedness of ∥N ri∥. Analogously to Step 1, ∥πri∥

will also be bounded.
Step 3: Define πpi =

[
ξ̃pi, ν̃Bi , D̃pi

]T
, where π̃pi = π̂pi − πpi.

The following can then be obtained: π̇pi = Lpπpi + Npi, where

Lp =

(
−K p1 I3 0
−K p2 0 I3
−K p3 0 0

)
and Npi =

[
gpi, 0,−Ḋpi

]T
, where gpi =

SBi
I

(
r̂i, q̂i, θi

)
ξepi−SBi

I (ri, qi, θi) ξpi−RBi
I

(
ṗe
0 − ṗ0

)
. From Theorem 1,

it follows that limt→∞ ξepi (t) − ξpi (t) = 0 and limt→∞ ṗe
0 (t) −

ṗ0 (t) = 0. The ultimate boundedness of SBi
I

(
r̂i, q̂i, θi

)
−

SBi
I (ri, qi, θi) can then also be proven, according to the former

steps. It follows that there exists a positive constant N̄p such thatNpi
 ≤ N̄p. The remainder of the proof for Step 3 is omitted

here, as it can be inferred from Step 1. ■

Appendix C. Proof of Theorem 3

Proof. From Eq. (7), the dynamic model of q̂i can be expressed as
˙̂ ˜

( )
ˆ
qi = −kq2θi+ τqi +∆τqi /mqi+Dqi. Then, differentiating sqi yields



Y. Zhang, S. Wang, M.K. Heinrich et al. ISA Transactions 136 (2023) 345–360

c

V

R

w
w

E
−

f
f
I

e

c

w

ṡqi = −cqsqi + cqφτqi − kq2θ̃i + ∆τqi/mqi. Consider the Lyapunov
andidate Vqi = s2qi/2+φ2

qi/2+φ2
τqi/2. Differentiating Vui yields

˙qi = −cqs2qi + cqsqiφτqi − kq2sqiθ̃i + gτqi − w1φ
2
qi

− w2∆q2i /2 + w2φqi∆qi
− l1φ2

τqi −
⏐⏐gτqi⏐⏐− l2∆τ 2qi/2 + l2φτqi∆τqi.

(C.1)

ecall the existence of the inequalities 2sqiφτqi ≤ s2qi + φ2
τqi,

2φqi∆qi ≤ φ2
qi + ∆q2i m, 2φτqi∆τqi ≤ φ2

τqi + ∆τ 2qi. It then follows
that Eq. (C.1) can be reorganized as

V̇qi ≤ −cqe2ui/2 − (2w1 − w2) φ
2
ui/2 −

(
2l1 − cq − l2

)
φ2
τui/2

− kq2sqiθ̃i, (C.2)

here the parameters are chosen such that cq > 0, 2w1 >

2 and 2l1 > cq + l2. After defining Eqi =
[
sqi, φqi, φτqi

]T ,
q. (C.2) can then be rewritten as V̇qi ≤ −ET

qiK qEqi + ET
qiT qi ≤Eqi

 (K q
 Eqi

−
T qi

), where K q = diag
(
cq/2, w1

−w2/2, l1 −
(
cq + l2

)
/2
)
and T ui =

[
−kq2θ̃i, 0, 0

]T
. Theorem 2

implies that
T qi

 ≤ T̄qi, with T̄qi > 0. It can therefore be
concluded that

Eqi
 ≤ T̄qi/λmin

(
K q
)
. ■

Appendix D. Proof of Theorem 4

Proof. Step 1: After defining angle tracking error eai =
[
eθ i, eψ i

]T
=

[
θi − θdi , ψi − ψd

i

]T , it can be proven that eai is ultimately
bounded. When considering Lyapunov function candidate Vai =

eTaieai/2, differentiating Vai with respect to time yields V̇ai =

eθ i
(
−bθeθ i + eqi

)
+ eψ i

(
−bψeψ i + eri/cos θi

)
= −eTaiLaeai + eTaiMai,

where eqi = qi − qdi , eri = ri − rdi , La =

(
bθ 0
0 bψ

)
and

Mai =
[
eqi, eri/cos θi

]T . Under Theorem 3, ∥Mai∥ is bounded by a
positive constant denoted by M̄ai. It therefore follows that ∥eai∥ ≤

M̄ai/λmin (La).
Step 2: The ultimate boundedness of epi is given as follows.

Consider Lyapunov function candidate Vpi = eTpiepi/2 and differ-
entiating Vpi along Eq. (5), it yields that

V̇pi = exi (Ui cosψei cos θei − U0 + fxi)+ eyi
(
Ui sinψei cos θei + fyi

)
+ ezi (−Ui sin θei + fzi) . (D.1)

Then, note that RF
Bi (ψei, θei) − RF

Bi

(
ψd

ei, θ
d
ei

)
=

(
R I

F (χ0, υ0)
)T

R I
Bi (ψi, θi) −

(
R I

F

(
χ̂i0, υ̂i0

))TR I
Bi

(
ψd

i , θ
d
i

)
=

(
R I

F (χ0, υ0)
)T(

R I
Bi (ψi, θi)− R I

Bi

(
ψd

i , θ
d
i

))
+

(
R I

F (χ0, υ0)− R I
F

(
χ̂i0, υ̂i0

))T
R I

Bi

(
ψd

i , θ
d
i

)
. Under Theorem 1 and Step 1, RF

Bi (ψei, θei) − RF
Bi(

ψd
ei, θ

d
ei

)
converge to a small neighborhood of zero. Then, one has

cosψei cos θei − cosψd
ei cos θ

d
ei ≤ eRx, sinψei cos θei − sinψd

ei cos θ
d
ei

≤ eRy, sin θei − sin θdei ≤ eRz, (D.2)

where eRx, eRy, and eRz are positive constants. Substituting
Eq. (D.2) into Eq. (D.1) then yields

V̇pi ≤ exi
(
Ui cosψd

ei cos θ
d
ei − U0 + fxi + UieRx

)
+ ezi

(
−Ui sin θdei + fzi + UieRz

)
+ eyi

(
Ui sinψd

ei + fyi + Ui
(
eRy + θdeih

(
ψd

ei, θ
d
ei

))) (D.3)

where h
(
ψd

ei, θ
d
ei

)
= sinψd

ei

(
cos θdei − 1

)
/θdei is an auxiliary func-⏐⏐( d

)
d
⏐⏐
tion. Given that cos θei − 1 /θei < 0.73, it is guaranteed that
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⏐⏐h (ψd
ei, θ

d
ei

)⏐⏐ < 1. Introducing Eq. (10) into Eq. (D.3) then yields

V̇pi ≤exi

(
Ui

∆i
− U0 + fxi + UieRx

)
+ ezi

(
−Ui

êzi + δzi

∆i∆y
+ fzi + UieRz

)
+ eyi

(
−Ui

êyi + δyi

∆z
+ fyi + Ui

(
eRy +

⏐⏐θdei⏐⏐)) .
(D.4)

Based on Eq. (11), it follows that Ûiδyi/∆z = f̂yi and Ûiδzi/∆i∆y =

ˆzi. Under Theorems 1 and 2, it can be deduced that Ũi = Ûi − Ui,
˜xi = f̂xi− fxi, f̃yi = f̂yi− fyi, and f̃zi = f̂zi− fzi are ultimately bounded.
t can be further proven that

⏐⏐⏐f̃xi⏐⏐⏐ ≤ efx,
⏐⏐−Uiδyi/∆z + fyi

⏐⏐ ≤

fy,
⏐⏐−Uiδzi/∆i∆y + fzi

⏐⏐ ≤ efz , where efx, efy, and efz are positive

onstants. Moreover, one has Ui =
ui

cosαi cosβi
=

udi +eui
cosαi cosβi

. Thus,
Eq. (D.4) can be rewritten as

V̇pi ≤exi
(
−buexi − buẽxi + Ũi0 + efx + UieRx + fui

)
+ ezi

(
−Ui

ezi
∆i∆y

+ efz + Ui

(
eRz −

ẽzi
∆i∆y

))
+ eyi

(
−Ui

eyi
∆z

+ efy + Ui

(
eRy +

⏐⏐θdei⏐⏐− ẽyi
∆z

))
≤ − eTpiLpiepi + eTpiMpi

(D.5)

here Lpi =

⎛⎝bu 0 0
0 Ui

∆z
0

0 0 Ui
∆i∆y

⎞⎠ and Mpi = [ − buẽxi + Ũi0 + efx

+ UieRx + fui, efy + Ui

(
eRy +

⏐⏐θdei⏐⏐− ẽyi
∆z

)
, efz + Ui

(
eRz −

ẽzi
∆i∆y

)
]T ,

ẽxi = êxi − exi, ẽyi = êyi − eyi, ẽzi = êzi − ezi, Ũi0 = Ûi0 − Ui0 and
fui = eui/(cosαi cosβi∆i). Note that ẽxi, ẽyi, ẽzi, Ũi0 are estimation
errors induced by the DO, which are guaranteed to be bounded
and converge to zero in finite time, efx, efy, efz are estimation
errors induced by the CESO, and eRx, eRy, eRz, fui are tracking errors
induced by the dynamic controller. According to Theorems 1–3,
these error signals all converge to a small neighborhood around
zero. In other words,

Mpi
 is lower and upper bounded by a

positive constant and M̄pi, respectively, and the upper bound M̄pi
can be minimized by adjusting controller parameters according
to the guidelines given in Appendix E. Consequently, it can be
concluded that

epi ≤ M̄pi/λmin
(
Lpi
)
. ■

Appendix E. A discussion of control parameters

In this section, some guidelines for the observer and control
parameters are provided to help readers compromise between
tracking accuracy, transient response, saturation avoidance, and
estimation performance.

E.1. Observer parameters

For DO Eq. (6), K η should be a diagonal positive definite
matrix. The increase of K η can speed up the estimation process,
as shown in Eq. (A.1), but large values might result in instability.
In addition, it is required that κ1 > γΦ , κ2 > 0 and ς satisfies
0 < ς = ς1/ς2 < 1 with ς1 and ς2 being positive odd integers.
The increase of κ1 will amplify noncontinuous signal sign

(
µηi
)
,

which might lead to chattering phenomena. From Appendix A,
larger value of κ2 can reduce the settle time. In summary, K η

should be increased gradually to achieve the desired estimation
response, and κ1 can be tuned according to γΦ .

For CESO Eqs. (7), (8), and (9), the gains can be chosen as kq1 =

3ω , k = 3ω2, k = ω3, k = 3ω , k = 3ω2, k = ω3, and
q q2 q q3 q r1 r r2 r r3 3
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p1 = 3ωpI3,K p2 = 3ω2
pI3,K p3 = ω3

pI3, where ωq, ωr , and ωp
re observer bandwidths. By referring to the proof of Theorem 2,
t can be noticed that the estimation error can be tuned to be
rbitrarily small by increasing the observer bandwidths. However,
he bandwidths are normally limited due to measurement noise.
his is an unavoidable shortcoming of ESOs. Therefore, ωq, ωr , and
ωp should be tuned by taking into consideration both sensitivity
to noise and the estimation performance.

E.2. Control parameters

Regarding the LOS guidance law Eq. (10), and according to
Eq. (D.5), the decrease of ∆y can reduce the response time and
minimize the tracking error. However, small ∆y values will also
ead to large velocity command signals, which may violate the
ystem constraints. Consequently, ∆y should be determined by
ompromising between tracking accuracy and saturation.
For kinematic controller Eq. (12), larger values of gains bu, bθ ,

nd bψ guarantee better tracking accuracy, but system constraints
ight also be violated as gains increase. A trade off between

racking accuracy and saturation should therefore also be consid-
red when tuning these gains.
For dynamic controller Eq. (13), cq > 0, 2w1 > w2, and

l1 > cq + l2 should first be satisfied. The increase of cq can im-
prove the velocity tracking accuracy, but might also increase the
control input amplitude, leading to input saturation. An increase
of w2 and l2 can enhance controller sensibility against saturation,
and an increase of w1 and w2 can improve robustness against
saturation. However, for the sake of stability, the gains cannot be
too large.
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