
Chapter 10
Ant Colony Optimization: Overview and
Recent Advances

Marco Dorigo and Thomas Stützle

Abstract Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the
pheromone trail laying and following behavior of some ant species. Artificial ants in
ACO are stochastic solution construction procedures that build candidate solutions
for the problem instance under concern by exploiting (artificial) pheromone infor-
mation that is adapted based on the ants’ search experience and possibly available
heuristic information. Since the proposal of Ant System, the first ACO algorithm,
many significant research results have been obtained. These contributions focused
on the development of high performing algorithmic variants, the development of a
generic algorithmic framework for ACO algorithm, successful applications of ACO
algorithms to a wide range of computationally hard problems, and the theoretical un-
derstanding of important properties of ACO algorithms. This chapter reviews these
developments and gives an overview of recent research trends in ACO.

10.1 Introduction

Ant Colony Optimization (ACO) [63, 66, 70] is a metaheuristic for solving
hard combinatorial optimization problems. The inspiring source of ACO is the
pheromone trail laying and following behavior of real ants, which use pheromones
as a communication medium. By analogy with the biological example, ACO is
based on indirect communication within a colony of simple agents, called (artifi-
cial) ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO
serve as distributed, numerical information, which is used by the ants to probabilis-

M. Dorigo · T. Stützle (!)
IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
e-mail: mdorigo@ulb.ac.be;stuetzle@ulb.ac.be

© Springer International Publishing AG, part of Springer Nature 2019
M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics,
International Series in Operations Research & Management Science 272,
https://doi.org/10.1007/978-3-319-91086-4_10

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91086-4_10&domain=pdf
https://doi.org/10.1007/978-3-319-91086-4_10

312 M. Dorigo and T. Stützle

tically construct solutions to the problem being solved and which they adapt during
the algorithm’s execution to reflect their search experience.

The first example of such an algorithm is Ant System (AS) [61, 67–69], which
was proposed using as application example the well known traveling salesman prob-
lem (TSP) [6, 110, 155]. Despite encouraging initial results, AS could not compete
with state-of-the-art algorithms for the TSP. Nevertheless, it had the important role
of stimulating further research both on algorithmic variants, which obtain much
better computational performance, and on applications to a large variety of different
problems. In fact, there exist now a considerable number of applications of such
algorithms where world class performance is obtained. Examples are applications
of ACO algorithms to problems such as sequential ordering [84], scheduling [20],
assembly line balancing [21], probabilistic TSP [7], 2D-HP protein folding [160],
DNA sequencing [27], protein–ligand docking [107], packet-switched routing in
Internet-like networks [52], and so on. The ACO metaheuristic provides a common
framework for the existing applications and algorithmic variants [63, 70]. Algo-
rithms which follow the ACO metaheuristic are called ACO algorithms.

The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

The rest of this chapter is organized as follows. In Sect. 10.2, we briefly overview
construction heuristics and local search algorithms. In Sect. 10.3, we present a spe-
cific version of the ACO metaheuristic that focuses on applications to NP-hard
problems. Section 10.4 outlines the inspiring biological analogy and describes the
historical developments leading to ACO. In Sect. 10.5, we illustrate how the ACO
metaheuristic can be applied to different types of problems and we give an overview
of its successful applications. Section 10.6 gives an overview of recent developments
in ACO and Sect. 10.7 concludes the chapter.

10.2 Approximate Approaches

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [88, 150]
and for many important problems it is well known that they are NP-hard, that is,
the time needed to solve an instance in the worst case grows exponentially with

10 Ant Colony Optimization: Overview and Recent Advances 313

procedure Greedy Construction Heuristic
sp = empty solution
while sp not a complete solution do

e = GreedyComponent(sp)
sp = sp ⊗ e

end
return sp

end Greedy Construction Heuristic

Fig. 10.1 Algorithmic skeleton of a greedy construction heuristic. The addition of component e
to a partial solution sp is denoted by the operator ⊗

the instance size. Often, approximate algorithms are the only feasible way to obtain
near optimal solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search
algorithms.1 These two types of methods are significantly different, because con-
struction algorithms work on partial solutions trying to extend them in the best pos-
sible way to complete problem solutions, while local search methods move in the
search space of complete solutions.

10.2.1 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an in-
cremental way starting with an empty initial solution and iteratively adding appro-
priate solution components without backtracking until a complete solution is ob-
tained. In the simplest case, solution components are added in random order. Often
better results are obtained if a heuristic estimate of the myopic benefit of adding
solution components is taken into account. Greedy construction heuristics add at
each step a solution component that achieves the maximal myopic benefit as mea-
sured by some heuristic information. An algorithmic outline of a greedy construc-
tion heuristic is given in Fig. 10.1. The function GreedyComponent returns the
solution component e with the best heuristic estimate as a function of the current
partial solution sp. Solutions returned by greedy algorithms are typically of (much)
better quality than randomly generated solutions. Yet, a disadvantage of greedy con-
struction heuristics is that they typically generate only a limited number of different
solutions. Additionally, greedy decisions in early stages of the construction process
constrain the available possibilities at later stages, often causing very poor moves in
the final phases of the solution construction.

1 Other approximate methods are also conceivable. For example, when stopping exact methods,
like Branch and Bound, before completion [11, 104] (e.g., using some given time bound, or when
some guarantee on solution quality is obtained through the use of lower and upper bounds), we can
convert exact algorithms into approximate ones.

314 M. Dorigo and T. Stützle

procedure IterativeImprovement (s ∈ S)
s = Improve(s)
while s = s do

s = s
s = Improve(s)

end
return s

end IterativeImprovement

Fig. 10.2 Algorithmic skeleton of iterative improvement

As an example, consider a greedy construction heuristic for the TSP. In the TSP
we are given a complete weighted graph G= (N,A) with N being the set of vertices,
representing the cities, and A the set of edges fully connecting the vertices N. Each
edge is assigned a value di j, which is the length of edge (i, j) ∈ A. The TSP is the
problem of finding a minimum length Hamiltonian cycle of the graph, where an
Hamiltonian cycle is a closed tour visiting exactly once each of the n= |N| vertices
of G. For symmetric TSPs, the distances between the cities are independent of the
direction of traversing the edges, that is, di j = d ji for every pair of vertices. In the
more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have
di j ̸= d ji.

A simple rule of thumb to build a tour is to start from some initial city and to
always choose to go to the closest still unvisited city before returning to the start
city. This algorithm is known as the nearest neighbor tour construction heuristic.

Construction algorithms are typically the fastest approximate methods, but the
solutions they generate are often not of very high quality and they are not guaran-
teed to be optimal with respect to small changes; therefore, the results produced by
constructive heuristics can often be improved by local search algorithms.

10.2.2 Local Search Algorithms

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improv-
ing neighbor solution can be found and the algorithm ends in a local optimum. An
outline of an iterative improvement algorithm is given in Fig. 10.2. The procedure
Improve returns a better neighbor solution if one exists, otherwise it returns the
current solution, in which case the algorithm stops.

10 Ant Colony Optimization: Overview and Recent Advances 315

2−exchange

Fig. 10.3 Schematic illustration of a 2-exchange move. The proposed move reduces the total tour
length if we consider the Euclidean distance between the points

The choice of an appropriate neighborhood structure is crucial for the perfor-
mance of local search algorithms and has to be done in a problem specific way. The
neighborhood structure defines the set of solutions that can be reached from s in
one single step of the algorithm. An example of neighborhood for the TSP is the
k-exchange neighborhood in which neighbor solutions differ by at most k edges.
Figure 10.3 shows an example of a 2-exchange neighborhood. The 2-exchange
algorithm systematically tests whether the current tour can be improved by replac-
ing two edges. To fully specify a local search algorithm, it is necessary to designate
a particular neighborhood examination scheme that defines how the neighborhood
is searched and which neighbor solution replaces the current one. In the case of
iterative improvement algorithms, this rule is called the pivoting rule [188] and ex-
amples are the best-improvement rule, which chooses the neighbor solution giving
the largest improvement of the objective function, and the first-improvement rule,
which uses the first improved solution found when scanning the neighborhood to
replace the current one. A common problem with local search algorithms is that
they easily get trapped in local minima and that the result strongly depends on the
initial solution.

10.3 The ACOMetaheuristic

Artificial ants used in ACO are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to par-
tial solutions by taking into account (1) heuristic information about the problem in-
stance being solved, if available, and (2) (artificial) pheromone trails which change
dynamically at run-time to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of differ-
ent solutions and hence to explore a much larger number of solutions than greedy
heuristics. At the same time, the use of heuristic information, which is readily avail-
able for many problems, can guide the ants towards the most promising solutions.
More important, the ants’ search experience can be used to influence, in a way remi-
niscent of reinforcement learning [179], the solution construction in future iterations

316 M. Dorigo and T. Stützle

of the algorithm. Additionally, the use of a colony of ants can give the algorithm in-
creased robustness and in many ACO applications the collective interaction of a
population of agents is needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can
be applied to any discrete optimization problem for which some solution construc-
tion mechanism can be conceived. In the remainder of this section, we first define a
generic problem representation that the ants in ACO may exploit to construct solu-
tions, and then we define the ACO metaheuristic.

10.3.1 Problem Representation

Let us consider minimization problems2 and define a general model of a combina-
torial optimization problem.

Definition 1. A model P = (S,Ω , f) of a combinatorial optimization problem con-
sists of

• a search space S that is defined by a finite set of decision variables, each with a
finite domain, and a set Ω of constraints among the variables;

• an objective function f : S $→ IR+
0 that is to be minimized.

The search space is defined by a finite set of variables Xi, i = 1, . . . ,n, each having
an associated domain Di of values that can be assigned to it. An instantiation of a
variable consists in an assignment of a value v ji ∈ Di to variable Xi and it is denoted
by Xi = v ji . A feasible solution s∈ S is an assignment to each variable of a value in its
domain such that all the problem constraints in Ω are satisfied. If Ω is empty, then
the problem is unconstrained and each decision variable can take any value from
its domain, independent of the other variables. In this case, P is an unconstrained
problemmodel; otherwise it is called constrained. A feasible solution s∗ ∈ S is called
a global minimum of P if and only if f (s∗) ≤ f (s) ∀s ∈ S. We denote by S∗ ⊆ S the
set of all global minima. !

This model of a combinatorial optimization problem can be directly used to de-
rive a generic pheromone model that is exploited by ACO algorithms. To see how, let
us call the instantiation of a variable Xi with a particular value v

j
i of its domain a so-

lution component, which is denoted by c ji . Ants then need to appropriately combine
solution components to form high-quality, feasible solutions. To do so, each solution
component c ji will have an associated pheromone variable Ti j. We denote the set of
all solution components by C and the set of all pheromone variables by T. Each
pheromone variable Ti j has a pheromone value τi j; this value indicates the desir-

2 The adaptation to maximization problems is straightforward.

10 Ant Colony Optimization: Overview and Recent Advances 317

procedure ACO algorithm for combinatorial optimization problems
Initialization
while (termination condition not met) do

ConstructAntSolutions
ApplyLocalSearch % optional
GlobalUpdatePheromones

end
end ACO algorithm for combinatorial optimization problems

Fig. 10.4 Algorithmic skeleton for ACO algorithms applied to combinatorial optimization prob-
lems. The application of a local search algorithm is a typical example of a possible daemon action
in ACO algorithms

ability of choosing solution component c ji . Note that, as said before, the pheromone
values are time-varying and therefore they are a function of the algorithm iteration
t. In what follows we will, however, omit the reference to the iteration counter and
write simply τi j instead of τi j(t).

As an example of this formalization, consider the TSP. In this case, the solution
components are the moves from one city to another one. This can be formalized by
associating one variable with each city. The domain of each variable Xi has then
n− 1 values, j = 1, . . . ,n, j ̸= i. As a result, with each edge between a pair of cities
is associated one pheromone value τi j. An instantiation of the decision variables
corresponds to a feasible solution, if and only if the set of edges corresponding to
the values of the decision variables forms a Hamiltonian cycle. (Note that for the
TSP it is possible to guarantee that ants generate feasible solutions.) The objective
function f (·) computes for each feasible solution the sum of the edge lengths, that
is, the length of the Hamiltonian cycle.

10.3.2 The Metaheuristic

A general outline of the ACO metaheuristic for applications to static combinato-
rial optimization problems3 is given in Fig. 10.4. After initializing parameters and
pheromone trails, the main loop consists of three main steps. First, m ants construct
solutions to the problem instance under consideration, biased by the pheromone in-
formation and possibly by the available heuristic information. Once the ants have
completed their solutions, these may be improved in an optional local search phase.
Finally, before the start of the next iteration, the pheromone trails are adapted to
reflect the search experience of the ants. The main steps of the ACO metaheuristic
are explained in more detail in the following.

3 Static problems are those whose topology and costs do not change while they are being solved.
This is the case, for example, for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s run-time. In contrast, in dynamic problems the topology and
costs can change while solutions are built. An example of such a problem is routing in telecommu-
nications networks [52], in which traffic patterns change all the time.

318 M. Dorigo and T. Stützle

Initialization. At the start of the algorithm, parameters are set and all
pheromone variables are initialized to a value τ0, which is a parameter of the algo-
rithm.

ConstructAntSolutions.A set ofm ants constructs solutions to the prob-
lem instance being tackled. To do so, each ant starts with an initially empty solu-
tion sp = /0. At each construction step, an ant extends its current partial solution
sp by choosing one feasible solution component c ji ∈ N (sp) ⊆ C and adding it to
its current partial solution. N (sp) is the set of solution components that may be
added while maintaining feasibility and is defined implicitly by the solution con-
struction process that the ants implement. If a partial solution cannot be extended
while maintaining feasibility, it depends on the particular construction mechanism
whether the solution construction is abandoned or an infeasible, complete solution
is constructed. In the latter case, infeasible solutions may be penalized depending
on the degree of violation of the problem constraints.

The choice of the solution component to add is done probabilistically at each
construction step. Various ways for defining the probability distributions have been
considered. The most widely used rule is that of Ant System (AS) [69]:

p(c ji |sp) =
τα
i j · [η(c

j
i)]

β

∑cli∈N (sp)
τα
il · [η(cli)]β

, ∀c ji ∈N (sp) (10.1)

where η(·) is a function that assigns a heuristic value ηi j to each feasible solu-
tion component c ji ∈ N (sp), which is usually called the heuristic information. Pa-
rameters α and β determine the relative influence of the pheromone trails and the
heuristic information and have the following influence on the algorithm behavior. If
α = 0, the selection probabilities are proportional to [ηi j]β and a solution compo-
nent with a high heuristic value will more likely be selected: this case corresponds
to a stochastic greedy algorithm. If β = 0, only pheromone amplification is at work.

ApplyLocalSearch. Once complete candidate solutions are obtained, these
may further be improved by applying local search algorithms. In fact, for a wide
range of combinatorial optimization problems, ACO algorithms reach best perfor-
mance when coupled with local search algorithms [66]. More generally, local search
is one example of what have been called daemon actions [63, 70]. These are used
to implement problem specific or centralized actions that cannot be performed by
individual ants.

GlobalUpdatePheromones. The pheromone update is intended to make
solution components belonging to good solutions more desirable for the following
iterations. There are essentially two mechanisms that are used to achieve this goal.
The first is pheromone deposit, which increases the level of the pheromone of so-
lution components that are associated with a chosen set Supd of good solutions. The
goal is to make these solution components more attractive for ants in the following
iterations. The second is pheromone trail evaporation, which is the mechanism that
decreases over time the pheromone deposited by previous ants. From a practical
point of view, pheromone evaporation is needed to avoid a too rapid convergence

10 Ant Colony Optimization: Overview and Recent Advances 319

of the algorithm towards a sub-optimal region. It implements a useful form of for-
getting, favoring the exploration of new areas of the search space. The pheromone
update is commonly implemented as:

τi j = (1− ρ)τi j + ∑
s∈Supd|c

j
i ∈s

g(s) (10.2)

where Supd is the set of solutions that are used to deposit pheromone, ρ∈ (0,1]
is a parameter called evaporation rate, g(·) : S $→ IR+ is a function such that f (s)<
f (s′) ⇒ g(s) ≥g(s′). It determines the quality of a solution and it is commonly
called evaluation function.

ACO algorithms typically differ in the way pheromone update is implemented:
different specifications of how to determine Supd result in different instantiations of
the update rule given in Eq. (10.2). Typically, Supd is a subset of Siter∪{sgb}, where
Siter is the set of all solutions constructed in the current iteration of the main loop
and sgb is the best solution found since the start of the algorithm (gb stands for
global-best).

10.4 History

The first ACO algorithm to be proposed was Ant System (AS). AS was applied to
some rather small TSP instances with up to 75 cities. It was able to reach the perfor-
mance of other general-purpose heuristics like evolutionary computation [61, 69].
Despite these initial encouraging results, AS did not prove to be competitive with
state-of-the-art algorithms specifically designed for the TSP. Therefore, a substan-
tial amount of research in ACO has focused on ACO algorithms which show better
performance than AS when applied, for example, to the TSP. In the remainder of this
section, we first briefly introduce the biological metaphor by which AS and ACO
are inspired, and then we present a brief history of the early developments that have
led from the original AS to more performing ACO algorithms.

10.4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a chemical that ants
can smell) on the ground while walking [48, 89]. By depositing pheromone, ants
create a trail that is used, for example, to mark the path from the nest to food sources
and back. Foragers can sense the pheromone trails and follow the path to food dis-
covered by other ants. Several ant species are capable of exploiting pheromone trails
to determine the shortest among the available paths leading to the food.

Deneubourg and colleagues [48, 89] used a double bridge connecting a nest of
ants and a food source to study the pheromone trail laying and following behavior

320 M. Dorigo and T. Stützle

in controlled experimental conditions.4 They ran a number of experiments in which
they varied the length of the two branches of the bridge. For our purposes, the most
interesting of these experiments is the one in which one branch was longer than the
other. In this experiment, at the start the ants were left free to move between the nest
and the food source and the percentage of ants that chose one or the other of the
two branches was observed over time. The outcome was that, although in the initial
phase random oscillations could occur, in most experiments all the ants ended up
using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference and they select with
the same probability either of the two branches. It can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch
are the first to reach the food and to start their travel back to the nest.5 But then,
when they must make a decision between the short and the long branch, the higher
level of pheromone on the short branch biases their decision in its favor.6 Therefore,
pheromone starts to accumulate faster on the short branch, which will eventually be
used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms:
the double bridge was substituted by a graph, and pheromone trails by artificial
pheromone trails. Also, because we wanted artificial ants to solve problems more
complicated than those solved by real ants, we gave artificial ants some extra ca-
pacities, like a memory (used to implement constraints and to allow the ants to
retrace their solutions without errors) and the capacity for depositing a quantity of
pheromone proportional to the quality of the solution produced (a similar behavior
is observed also in some real ants species in which the quantity of pheromone de-
posited while returning to the nest from a food source is proportional to the quality
of the food source [10]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less
and less biologically inspired and more and more motivated by the need of making
ACO algorithms better or at least competitive with other state-of-the-art algorithms.
Nevertheless, many aspects of the original Ant System remain: the need for a colony,
the role of autocatalysis, the cooperative behavior mediated by artificial pheromone
trails, the probabilistic construction of solutions biased by artificial pheromone trails
and local heuristic information, the pheromone updating guided by solution quality,
and the evaporation of pheromone trail are present in all ACO algorithms.

4 The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when
returning to the nest [89].
5 In the ACO literature, this is often called differential path length effect.
6 A process like this, in which a decision taken at time t increases the probability of making the
same decision at time T > t is said to be an autocatalytic process. Autocatalytic processes exploit
positive feedback.

10 Ant Colony Optimization: Overview and Recent Advances 321

10.4.2 Historical Development

As said, AS was the first ACO algorithm to be proposed in the literature. In fact,
AS was originally a set of three algorithms called ant-cycle, ant-density, and ant-
quantity. These three algorithms were proposed in Dorigo’s doctoral dissertation
[61] and first appeared in a technical report [67, 68] that was published a few years
later in the IEEE Transactions on Systems, Man, and Cybernetics [69]. Other early
publications are [36, 37].

While in ant-density and ant-quantity the ants updated the pheromone directly
after a move from a city to an adjacent one, in ant-cycle the pheromone update was
only done after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Because ant-cycle
performed better than the other two variants, it was later called simply Ant System
(and in fact, it is the algorithm that we will present in the following subsection),
while the other two algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not
competitive with other more established approaches, was to stimulate a number of
researchers, mostly in Europe, to develop extensions and improvements of its basic
ideas so as to produce better performing, and often state-of-the-art, algorithms.

10.4.2.1 The First ACO Algorithm: Ant System and the TSP

The TSP is a paradigmatic NP-hard combinatorial optimization problem, which
has attracted an enormous amount of research effort [6, 103, 110]. The TSP is a
very important problem also in the context of Ant Colony Optimization because it
is the problem to which the original AS was first applied [61, 67–69], and it has later
often been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory, which
stores the partial solution it has constructed so far (initially the memory contains
only the start city). Starting from its start city, an ant iteratively moves from city to
city, which corresponds to adding iteratively solution components as explained in
Sect. 10.3.2. When being at a city i, an ant k chooses to go to an as yet unvisited
city j with a probability given by Eq. (10.1). The heuristic information is given by
ηi j = 1/di j and N (sp) is the set of cities that ant k has not visited yet.

The solution construction ends after each ant has completed a tour, that is, after
each ant has constructed a sequence of length n, corresponding to a permutation of
the city indices. Next, the pheromone trails are updated. In AS this is done by using
Eq. (10.2), where we have

Supd = Siter (10.3)

and
g(s) = 1/ f (s), (10.4)

322 M. Dorigo and T. Stützle

where f (s) is the length of the tour s. Hence, the shorter the ant’s tour is, the more
pheromone is received by edges (solution components) belonging to the tour.7 In
general, edges which are used by many ants and which are contained in shorter
tours receive more pheromone and therefore are also more likely to be chosen in
future iterations of the algorithm.

10.4.2.2 Ant System and Its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for
the TSP. Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [61, 69]. It con-
sists of giving the best tour since the start of the algorithm (called sgb) a strong addi-
tional weight. In practice, each time the pheromone trails are updated by Eq. (10.2),
we have that Supd = Siter ∪ {sgb}, and g(s),s ̸= sgb, is given by Eq. (10.4) and
g(sgb) = e/ f (sgb), where e is a positive integer. Note that this type of pheromone
update is a first example of a daemon action as described in Sect. 10.3.2.

Other improvements reported in the literature are rank-based Ant System
(ASrank), MAX–MIN Ant System (MMAS), and Ant Colony System (ACS).
ASrank [32] is in a sense an extension of the elitist strategy: it sorts the ants accord-
ing to the lengths of the tours they generated and, after each tour construction phase,
only the (w− 1) best ants and the global-best ant are allowed to deposit pheromone.
The rth best ant of the colony contributes to the pheromone update with a weight
given by max{0,w− r} while the global-best tour reinforces the pheromone trails
with weight w. This can easily be implemented by an appropriate choice of Supd and
g(s) in Eq. (10.2).

MMAS [172, 175, 176] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, the
allowed range of the pheromone trail strength in MMAS is limited to the interval
[τmin,τmax], that is, τmin ≤ τi j ≤ τmax ∀τi j, and the pheromone trails are initialized to
the upper trail limit, which causes a higher exploration at the start of the algorithm.
In [172, 176] it is discussed how to set the upper and lower pheromone trail limits.
Pheromone updates are performed using a strong elitist strategy: only the best solu-
tion generated is allowed to update pheromone trails. This can be the iteration-best
solution, that is, the best in the current iteration, or the global-best solution. The
amount of pheromone deposited is then given by g(sb) = 1/ f (sb), where sb is either
sib, the iteration-best solution, or sgb. In fact, the iteration-best ant and the global-
best ant can be used alternately in the pheromone update. Computational results
have shown that best results are obtained when pheromone updates are performed
using the global-best solution with increasing frequency during the algorithm exe-
cution [172, 176]. As an additional means for increasing the explorative behavior
of MMAS (and of ACO algorithms, in general), occasional pheromone trail reini-

7 Note that, when applied to symmetric TSPs, the edges are considered to be bidirectional and
edges (i, j) and (j, i) are both updated. This is different for the ATSP, where edges are directed; in
this case, an ant crossing edge (i, j) will update only this edge and not edge (j, i).

10 Ant Colony Optimization: Overview and Recent Advances 323

tialization is used. MMAS has been improved also by the addition of local search
routines that take the solution generated by ants to their local optimum just before
the pheromone update.

ACS [64, 65, 83] improves over AS by increasing the importance of exploita-
tion of information collected by previous ants with respect to exploration of the
search space.8 This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails. Second, ants choose a solution component (that
is, the next city in the TSP case) using the so-called pseudo-random proportional
rule [65]: with probability q0, 0 ≤ q0 < 1, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,
j = argmaxc ji ∈N (sp)

{τi j ·ηβ
i j}, while with probability 1− q0 they operate a biased

exploration in which the probability pi j(t) is the same as in AS (see Eq. (10.1)). The

Table 10.1 Overview of the main ACO algorithms forNP-hard problems that have been proposed
in the literature

ACO algorithm Main references Year TSP

Ant system [61, 67, 69] 1991 Yes
Elitist AS [61, 67, 69] 1992 Yes
Ant-Q [82] 1995 Yes
Ant colony system [64, 65, 83] 1996 Yes
MMAS [174–176] 1996 Yes
Rank-based AS [31, 32] 1997 Yes
ANTS [124, 125] 1998 No
Best-worst AS [38, 39] 2000 Yes
Population-based ACO [92] 2002 Yes
Beam-ACO [19, 20] 2004 No

Given are the ACO algorithm name, the main references where these algorithms are described, the
year they were first published, and whether they were tested on the TSP or not

value q0 is a parameter: when it is set to a value close to 1, as it is the case in most
ACS applications, exploitation is favored over exploration. Obviously, when q0 = 0
the probabilistic decision rule becomes the same as in AS.

Also, as in MMAS, only the best ant (the global-best or the iteration-best ant)
is allowed to add pheromone after each iteration of ACS; the former is the most
common choice in applications of ACS. The amount of pheromone deposited is
then given by g(sb) = ρ/ f (sgb), where ρ is the pheromone evaporation.

8 ACS was an offspring of Ant-Q [82], an algorithm intended to create a link between reinforce-
ment learning [179] and Ant Colony Optimization. Computational experiments have shown that
some aspects of Ant-Q, in particular the pheromone update rule, could be strongly simplified with-
out affecting performance. It is for this reason that Ant-Q was abandoned in favor of the simpler
and equally good ACS.

324 M. Dorigo and T. Stützle

Finally, ACS also differs from most ACO algorithms because ants update the
pheromone trails while building solutions (as in ant-quantity and in ant-density).
In practice, ACS ants remove some of the pheromone trail on the edges they visit.
This has the effect of decreasing the probability that the same path is used by all
ants (that is, it favors exploration, counterbalancing the other two above-mentioned
modifications that strongly favor exploitation of the collected knowledge about the
problem). Similarly to MMAS, ACS also usually exploits local search to improve
its performance.

We could continue by enumerating the modifications that have been proposed
in various other ACO algorithms that have been reported in the literature. Instead,
we give an overview of the various developments on ACO algorithms for NP-hard
problems in Table 10.1. There we give for each of the main ACO variants that have
been proposed, the main references to these algorithms, the year in which they have
been proposed and whether they have been tested on the TSP. In fact, (published)
tests of most ACO variants have been done on the TSP, which again confirms the
central role of this problem in ACO research.

10.4.2.3 Applications to Dynamic Network Routing Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is among the main success stories in
ACO. The first such application [159] was concerned with routing in circuit-
switched networks (e.g., classical telephone networks). The proposed algorithm,
called ABC, was demonstrated on a simulated version of the British Telecom net-
work. The main merit of ABC was to stimulate the interest of ACO researchers
in dynamic problems. In fact, only rather limited comparisons were made between
ABC and state-of-the-art algorithms, so that it is not possible to judge on the quality
of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet al-
gorithm, proposed by Di Caro and Dorigo [50–53] and discussed in Sect. 10.5.3.
AntNet was applied to routing in packet-switched networks (e.g., the Internet). It
contains a number of innovations with respect to AS and it has been shown ex-
perimentally to outperform a whole set of state-of-the-art algorithms on numerous
benchmark problems. Later, AntNet has also been extended to routing problems in
mobile ad-hoc networks, obtaining again excellent performance [74].

10.4.2.4 Towards the ACO Metaheuristic

Given the initial success of ACO algorithms in the applications to NP-hard prob-
lems as well as to dynamic routing problems in networks, Dorigo and Di Caro [63]
made the synthesis effort that led to the definition of a first version of the ACOmeta-
heuristic (see also [63, 66, 70]). In other words, the ACO metaheuristic was defined
a posteriori with the goal of providing a common characterization of a new class
of algorithms and a reference framework for the design of new instances of ACO
algorithms.

10 Ant Colony Optimization: Overview and Recent Advances 325

The first version of the ACO metaheuristic was aimed at giving a comprehensive
framework for ACO algorithm applications to “classical” NP-hard combinatorial
optimization problems and to highly dynamic problems in network routing applica-
tions. As such, this early version of the ACO metaheuristic left very large freedom
to the algorithm designer in the definition of the solution components, construc-
tion mechanism, pheromone update, and ants’ behavior. This more comprehensive
variant of the ACO metaheuristic is presented in many publications on this topic
[63, 66, 70]. The version of the ACOmetaheuristic described in Sect. 10.3 is targeted
towards the application of ACO algorithms toNP-hard problems and therefore it is
also more precise with respect to the definition of the solution components and so-
lution construction procedure. It follows mainly the versions presented in Chapter 3
of [66] or [23, 24].

10.5 Applications

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to
a number of different problems.

The ACO application to the TSP has already been illustrated in the previous
section. Here, we additionally discuss applications to two NP-hard optimization
problems, the single machine total weighted tardiness problem (SMTWTP), and
the set covering problem (SCP). We have chosen these problems since they are in
several aspects different from the TSP. Although the SMTWTP is also a permutation
problem, it differs from the TSP in the interpretation of the permutations. In the SCP
a solution is represented as a subset of the available solution components.

Applications of ACO to dynamic problems focus mainly on routing in data net-
works. To give a flavor of these applications, as a third example, we present the
AntNet algorithm [52].

10.5.1 Example 1: The Single Machine Total Weighted Tardiness
Scheduling Problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has an associated processing time p j, a weight wj, and
a due date d j and all jobs are available for processing at time zero. The tardiness
of job j is defined as Tj = max{0,Cj − d j}, where Cj is its completion time in the
current job sequence. The goal in the SMTWTP is to find a job sequence which
minimizes the sum of the weighted tardiness given by ∑n

i=1wi ·Ti.
For the ACO application to the SMTWTP, we can have one variable Xi for each

position i in the sequence and each variable has n associated values j= 1, . . . ,n. The
solution components model the assignment of a job j to position i in the sequence.

326 M. Dorigo and T. Stützle

The SMTWTP was tackled in [47] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, the positions of the sequence are filled in their canonical order, that
is, first position one, next position two, and so on, until position n. At each con-
struction step, an ant assigns a job to the current position using the pseudo-random-
proportional action choice rule, where the feasible neighborhood of an ant is the
list of yet unscheduled jobs. Pheromone trails are therefore defined as follows: τi j
refers to the desirability of scheduling job j at position i. This definition of the
pheromone trails is, in fact, used in many ACO applications to scheduling prob-
lems [9, 47, 136, 170]. Concerning the heuristic information, the use of three pri-
ority rules allowed to define three different types of heuristic information for the
SMTWTP [47]. The investigated priority rules were: (1) the earliest due date rule,
which puts the jobs in non-decreasing order of the due dates d j, (2) the modi-
fied due date rule which puts the jobs in non-decreasing order of the modified
due dates given by mddj = max{C + p j,d j} [9], where C is the sum of the pro-
cessing times of the already sequenced jobs, and (3) the apparent urgency rule
which puts the jobs in non-decreasing order of the apparent urgency [144], given
by au j = (wj/p j) · exp(− (max{d j − Cj,0})/kp), where k is a parameter. In each
case, the heuristic information was defined as ηi j = 1/h j, where h j is either d j,
mddj, or au j, depending on the priority rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Sect. 10.4.2, where in the global pheromone update, g(sgb) is the
total weighted tardiness of the global best solution.

In [47], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html. Within the computation
time limits given,9 ACS reached a very good performance and could find in each
single run the optimal or best known solutions on all instances of the benchmark set
[47].

10.5.2 Example 2: The Set Covering Problem (SCP)

In the set covering problem (SCP) we are given a finite set A = {a1, . . . ,an} of
elements and a set B = {B1, . . . ,Bl} of subsets, Bi ⊆ A, that covers A, that is, we
have

⋃l
i=1Bi = A. We say that a set Bi covers an element a j, if a j ∈ Bi. Each set Bi

has an associated cost ci. The goal in the SCP is to choose a subset C of the sets in
B such that (1) every element of A is covered and that (2)C has minimum total cost,
that is, the sum of the costs of the subsets inC is minimal.

ACO can be applied in a very straightforward way to the SCP. A binary variable
Xi is associated with every set Bi and a solution component c1i indicates that Bi is
selected for setC (i.e., Xi = 1), while a solution component c0i indicates that it is not
selected (i.e., Xi = 0). Each solution component c1i is associated with a pheromone

9 The maximum time for the largest instances was 20min on a 450MHz Pentium III PC with
256MB RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

10 Ant Colony Optimization: Overview and Recent Advances 327

trail τi and a heuristic information ηi that indicate the learned and the heuristic
desirability of choosing subset Bi. (Note that no pheromone trails are associated
with solution components c0i .) Solutions can be constructed as follows. Each ant
starts with an empty solution and then adds at each step one subset until a cover is
completed. A solution component c1i is chosen with probability

pi(sp) =
τα
i · [ηi(sp)]β

∑l∈N (sp) τα
l · [ηl(sp)]β

, ∀c1i ∈N (sp) (10.5)

where N (sp) consists of all subsets that cover at least one still uncovered element
of A. The heuristic information ηi(sp) can be chosen in several different ways. For
example, a simple static information could be used, taking into account only the
subset cost: ηi = 1/ci. A more sophisticated approach would be to consider the total
number of elements di covered by a set Bi and to set ηi = di/ci. These two ways of
defining the heuristic information do not depend on the partial solution. Typically,
more accurate heuristics can be developed taking into account the partial solution
of an ant. In this case, it can be defined as ηi(sp) = ei(sp)/ci, where ei(sp) is the so-
called cover value, that is, the number of additional elements covered when adding
subset Bi to the current partial solution sp. In other words, the heuristic information
measures the unit cost of covering one additional element.

An ant ends the solution construction when all the elements of A are covered. In
a post-optimization step, an ant can remove redundant subsets—subsets that only
cover elements that are already covered by other subsets in the final solution—or
apply some additional local search to improve solutions. The pheromone update
can be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP one difference with the previously presented
applications is that the number of solution components in the ant’s solutions may
differ among the ants and, hence, the solution construction only ends when all the
ants have terminated their corresponding walks.

There have been a few applications of ACO algorithms to the SCP [4, 42, 100,
112, 156]. The best results of these ACO algorithms are obtained by the variants
tested by Lessing et al. [112]. In their article, they compared the performance of a
number of ACO algorithms with and without the usage of a local search algorithm
based on 3-flip neighborhoods [186]. The best performance results were obtained,
as expected, when including local search and for a large number of instances the
computational results were competitive with state-of-the-art algorithms for the SCP.

10.5.3 Example 3: AntNet for Network Routing Applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst

328 M. Dorigo and T. Stützle

case complexity [13]), it becomes extremely difficult when the costs on the edges
are time-varying stochastic variables. This is the case of routing in packet-switched
networks, the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader
should refer to [52], where the AntNet approach to routing is explained and eval-
uated in detail). As stated earlier, in AntNet each ant searches for a minimum cost
path between a given pair of vertices of the network. To this end, ants are launched
from each network vertex towards randomly selected destination vertices. Each ant
has a source vertex s and a destination vertex d, and moves from s to d hopping
from one vertex to the next until vertex d is reached. When ant k is in vertex i, it
chooses the next vertex j to move to according to a probabilistic decision rule which
is a function of the ant’s memory and of local pheromone and heuristic information
(very much like AS, for example).

Unlike AS, where pheromone trails are associated with edges, in AntNet phero-
mone trails are associated with edge-destination pairs. That is, each directed edge
(i, j) has n− 1 associated trail values τi jd ∈ [0,1], where n is the number of vertices
in the graph associated with the routing problem. In other words, there is one trail
value τi jd for each possible destination vertex d an ant located in vertex i can have.
In general, it will hold that τi jd ̸= τ jid . Each edge also has an associated heuristic
value ηi j ∈ [0,1] independent of the final destination. The heuristic values can be
set for example to the values ηi j = 1− qi j/∑l∈Ni

qil , where qi j is the length (in bits
waiting to be sent) of the queue of the link connecting vertex i with its neighbor j:
links with a shorter queue have a higher heuristic value.

Ants choose their way probabilistically, using as probability a functional compo-
sition of the local pheromone trails τi jd and heuristic values ηi j. While building the
path to their destinations, ants move using the same link queues as data packets and
experience the same delays. Therefore, the time Tsd elapsed while moving from the
source vertex s to the destination vertex d can be used as a measure of the quality
of the path they built. The overall quality of a path is evaluated by a heuristic func-
tion of the trip time Tsd and of a local adaptive statistical model maintained in each
vertex. In fact, paths need to be evaluated relative to the network status because a
trip time T judged of low quality under low congestion conditions could be an ex-
cellent one under high traffic load. Once the generic ant k has completed a path, it
deposits on the visited vertices an amount of pheromone ∆τk(t) proportional to the
quality of the path. To deposit pheromone after reaching its destination vertex, the
ant moves back to its source vertex along the same path but backward and using
high priority queues, to allow a fast propagation of the collected information. The
pheromone trail intensity of each edge li j used by the ant while it was moving from
s to d is increased as follows: τi jd(t)← τi jd(t) + ∆τk(t). After the pheromone trail
on the visited edges has been updated, the pheromone value of all the outgoing con-
nections of the same vertex i, relative to destination d, evaporates in such a way that
the pheromone values are normalized and can continue to be used as probabilities:
τi jd(t)← τi jd(t)/(1 + ∆τk(t)), ∀ j ∈Ni, whereNi is the set of neighbors of vertex i.

AntNet was compared with many state-of-the-art algorithms on a large set of
benchmark problems under a variety of traffic conditions. It always compared fa-

10 Ant Colony Optimization: Overview and Recent Advances 329

vorably with competing approaches and it was shown to be very robust with respect
to varying traffic conditions and parameter settings. More details on the experimen-
tal results can be found in [52].

10.5.4 Applications of the ACO Metaheuristic

ACO has raised a lot of interest in the scientific community. There are now hun-
dreds of successful implementations of the ACO metaheuristic applied to a wide
range of different combinatorial optimization problems. The vast majority of these
applications concern NP-hard combinatorial optimization problems.

Many successful ACO applications to NP-hard problems use local search algo-
rithms to improve the ants’ solutions. Another common feature of many success-
ful ACO applications is that they use one of the advanced ACO algorithms such
as ACS, MMAS, etc. In fact, AS has been abandoned by now in favor of more
performing variants. Finally, for problems for which ACO algorithms reach very
high performance, the available ACO algorithms are fine-tuned to the problem un-
der consideration. Apart from fine-tuning parameter settings, this typically involves
the exploitation of problem knowledge, for example, through the use of appropriate
heuristic information, informed choices for the construction mechanism, or the use
of fine-tuned local search algorithms. For a complete overview of ACO applications
until the year 2004 we refer to [66]. Pointers to some early, successful applications
of ACO algorithms to challenging “static” optimization problems are also given in
Table 10.2.

Another large class of applications of ACO algorithms is routing problems where
some system properties such as the availability of links or the cost of traversing
links is time-varying. This is a common case in telecommunications networks. As
said before, the first ACO applications have been to telephone like networks [159],
which are circuit-switched, and to packet switched networks such as the Internet
[52]. Ant-based algorithms have given rise to several other routing algorithms, en-
hancing performance in a variety of wired network scenarios, see [49, 161] for a
survey. Later applications of these strategies involved the more challenging class
of mobile ad hoc networks (MANETs). Even though the straightforward applica-
tion of the ACO algorithms developed for wired networks has proven unsuccessful
due to the specific characteristics of MANETs (very high dynamics, link asymme-
try) [190], Ducatelle et al. [54, 74] were able to propose an ACO algorithm which
is competitive with state-of-the-art routing algorithms for MANETs, while at the
same time offering better scalability. For an exhaustive list of references on ACO
applications to dynamic network routing problems we refer to [75, 78].

The above mentioned applications are mainly early examples of successful ACO
applications. They have motivated other researchers to either consider ACO-based
algorithms for a wide range of different applications or to advance some aspects of
ACO algorithms on widely studied benchmark problems. As a result, the number

330 M. Dorigo and T. Stützle

Table 10.2 Some early applications of ACO algorithms

Problem type Problem name Authors Year References

Routing Traveling salesman Dorigo et al. 1991, 1996 [68, 69]
Dorigo and Gambardella 1997 [65]
Stützle and Hoos 1997, 2000 [175, 176]

TSP with time windows López Ibáñez et al. 2009 [121]
Sequential ordering Gambardella and Dorigo 2000 [84]
Vehicle routing Gambardella et al. 1999 [85]

Reimann et al. 2004 [154]
Favoretto et al. 2007 [79]
Fuellerer et al. 2009 [81]

Multicasting Hernández and Blum 2009 [101]
Assignment Quadratic assignment Maniezzo 1999 [125]

Stützle and Hoos 2000 [176]
Frequency assignment Maniezzo and Carbonaro 2000 [126]
Course timetabling Socha et al. 2002, 2003 [166, 167]
Graph coloring Costa and Hertz 1997 [41]

Scheduling Project scheduling Merkle et al. 2002 [137]
Weighted tardiness den Besten et al. 2000 [47]

Merkle and Middendorf 2000 [135]
Flow shop Stützle 1997 [170]

Rajendran, Ziegler 2004 [152]
Open shop Blum 2005 [20]
Car sequencing Solnon 2008 [168]

Subset Set covering Lessing et al. 2004 [112]
l-cardinality trees Blum and Blesa 2005 [22]
Multiple knapsack Leguizamón and Michalewicz 1999 [111]
Maximum clique Solnon, Fenet 2006 [169]

Machine Classification rules Parpinelli et al. 2002 [151]
learning Martens et al. 2006 [127]

Otero et al. 2008 [148]
Bayesian networks Campos, Fernández-Luna 2002 [44, 45]
Neural networks Socha, Blum 2007 [163]

Bioinformatics Protein folding Shmygelska and Hoos 2005 [160]
Docking Korb et al. 2006 [106, 107]
DNA sequencing Blum et al. 2008 [27]
Haplotype inference Benedettini et al. 2008 [12]

Applications are listed according to problem types

of applications of ACO and, thus, also the number of articles focusing on ACO has
increased a lot, reaching the level of several hundreds of articles listed annually in
the Scopus database. In particular, Fig. 10.5 gives the number of articles that are
published annually based on a search of the terms ant system, ant colony system,
or ant colony optimization in article titles. In particular, since the publication of the
1996 journal article by Dorigo et al. [69], the number of articles published annually
has increased strongly until ca. the year 2010 and since then has maintained a high
level of more than 400 articles each year.

10 Ant Colony Optimization: Overview and Recent Advances 331

Fig. 10.5 Development of the number of publications containing the terms “ant system,” “ant
colony system” or “ant colony optimization” in the title from the years 1996 to 2016; source:
Scopus publication database

10.5.5 Main Application Principles

ACO algorithms have been applied to a large number of different combinatorial
optimization problems. Based on this experience, one can identify some basic issues
that need to be addressed when attacking a new problem. These issues are discussed
in the following.

10.5.5.1 Definition of Solution Components and Pheromone Trails

Of crucial importance in ACO applications is the definition of the solution compo-
nents and of the pheromone model. Consider, for example, the differences in the
definition of solution components in the TSP and the SMTWTP. Although both
problems represent solutions as permutations, the definition of solution components
(and, hence, the interpretation of the pheromone trails), is very different. In the TSP
case, a solution component refers to the direct successor relationship between ele-
ments, while in the SMTWTP it refers to the allocation of a job to a specific position
in the permutation. This is intuitively due to the different role that permutations have
in the two problems. In the TSP, only the relative order of the solution components
is important and a permutation π= (1 2 . . . n) has the same tour length as the per-
mutation π′ = (n 1 2 . . . n− 1)—it represents the same tour. On the contrary, in the
SMTWTP (as well as in many other scheduling problems), π and π′ would repre-
sent two different solutions with most probably very different costs; in this case the
position information is very important.

In some applications, the role of the pheromone trail definition has been inves-
tigated in more depth. Blum and Sampels compare different ways of defining the
pheromone model for job shop scheduling problems [25]. In [24], Blum and Dorigo

332 M. Dorigo and T. Stützle

show that the choice of an inappropriate pheromone model can result in an un-
desirable performance degradation over time. Fortunately, in many applications the
solution components used in high performing constructive algorithms, together with
the correct choice of the pheromone model, typically result in high performing algo-
rithms. However, finding the best pheromone model is not always a straightforward
task. Examples of some more complex or unusual choices are the ACO application
to the shortest common supersequence problem [140] or the application of ACO to
protein–ligand docking [107].

10.5.5.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance be-
tween the exploitation of the search experience gathered so far and the exploration of
unvisited or relatively unexplored search space regions. In ACO several ways exist
for achieving such a balance, typically through the management of the pheromone
trails. In fact, the pheromone trails induce a probability distribution over the search
space and determine which parts of the search space are effectively sampled, that is,
in which part of the search space the constructed solutions are located with higher
frequency.

The best performing ACO algorithms typically use an elitist strategy in which
the best solutions found during the search contribute strongly to pheromone trail
updating. A stronger exploitation of the “learned” pheromone trails can be achieved
during solution construction by applying the pseudo-random proportional rule of
ACS, as explained in Sect. 10.4.2.2. These exploitation features are then typically
combined with some means to ensure enough search space exploration trying to
avoid convergence of the ants to a single path, corresponding to a situation of search
stagnation. There are several ways to try to avoid such stagnation situations. For ex-
ample, in ACS the ants use a local pheromone update rule during solution construc-
tion to make the path they have taken less desirable for subsequent ants and, thus, to
diversify the search. MMAS introduces an explicit lower limit on the pheromone
trail value so that a minimal level of exploration is always guaranteed.MMAS also
uses a reinitialization of the pheromone trails, which is a way of enforcing search
space exploration. Finally, an important role in the balance of exploration and ex-
ploitation is played by the parameters α and β in Eq. (10.1). Consider, for example,
the influence of parameter α . (Parameter β has an analogous influence on the ex-
ploitation of the heuristic information). For α > 0, the larger the value of α the
stronger the exploitation of the search experience; for α = 0 the pheromone trails
are not taken into account at all; and for α < 0 the most probable choices taken
by the ants are those that are less desirable from the point of view of pheromone
trails. Hence, varying α could be used to shift from exploration to exploitation and
conversely.

10 Ant Colony Optimization: Overview and Recent Advances 333

10.5.5.3 ACO and Local Search

In many applications toNP-hard combinatorial optimization problems, ACO algo-
rithms perform best when coupled with local search algorithms. Local search algo-
rithms locally optimize the ants’ solutions and these locally optimized solutions are
used in the pheromone update.

The use of local search in ACO algorithms can be very interesting since the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally fine-tuned by an
adequate local search algorithm. On the other side, generating appropriate initial
solutions for local search algorithms is not an easy task. In practice, ants probabilis-
tically combine solution components which are part of the best locally optimal solu-
tions found so far and generate new, promising initial solutions for the local search.
Experimentally, it has been found that such a combination of a probabilistic, adap-
tive construction heuristic with local search can yield excellent results [28, 65, 175].
Particularly good results are obtained when the integration of the local search in the
ACO algorithm is well designed. To reach highest performance when very power-
ful local search algorithms are available or when problem instances are very large,
modifications of the ACO algorithm may also be beneficial in some cases as shown
by Gambardella et al. [86].

Despite the fact that the use of local search algorithms has been shown to be cru-
cial for achieving state-of-the-art performance in many ACO applications, it should
be noted that ACO algorithms also show very good performance when local search
algorithms cannot be applied easily [52, 140].

10.5.5.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solu-
tion construction is important because it gives the possibility of exploiting problem
specific knowledge. This knowledge can be available a priori (this is the most fre-
quent situation in NP-hard problems) or at run-time (this is the typical situation in
dynamic problems).

For most NP-hard problems, the heuristic information η can be computed at
initialization time and then it remains the same throughout the whole algorithm’s
run. An example is the use, in the TSP applications, of the length di j of the edge
connecting cities i and j to define the heuristic information ηi j = 1/di j. However, the
heuristic information may also depend on the partial solution constructed so far and
therefore be computed at each step of an ant’s solution construction. This determines
a higher computational cost that may be compensated by the higher accuracy of the
computed heuristic values. For example, in the ACO applications to the SMTWTP
and the SCP the use of such “adaptive” heuristic information was found to be crucial
for reaching very high performance.

334 M. Dorigo and T. Stützle

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.

10.6 Developments

In this section, we review recent research trends in ACO. These include (1) the
application of ACO algorithms to non-standard problems; (2) the development of
ACO algorithms that are hybridized with other metaheuristics or techniques from
mathematical programming; (3) the parallel implementation of ACO algorithms;
and (4) theoretical results on ACO algorithms.

10.6.1 Non-standard Applications of ACO

We review here applications of ACO to problems that involve complicating factors
such as multiple objective functions, time-varying data and stochastic information
about objective values or constraints. In addition, we review some recent applica-
tions of ACO to continuous optimization problems.

10.6.1.1 Multi-Objective Optimization

Frequently, in real-world applications, various solutions are evaluated as a function
of multiple, often conflicting objectives. In simple cases, objectives can be ordered
with respect to their importance, or they can be combined into a single-objective by
using a weighted sum approach. An example of the former approach is the applica-
tion of a two-colony ACS algorithm for the vehicle routing problem with time win-
dows [85]; an example of the latter is given by Doerner et al. [56] for a bi-objective
transportation problem.

If a priori preferences or weights are not available, the usual option is to ap-
proximate the set of Pareto-optimal solutions—a solution s is Pareto optimal if no
other solution has a better value than s for at least one objective and is not worse
than s for the remaining objectives. The first general ACO approach targeted to such
problems is due to Iredi et al. [102], who discussed various alternatives to apply
ACO to multi-objective problems and presented results with a few variants for a
bi-objective scheduling problem. Since then, several algorithmic studies have tested
various alternative approaches. These possible approaches differ in whether they use
one or several pheromone matrices (one for each objective), one or several heuristic
information, how solutions are chosen for pheromone deposit, and whether one or
several colonies of ants are used. Several combinations of these possibilities have

10 Ant Colony Optimization: Overview and Recent Advances 335

been studied, for example, in [3, 120]. For a detailed overview of available multi-
objective ACO algorithms we refer to the review articles by García-Martínez [87],
which also contains an experimental evaluation of some proposed ACO approaches,
and by Angus and Woodward [5].

A different approach to develop multi-objective ACO algorithms has been pro-
posed by López-Ibáñez and Stützle [118, 119]. They have analyzed carefully the
various existing ACO approaches to tackle multi-objective problems and proposed
a generalized multi-objective ACO (MOACO) structure fromwhich most of the then
available approaches could be instantiated but also new variants be generated. Ex-
ploring the resulting design space of MOACO algorithms through a novel method-
ology for generating automatically multi-objective optimizers, they could generate
new MOACO algorithms that clearly outperformed all previously proposed ACO
algorithms for multi-objective optimization [118]. Such framework may also be fur-
ther extended to consider more recent ACO approaches to many-objective problems
such as those proposed by Falcón-Cardona and Coello Coello [77].

10.6.1.2 Dynamic Versions of NP-hard Problems

As said earlier, ACO algorithms have been applied with significant success to dy-
namic problems in the area of network routing [52, 54]. ACO algorithms have also
been applied to dynamic versions of classical NP-hard problems. Examples are
the applications to dynamic versions of the TSP, where the distances between cities
may change or where cities may appear or disappear [76, 91, 92, 130]. More recent
work in this area includes the explicit usage of local search algorithms to improve
the ACO performance on dynamic problems [133]. Applications of ACO algorithms
to dynamic vehicle routing problems are reported in [60, 131, 143], showing good
results on both academic instances and real-world instances. For a recent review of
swarm intelligence algorithms for dynamic optimization problems, including ACO,
we refer to [132].

10.6.1.3 Stochastic Optimization Problems

In many optimization problems data are not known exactly before generating a so-
lution. Rather, what is available is stochastic information on the objective function
value(s), on the decision variable values, or on the constraint boundaries due to un-
certainty, noise, approximation or other factors. ACO algorithms have been applied
to a few stochastic optimization problems. The first stochastic problem to which
ACO was applied is the probabilistic TSP (PTSP), where for each city the probabil-
ity that it requires a visit is known and the goal is to find an a priori tour of minimal
expected length over all the cities. The first to apply ACO to the PTSP were Bianchi
et al. [14], who used an adaptation of ACS. This algorithm was improved by Branke
and Guntsch and by Balaprakash et al. [7], resulting in a state-of-the-art algorithm
for the PTSP. Other applications of ACO include the vehicle routing problem with

336 M. Dorigo and T. Stützle

uncertain demands [15], the vehicle routing problem with uncertain demands and
customers [8], and the selection of optimal screening policies for diabetic retinopa-
thy [30], which builds on the S-ACO algorithm by Gutjahr [95]. For an overview of
the application of metaheuristics, including ACO algorithms, to stochastic combi-
natorial optimization problems we refer to [16].

10.6.1.4 Continuous Optimization

Although ACO was proposed for combinatorial problems, researchers started to
adapt it to continuous optimization problems.10 The simplest approach for apply-
ing ACO to continuous problems would be to discretize the real-valued domain of
the variables. This approach has been successfully followed when applying ACO
to the protein–ligand docking problem [107], where it was combined with a local
search that was, however, working on the continuous domain of the variables. ACO
algorithms that handle continuous parameters natively have been proposed [162].
An example is the ACOR algorithm by Socha and Dorigo [165], where the prob-
ability density functions that are implicitly built by the pheromone model in clas-
sic ACO algorithms are explicitly represented by Gaussian kernel functions. Other
early references on this subject are [162, 181, 183]. ACOR has been refined by Liao
et al. using an increasing population size and integrating powerful local search al-
gorithms [113]; additional refinements were later reported by Kumar et al. [109].
A unified framework for ACO applications to continuous optimization is proposed
by Liao et al. [114]. In their approach, many variants of ACOR can be instantiated
by choosing specific algorithm components and by setting freely a large number
of algorithm parameters. Using the help of an automated algorithm configuration
tool called irace [122], the unified framework proved to be able to generate con-
tinuous ACO algorithms superior to those previously proposed in the literature. An
extension of ACOR to multi-modal optimization is presented by Yang et al. [187].
Finally, the ACOR approach has also been extended to mixed-variable—continuous
and discrete–problems [115, 164].

10.6.2 Algorithmic Developments

In the early years of ACO research, the focus was in developing ACO variants with
modified pheromone update rules or solution generation mechanisms to improve
the algorithmic performance. More recently, researchers have explored combina-
tions of ACO with other algorithmic techniques. Here, we review some of the most
noteworthy developments.

10 There have been several proposals of ant-inspired algorithms for continuous optimization [17,
73, 142]. However, these differ strongly from the underlying ideas of ACO (for example, they use
direct communication among ants) and therefore cannot be considered as algorithms falling into
the framework of the ACO metaheuristic.

10 Ant Colony Optimization: Overview and Recent Advances 337

10.6.2.1 Hybridizations of ACO with Other Metaheuristics

The most straightforward hybridization of ACO is with local improvement heuris-
tics, which are used to fine-tune the solutions constructed by the ants. Often simple
iterative improvement algorithms are used. However, in various articles, other meta-
heuristic algorithms have been used as improvement methods. One example is the
use of tabu search to improve the ants’ solutions for the quadratic assignment prob-
lem [176, 180]. Interestingly, other, more sophisticated hybridizations have been
proposed. A first one is to let the ants start the solution construction not from scratch
but from partial solutions that are obtained either by removing solution components
from an ant’s complete solution [185, 189] or by taking partial solutions from other
complete solutions [1, 2, 182]. Two important advantages of starting the solution
construction from partial solutions are that (1) the solution construction process is
much faster and (2) good parts of solutions may be exploited directly. Probably the
most straightforward of these proposals is the iterated ants [185], which uses ideas
from the iterated greedy (IG) metaheuristic [158]. Once some initial solution has
been generated, IG iterates over construction heuristics by first removing solution
components of a complete solution s, resulting in a partial solution sp. From sp a
complete solution is then rebuilt using some construction mechanism. In the iter-
ated ants algorithm, this mechanism is simply the standard solution construction
of the underlying ACO algorithm. Computational results suggest that this idea is
particularly useful if no effective local search is available.

10.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques

The integration of tree search techniques into constructive algorithms is an appeal-
ing possibility of hybridization since the probabilistic solution construction of ants
can be seen as the stochastic exploration of a search tree. Particularly attractive are
combinations of ACO with tree search techniques from mathematical programming
such as branch-and-bound. A first algorithm is the approximate nondeterministic
tree search (ANTS) algorithm by Maniezzo [125]. The most important innovation
of ANTS is the use of lower bound estimates as the heuristic information for rat-
ing the attractiveness of adding specific solution components. Additionally, lower
bound computations allow the method to prune feasible extensions of partial so-
lutions if the estimated solution cost is larger than that of the best solution found
so far. An additional innovation of ANTS consists of computing an initial lower
bound to influence the order in which solution components are considered in the
solution construction. Computational results obtained with ANTS for the quadratic
assignment and the frequency assignment problems are very promising [125, 126].

BeamACO, the combination of ACO algorithms with beam-search, was proposed
by Blum [20]. Beam-search is a derivative of branch-and-bound algorithms that
keeps at each iteration a set of at most fw nodes in a search tree and expands each of
them in at most bw directions according to a selection based on lower bounds [149].
At each extension step applied to the fw current partial solutions, fw ·bw new partial

338 M. Dorigo and T. Stützle

solutions are generated and the fw best ones are kept (where best is rated with re-
spect to a lower bound). BeamACO takes from beam-search the parallel exploration
of the search tree and replaces the beam-search’s deterministic solution extension
mechanism by that of ACO. The results with BeamACO have been very good so
far. For example, it is a state-of-the-art algorithm for open shop scheduling [20], for
some variants of assembly line balancing [21], and for the TSP with time windows
[117].

10.6.2.3 Combinations of ACO with Constraint and Integer Programming
Techniques

For problems that are highly constrained and for which it is difficult to find feasible
solutions, an attractive possibility is to integrate constraint programming techniques
into ACO. A first proposal in this direction can be found in [139]. In particular, the
authors integrate a constraint propagation mechanism into the solution construction
of the ants to identify earlier in the construction process whether specific solutions
extensions would lead to infeasible solutions. Computational tests on a highly con-
strained scheduling problem have shown the high potential of this approach. More
recently, Khichane et al. [105] have examined the integration of an ACO algorithm
into a constraint solver. Massen et al. [128] have considered the usage of ACOmech-
anisms in a column generation approach to vehicle routing problems with black-box
feasibility constraints. The ACO-based approach is used as a heuristic to generate
candidate routes for the vehicles, which correspond to the columns in the integer
programming model; an “optimal” combination of the generated candidate routes
is then found by an integer programming technique. A further analysis of the pa-
rameters of this method is proposed by Massen et al. [129], which resulted in some
improved solutions to various benchmark instances.

10.6.3 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to ACO. Most early parallelization strategies
can be classified into fine-grained and coarse-grained strategies. Characteristics of
fine-grained parallelization are that very few individuals are assigned to one single
processor and that frequent information exchange among the processors takes place.
On the contrary, in coarse grained approaches, larger subpopulations or even full
populations are assigned to single processors and information exchange is rather
rare. We refer, for example, to [34] for an overview.

Fine-grained parallelization schemes have been investigated early when multi-
core CPUs and shared memory architectures were not available or not common.
The first fine-grained parallelization schemes were studied with parallel versions of

10 Ant Colony Optimization: Overview and Recent Advances 339

AS for the TSP on the Connection Machine CM-2 by attributing a single processing
unit to each ant [29]. Experimental results showed that communication overhead can
be a major problem, since ants ended up spending most of their time communicating
the modifications they made to pheromone trails. Similar negative results have also
been reported in [33, 153].

As shown by several researches [29, 33, 123, 141, 171], coarse grained par-
allelization schemes are much more promising for ACO; such schemes are also
still relevant in the context of modern architectures. When applied to ACO, coarse
grained schemes run p subcolonies in parallel, where p is the number of available
processors. Even though independent runs of the p subcolonies in parallel have
shown to be effective [123, 171], often further improved performance may be ob-
tained by a well-designed information exchange among the subcolonies. In this case,
a policy defines the kind of information to be exchanged, how migrants between
the subcolonies are selected, to which colonies the information is sent, when infor-
mation is sent and what is to be done with the received information. We refer to
Middendorf et al. [141] or Twomey et al. [184] for comprehensive studies of this
subject. With the wide-spread availability of multi-core CPUs and shared memory
architectures, thread-level parallelism is nowadays the option of choice to speed-up
a single run of an ACO algorithm. Nevertheless, if high solution quality is desired,
the above mentioned coarse-grained schemes can easily be implemented also on
such architectures. Recent work on the parallelization of ACO algorithms evaluates
them on various platforms [90] and studies the exploitation of graphics processor
units to speed them up [35, 43, 46].

10.6.4 Theoretical Results

The initial, experimentally driven research on ACO has established it as an interest-
ing algorithmic technique. After this initial phase, researchers have started to obtain
insights into fundamental properties of ACO algorithms.

The first question was whether an ACO algorithm, if given enough time, will
eventually find an optimal solution. This is an interesting question, because the
pheromone update could prevent ACO algorithms from ever reaching an optimum.
The first convergence proofs were presented by Gutjahr in [93]. He proved con-
vergence with probability 1− ε to the optimal solution of Graph-Based Ant Sys-
tem (GBAS), an ACO algorithm whose empirical performance is unknown. Later,
he proved convergence to any optimal solution [94] with probability one for two
extended versions of GBAS. Interestingly, convergence proofs for two of the top
performing ACO algorithms in practice, ACS andMMAS, could also be obtained
[66, 173].

Unfortunately, these convergence proofs do not say anything about the speed
with which the algorithms converge to the optimal solution. A more detailed analy-
sis would therefore consider the expected runtime when applying ACO algorithms
to specific problems. In fact, a number of results have been obtained in that direc-

340 M. Dorigo and T. Stützle

tion. The first results can be found in [96] and since then a number of additional
results have been obtained [58, 59, 98, 99, 145, 146]. Due to the difficulty of the
theoretical analysis, most of these results, however, have been obtained consider-
ing idealized, polynomially solvable problems. While often these include simple
pseudo-Boolean functions, in [147] a theoretical runtime analysis is carried out for
a basic combinatorial problem, the minimum spanning tree problem, while Sudholt
and Thyssen study the shortest path problem [178]. More recently, Lissov and Witt
have considered the analysis ofMMAS for dynamic shortest path problems, study-
ing, in particular, the impact of the population size on optimization performance as a
function of the type of dynamic variations [116]. For an early review of this research
direction, we refer to [97].

Other research in ACO theory has focused on establishing formal links between
ACO and other techniques for learning and optimization. One example relates ACO
to the fields of optimal control and reinforcement learning [18], while another ex-
amines the connections between ACO algorithms and probabilistic learning algo-
rithms such as the stochastic gradient ascent and the cross-entropy method [138].
Zlochin et al. [191] have proposed a unifying framework for so-called model-based
search algorithms. Among other advantages, this framework allows a better under-
standing of what are important parts of an algorithm and it could lead to a better
cross-fertilization among algorithms.

While convergence proofs give insight into some mathematically relevant prop-
erties of algorithms, they usually do not provide guidance to practitioners for the
implementation of efficient algorithms. More relevant for practical applications are
research efforts aimed at a better understanding of the behavior of ACO algorithms.
Blum and Dorigo [24] have shown that ACO algorithms in general suffer from first
order deception in the same way as genetic algorithms suffer from deception. They
further introduced the concept of second order deception, which occurs, for ex-
ample, in situations where some solution components receive updates from more
solutions on average than others they compete with [26]. The first to study the be-
havior of ACO algorithms by analyzing the dynamics of the pheromone model were
Merkle and Middendorf [134]. For idealized permutation problems, they showed
that the bias introduced on decisions in the construction process (due to constraints
on the feasibility of solutions) leads to what they call a selection bias. When apply-
ing ACO to the TSP, the solution construction can be seen as a probabilistic version
of the nearest neighbor heuristic. However, Kötzing et al. show that different con-
struction rules result in better performance at least from a theoretical perspective
[108].

A discussion of recent theoretical results on ACO including those on the expected
run-time analysis can be found in a tutorial on the theory of swarm intelligence
algorithms [177]. A review paper on early advancements in ACO theory is [62].

10 Ant Colony Optimization: Overview and Recent Advances 341

10.7 Conclusions

Since the proposal of the first ACO algorithms in 1991, the field of ACO has at-
tracted a large number of researchers and nowadays a large number of research
results of both experimental and theoretical nature exist. By now ACO is a well
established metaheuristic. The importance of ACO is exemplified by (1) the bian-
nual conference ANTS (International conference on Ant Colony Optimization and
Swarm Intelligence; http://www.swarm-intelligence.eu/), where researchers meet to
discuss the properties of ACO and other ant algorithms, both theoretically and ex-
perimentally; (2) the IEEE Swarm Intelligence Symposium series; (3) various con-
ferences on metaheuristics and evolutionary algorithms, where ACO is a central
topic; and (4) a number of journal special issues [40, 57, 71, 72]. More informa-
tion on ACO can also be found on the Ant Colony Optimization web page: www.
aco-metaheuristic.org. Additionally, a moderated mailing list dedicated to the ex-
change of information related to ACO is accessible at: www.aco-metaheuristic.org/
mailing-list.html.

The majority of the currently published articles on ACO are clearly on its ap-
plication to computationally challenging problems. While most researches here are
on academic applications, it is noteworthy that companies have started to use ACO
algorithms for real-world applications [157]. For example, the company AntOptima
(www.antoptima.com) plays an important role in promoting the real-world appli-
cation of ACO. Furthermore, the company Arcelor-Mittal uses ACO algorithms to
solve several of the optimization problems arising in their production sites [55, 80].
In real-world applications, features such as time-varying data, multiple objectives
or the availability of stochastic information about events or data are rather common.
Interestingly, applications of ACO to problems that show such characteristics are
receiving increased attention. In fact, we believe that ACO algorithms are particu-
larly useful when they are applied to such “ill-structured” problems for which it is
not clear how to apply local search, or to highly dynamic domains where only local
information is available.

Acknowledgements This work was supported by the COMEX project, P7/36, within the In-
teruniversity Attraction Poles Programme of the Belgian Science Policy Office. Marco Dorigo and
Thomas Stützle acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research
Directors.

References

1. A. Acan, An external memory implementation in ant colony optimization, in Ant Colony
Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004, ed. by
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, T. Stützle. Lecture Notes
in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 73–84

http://www.swarm-intelligence.eu/
www.aco-metaheuristic.org
www.aco-metaheuristic.org
www.aco-metaheuristic.org/mailing-list.html
www.aco-metaheuristic.org/mailing-list.html
www.antoptima.com

342 M. Dorigo and T. Stützle

2. A. Acan, An external partial permutations memory for ant colony optimization, in Evolution-
ary Computation in Combinatorial Optimization, ed. by G. Raidl, J. Gottlieb. Lecture Notes
in Computer Science, vol. 3448 (Springer, Heidelberg, 2005), pp. 1–11

3. I. Alaya, C. Solnon, K. Ghédira, Ant colony optimization for multi-objective optimization
problems, in 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI
2007), vol. 1 (IEEE Computer Society, Los Alamitos, 2007), pp. 450–457

4. D.A. Alexandrov, Y.A. Kochetov, The behavior of the ant colony algorithm for the set cover-
ing problem, in Operations Research Proceedings 1999, ed. by K. Inderfurth, G. Schwö-
diauer, W. Domschke, F. Juhnke, P. Kleinschmidt, G. Wäscher (Springer, Berlin, 2000),
pp. 255–260

5. D. Angus, C. Woodward, Multiple objective ant colony optimization. Swarm Intell. 3(1),
69–85 (2009)

6. D. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem: A Com-
putational Study (Princeton University Press, Princeton, 2006)

7. P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, M. Dorigo, Estimation-based ant colony
optimization algorithms for the probabilistic travelling salesman problem. Swarm Intell. 3(3),
223–242 (2009)

8. P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, M. Dorigo, Estimation-based metaheuris-
tics for the single vehicle routing problem with stochastic demands and customers. Comput.
Optim. Appl. 61(2), 463–487 (2015)

9. A. Bauer, B. Bullnheimer, R.F. Hartl, C. Strauss, An ant colony optimization approach for the
single machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary
Computation (CEC’99) (IEEE Press, Piscataway, 1999), pp. 1445–1450

10. R. Beckers, J.-L. Deneubourg, S. Goss, Modulation of trail laying in the ant Lasius niger
(hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect
Behav. 6(6), 751–759 (1993)

11. R. Bellman, A.O. Esogbue, I. Nabeshima,Mathematical Aspects of Scheduling and Applica-
tions (Pergamon Press, New York, 1982)

12. S. Benedettini, A. Roli, L. Di Gaspero, Two-level ACO for haplotype inference under pure
parsimony, in Ant Colony Optimization and Swarm Intelligence, 6th International Workshop,
ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Winfield.
Lecture Notes in Computer Science, vol. 5217 (Springer, Heidelberg, 2008), pp. 179–190

13. D. Bertsekas, Network Optimization: Continuous and Discrete Models (Athena Scientific,
Belmont, 1998)

14. L. Bianchi, L.M. Gambardella, M. Dorigo, An ant colony optimization approach to the proba-
bilistic traveling salesman problem, in Parallel Problem Solving from Nature – PPSN VII: 7th
International Conference, J.J. Merelo Guervós, P. Adamidis, H.-G. Beyer, J.-L. Fernández-
Villacanas, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 2439 (Springer, Heidel-
berg, 2002), pp. 883–892

15. L. Bianchi, M. Birattari, M. Manfrin, M. Mastrolilli L. Paquete, O. Rossi-Doria, T. Schi-
avinotto, Hybrid metaheuristics for the vehicle routing problem with stochastic demands. J.
Math. Model. Algorithms 5(1), 91–110 (2006)

16. L. Bianchi, L.M. Gambardella, M. Dorigo, W. Gutjahr, A survey on metaheuristics for
stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287 (2009)

17. G. Bilchev, I.C. Parmee, The ant colony metaphor for searching continuous design spaces, in
Evolutionary Computing, AISB Workshop, ed. by T.C. Fogarty. Lecture Notes in Computer
Science, vol. 993 (Springer, Heidelberg, 1995), pp. 25–39

18. M. Birattari, G. Di Caro, M. Dorigo, Toward the formal foundation of ant programming, in
Ant Algorithms: Third International Workshop, ANTS 2002, ed. by M. Dorigo, G. Di Caro,
M. Sampels. Lecture Notes in Computer Science, vol. 2463 (Springer, Heidelberg, 2002),
pp. 188–201

19. C. Blum, Theoretical and practical aspects of ant colony optimization, PhD thesis, IRIDIA,
Université Libre de Bruxelles, Brussels, 2004

20. C. Blum, Beam-ACO—hybridizing ant colony optimization with beam search: an application
to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

10 Ant Colony Optimization: Overview and Recent Advances 343

21. C. Blum, Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4), 618–
627 (2008)

22. C. Blum, M.J. Blesa, New metaheuristic approaches for the edge-weighted k-cardinality tree
problem.Comput. Oper. Res. 32(6), 1355–1377 (2005)

23. C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization. IEEE Trans.
Syst. Man Cybern. B 34(2), 1161–1172 (2004)

24. C. Blum, M. Dorigo, Search bias in ant colony optimization: on the role of competition-
balanced systems. IEEE Trans. Evol. Comput. 9(2), 159–174 (2005)

25. C. Blum, M. Sampels, Ant colony optimization for FOP shop scheduling: a case study on
different pheromone representations, in Proceedings of the 2002 Congress on Evolutionary
Computation (CEC’02) (IEEE Press, Piscataway, 2002), pp. 1558–1563

26. C. Blum, M. Sampels, M. Zlochin, On a particularity in model-based search, in Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2002), ed. by W.B.
Langdon et al. (Morgan Kaufmann Publishers, San Francisco, 2002), pp. 35–42

27. C. Blum, M. Yabar, M.J. Blesa, An ant colony optimization algorithm for DNA sequencing
by hybridization.Comput. Oper. Res. 35(11), 3620–3635 (2008)

28. K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimization. Oper. Res. Lett. 16(2), 101–113 (1994)

29. M. Bolondi, M. Bondanza, Parallelizzazione di un algoritmo per la risoluzione del prob-
lema del commesso viaggiatore, Master’s thesis, Dipartimento di Elettronica, Politecnico di
Milano, Italy, 1993

30. S.C. Brailsford, W.J. Gutjahr, M.S. Rauner, W. Zeppelzauer, Combined discrete-event sim-
ulation and ant colony optimisation approach for selecting optimal screening policies for
diabetic retinopathy. Comput. Manag. Sci. 4(1), 59–83 (2006)

31. B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank based version of the Ant System — a
computational study, Technical report, Institute of Management Science, University of Vi-
enna, 1997

32. B. Bullnheimer, R.F. Hartl, C. Strauss, A new rank-based version of the Ant System: a com-
putational study. Cent. Eur. J. Oper. Res. Econ. 7(1), 25–38 (1999)

33. B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization strategies for the Ant System, in High
Performance Algorithms and Software in Nonlinear Optimization, ed. by R. De Leone,
A. Murli, P. Pardalos, G. Toraldo. Kluwer Series of Applied Optmization, vol. 24 (Kluwer
Academic Publishers, Dordrecht, 1998), pp. 87–100

34. E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms (Kluwer Academic Pub-
lishers, Boston, 2000)

35. J.M. Cecilia, J.M. García, A. Nisbet, M. Amos, M. Ujaldón, Enhancing data parallelism for
ant colony optimization on GPUs. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

36. A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in Proceed-
ings of the First European Conference on Artificial Life, ed. by F.J. Varela, P. Bourgine (MIT,
Cambridge, 1992), pp. 134–142

37. A. Colorni, M. Dorigo, V. Maniezzo, An investigation of some properties of an ant algorithm,
in Parallel Problem Solving from Nature – PPSN II, ed. by R. Männer, B. Manderick (North-
Holland, Amsterdam, 1992), pp. 509–520

38. O. Cordón, I. Fernández de Viana, F. Herrera, L. Moreno, A new ACO model integrating
evolutionary computation concepts: the best-worst Ant System, in Abstract proceedings of
ANTS 2000 – From Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms, ed. by M. Dorigo, M. Middendorf, T. Stützle (IRIDIA, Université Libre de Brux-
elles, Brussels, 2000), pp. 22–29

39. O. Cordón, I. Fernández de Viana, F. Herrera, Analysis of the best-worst Ant System and its
variants on the TSP. Mathw. Soft Comput. 9(2–3), 177–192 (2002)

40. O. Cordón, F. Herrera, T. Stützle, Special issue on ant colony optimization: models and ap-
plications. Mathw. Soft Comput. 9(2–3), 137–268 (2003)

41. D. Costa, A. Hertz, Ants can colour graphs. J. Oper. Res. Soc. 48(3), 295–305 (1997)
42. B. Crawford, R. Soto, E. Monfroy, F. Paredes, W. Palma, A hybrid ant algorithm for the set

covering problem. Int. J. Phys. Sci. 6(19), 4667–4673 (2011)
43. L. Dawson, I.A. Stewart, Improving ant colony optimization performance on the GPU us-

ing CUDA, in Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2013
(IEEE Press, Piscataway, 2013), pp. 1901–1908

344 M. Dorigo and T. Stützle

44. L.M. de Campos, J.M. Fernández-Luna, J.A. Gámez, J.M. Puerta, Ant colony optimization
for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291–311 (2002)

45. L.M. de Campos, J.A. Gamez, J.M. Puerta, Learning Bayesian networks by ant colony opti-
misation: searching in the space of orderings. Mathw. Soft Comput. 9(2–3), 251–268 (2002)

46. A. Delvacq, P. Delisle, M. Gravel, M. Krajecki, Parallel ant colony optimization on graphics
processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

47. M.L. den Besten, T. Stützle, M. Dorigo, Ant colony optimization for the total weighted tardi-
ness problem, in Proceedings of PPSN-VI, Sixth International Conference on Parallel Prob-
lem Solving from Nature, ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.
Merelo, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1917 (Springer, Heidel-
berg, 2000), pp. 611–620

48. J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels, The self-organizing exploratory pattern
of the Argentine ant. J. Insect Behav. 3(2), 159–168 (1990)

49. G. Di Caro, Ant Colony Optimization and its application to adaptive routing in telecommu-
nication networks, PhD thesis, IRIDIA, Université Libre de Bruxelles, Brussels, 2004

50. G. Di Caro, M. Dorigo, AntNet: a mobile agents approach to adaptive routing, Technical
Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles, Brussels, 1997

51. G. Di Caro, M. Dorigo, Ant colonies for adaptive routing in packet-switched communications
networks, in Proceedings of PPSN-V, Fifth International Conference on Parallel Problem
Solving from Nature, ed. by A. E. Eiben, T. Bäck, M. Schoenauer, H.-P. Schwefel. Lecture
Notes in Computer Science, vol. 1498 (Springer, Heidelberg, 1998), pp. 673–682

52. G. Di Caro, M. Dorigo, AntNet: distributed stigmergetic control for communications net-
works. J. Artif. Intell. Res. 9, 317–365 (1998)

53. G. Di Caro, M. Dorigo, Mobile agents for adaptive routing, in Proceedings of the 31st Inter-
national Conference on System Sciences (HICSS-31), ed. by H. El-Rewini. (IEEE Computer
Society Press, Los Alamitos, 1998), pp. 74–83

54. G. Di Caro, F. Ducatelle, L.M. Gambardella, AntHocNet: an adaptive nature-inspired al-
gorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455
(2005)

55. D. Díaz, P. Valledor, P. Areces, J. Rodil, M. Suárez, An ACO algorithm to solve an extended
cutting stock problem for scrap minimization in a bar mill, in Swarm Intelligence, 9th Inter-
national Conference, ANTS 2014, ed. by M. Dorigo, M. Birattari, S. Garnier, H. Hamann,
M. Montes de Oca, C. Solnon, T. Stützle. Lecture Notes in Computer Science, vol. 8667
(Springer, Heidelberg, 2014), pp. 13–24

56. K.F. Doerner, R.F. Hartl, M. Reimann, Are CompetAnts more competent for problem solv-
ing? the case of a multiple objective transportation problem. Cent. Eur. J. Oper. Res. Econ.
11(2), 115–141 (2003)

57. K.F. Doerner, D. Merkle, T. Stützle, Special issue on ant colony optimization. Swarm Intell.
3(1), 1–2 (2009)

58. B. Doerr, F. Neumann, D. Sudholt, C. Witt, On the runtime analysis of the 1-ANT ACO al-
gorithm, in Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings
(ACM press, New York, 2007), pp. 33–40

59. B. Doerr, F. Neumann, D. Sudholt, C. Witt, Runtime analysis of the 1-ant ant colony opti-
mizer. Theor. Comput. Sci. 412(17), 1629–1644 (2011)

60. A.V. Donati, R. Montemanni, N. Casagrande, A.E. Rizzoli, L.M. Gambardella, Time de-
pendent vehicle routing problem with a multi ant colony system. Eur. J. Oper. Res. 185(3),
1174–1191 (2008)

61. M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian), PhD thesis, Diparti-
mento di Elettronica, Politecnico di Milano, Italy, 1992

62. M. Dorigo, C. Blum, Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–
3), 243–278 (2005)

63. M. Dorigo, G. Di Caro, The Ant Colony Optimization meta-heuristic, in New Ideas in Opti-
mization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 11–32

64. M. Dorigo, L.M. Gambardella, Ant colonies for the traveling salesman problem. BioSystems
43(2), 73–81 (1997)

10 Ant Colony Optimization: Overview and Recent Advances 345

65. M. Dorigo, L.M. Gambardella, Ant Colony System: a cooperative learning approach to the
traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

66. M. Dorigo, T. Stützle, Ant Colony Optimization (MIT Press, Cambridge, 2004)
67. M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: an autocatalytic optimizing process,

Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy,
1991

68. M. Dorigo, V. Maniezzo, A. Colorni, Positive feedback as a search strategy, Technical Report
91–016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991

69. M. Dorigo, V. Maniezzo, A. Colorni, Ant System: optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

70. M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization.Artif.
Life 5(2), 137–172 (1999)

71. M. Dorigo, G. Di Caro, T. Stützle (eds.), Special issue on “Ant Algorithms”. Futur. Gener.
Comput. Syst. 16(8), 851–956 (2000)

72. M. Dorigo, L.M. Gambardella, M. Middendorf, T. Stützle (eds.), Special issue on “Ant Al-
gorithms and Swarm Intelligence”. IEEE Trans. Evol. Comput. 6(4), 317–365 (2002)

73. J. Dréo, P. Siarry, Continuous interacting ant colony algorithm based on dense heterarchy.
Futur. Gener. Comput. Syst. 20(5), 841–856 (2004)

74. F. Ducatelle, G. Di Caro, L.M. Gambardella, Using ant agents to combine reactive and proac-
tive strategies for routing in mobile ad hoc networks. Int. J. Comput. Intell. Appl. 5(2), 169–
184 (2005)

75. F. Ducatelle, G. Di Caro, L.M. Gambardella, Principles and applications of swarm intelli-
gence for adaptive routing in telecommunications networks. Swarm Intell. 4(3), 173–198
(2010)

76. C.J. Eyckelhof, M. Snoek, Ant systems for a dynamic TSP: ants caught in a traffic jam, in
Ant Algorithms: Third International Workshop, ANTS 2002, ed. by M. Dorigo, G. Di Caro,
M. Sampels. Lecture Notes in Computer Science, vol. 2463 (Springer, Heidelberg, 2002),
pp. 88–99

77. J.G. Falcón-Cardona, C.A. Coello Coello, A new indicator-based many-objective ant colony
optimizer for continuous search spaces. Swarm Intell. 11(1), 71–100 (2017)

78. M. Farooq, G. Di Caro, Routing protocols for next-generation intelligent networks inspired
by collective behaviors of insect societies, in Swarm Intelligence: Introduction and Appli-
cations, ed. by C. Blum, D. Merkle. Natural Computing Series (Springer, Berlin, 2008),
pp. 101–160

79. D. Favaretto, E. Moretti, P. Pellegrini, Ant colony system for a VRP with multiple time
windows and multiple visits. J. Interdiscip. Math. 10(2), 263–284 (2007)

80. S. Fernández, S. Álvarez, D. Díaz, M. Iglesias, B. Ena, Scheduling a galvanizing line by ant
colony optimization, in Swarm Intelligence, 9th International Conference, ANTS 2014, ed.
by M. Dorigo, M. Birattari, S. Garnier, H. Hamann, M. Montes de Oca, C. Solnon, T. Stützle.
Lecture Notes in Computer Science, vol. 8667 (Springer, Heidelberg, 2014), pp. 146–157

81. G. Fuellerer, K.F. Doerner, R.F. Hartl, M. Iori, Ant colony optimization for the two-
dimensional loading vehicle routing problem. Comput. Oper. Res. 36(3), 655–673 (2009)

82. L.M. Gambardella, M. Dorigo, Ant-Q: a reinforcement learning approach to the travel-
ing salesman problem. in Proceedings of the Twelfth International Conference on Machine
Learning (ML-95), ed. by A. Prieditis, S. Russell (Morgan Kaufmann Publishers, Palo Alto,
1995), pp. 252–260

83. L.M. Gambardella, M. Dorigo, Solving symmetric and asymmetric TSPs by ant colonies,
in Proceedings of the 1996 IEEE International Conference on Evolutionary Computation
(ICEC’96) (IEEE Press, Piscataway, 1996), pp. 622–627

84. L.M. Gambardella, M. Dorigo, Ant Colony System hybridized with a new local search for
the sequential ordering problem. INFORMS J. Comput. 12(3), 237–255 (2000)

85. L.M. Gambardella, É.D. Taillard, G. Agazzi, MACS-VRPTW: a multiple ant colony sys-
tem for vehicle routing problems with time windows, in New Ideas in Optimization, ed. by
D. Corne, M. Dorigo, F. Glover (McGraw Hill, London, 1999), pp. 63–76

346 M. Dorigo and T. Stützle

86. L.M. Gambardella, R. Montemanni, D. Weyland, Coupling ant colony systems with strong
local searches. Eur. J. Oper. Res. 220(3), 831–843 (2012)

87. C. García-Martínez, O. Cordón, F. Herrera, A taxonomy and an empirical analysis of multiple
objective ant colony optimization algorithms for the bi-criteria TSP. Eur. J. Oper. Res. 180(1),
116–148 (2007)

88. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness (Freeman, San Francisco, 1979)

89. S. Goss, S. Aron, J.L. Deneubourg, J.M. Pasteels, Self-organized shortcuts in the Argentine
ant. Naturwissenschaften 76(12), 579–581 (1989)

90. G.D. Guerrero, J.M. Cecilia, A. Llanes, J.M. García, M. Amos, M. Ujaldón, Comparative
evaluation of platforms for parallel ant colony optimization. J. Supercomput. 69(1), 318–329
(2014)

91. M. Guntsch, M. Middendorf, Pheromone modification strategies for ant algorithms applied
to dynamic TSP, in Applications of Evolutionary Computing: Proceedings of EvoWorkshops
2001, ed. by E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R.
Raidl, H. Tijink. Lecture Notes in Computer Science, vol. 2037 (Springer, Heidelberg, 2001),
pp. 213–222

92. M. Guntsch, M. Middendorf, A population based approach for ACO, in Applications of Evo-
lutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim, ed.
by S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, G.R. Raidl. Lecture Notes in Computer
Science, vol. 2279 (Springer, Heidelberg, 2002), pp. 71–80

93. W.J. Gutjahr, A Graph-based Ant System and its convergence. Futur. Gener. Comput. Syst.
16(8), 873–888 (2000)

94. W.J. Gutjahr, ACO algorithms with guaranteed convergence to the optimal solution. Inf.
Process. Lett. 82(3), 145–153 (2002)

95. W.J. Gutjahr, S-ACO: an ant-based approach to combinatorial optimization under uncer-
tainty, in Ant Colony Optimization and Swarm Intelligence: 4th International Workshop,
ANTS 2004, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari,
C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004),
pp. 238–249

96. W.J. Gutjahr, On the finite-time dynamics of ant colony optimization. Methodol. Comput.
Appl. Probab. 8(1), 105–133 (2006)

97. W.J. Gutjahr, Mathematical runtime analysis of ACO algorithms: survey on an emerging
issue. Swarm Intell. 1(1), 59–79 (2007)

98. W.J. Gutjahr, First steps to the runtime complexity analysis of ant colony optimization. Com-
put. Oper. Res. 35(9), 2711–2727 (2008)

99. W.J. Gutjahr, G. Sebastiani, Runtime analysis of ant colony optimization with best-so-far
reinforcement. Methodol. Comput. Appl. Probab. 10(3), 409–433 (2008)

100. R. Hadji, M. Rahoual, E. Talbi, V. Bachelet, Ant colonies for the set covering problem, in
Abstract proceedings of ANTS 2000 – From Ant Colonies to Artificial Ants: Second Interna-
tional Workshop on Ant Algorithms, ed. by M. Dorigo, M. Middendorf, T. Stützle (Université
Libre de Bruxelles, Brussels, 2000), pp. 63–66

101. H. Hernández, C. Blum, Ant colony optimization for multicasting in static wireless ad-hoc
networks. Swarm Intell. 3(2), 125–148 (2009)

102. S. Iredi, D. Merkle, M. Middendorf, Bi-criterion optimization with multi colony ant al-
gorithms, in First International Conference on Evolutionary Multi-Criterion Optimization,
(EMO’01), ed. by E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne. Lecture
Notes in Computer Science, vol. 1993 (Springer, Heidelberg, 2001), pp. 359–372

103. D.S. Johnson, L.A. McGeoch, The travelling salesman problem: a case study in local opti-
mization, in Local Search in Combinatorial Optimization, ed. by E.H.L. Aarts, J.K. Lenstra
(Wiley, Chichester, 1997), pp. 215–310

104. M. Jünger, G. Reinelt, S. Thienel, Provably good solutions for the traveling salesman prob-
lem. Z. Oper. Res. 40(2), 183–217 (1994)

10 Ant Colony Optimization: Overview and Recent Advances 347

105. M. Khichane, P. Albert, C. Solnon, Integration of ACO in a constraint programming lan-
guage, in Ant Colony Optimization and Swarm Intelligence, 6th International Conference,
ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Winfield.
Lecture Notes in Computer Science, vol. 5217 (Springer, Heidelberg, 2008), pp. 84–95

106. O. Korb, T. Stützle, T.E. Exner, Application of ant colony optimization to structure-based
drug design, in Ant Colony Optimization and Swarm Intelligence, 5th International Work-
shop, ANTS 2006, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc, T. Stützle, A.F.T. Win-
field. Lecture Notes in Computer Science, vol. 4150 (Springer, Heidelberg, 2006), pp. 247–
258

107. O. Korb, T. Stützle, T.E. Exner, An ant colony optimization approach to flexible protein-
ligand docking. Swarm Intell. 1(2), 115–134 (2007)

108. T. Kötzing, F. Neumann, H. Röglin, C. Witt, Theoretical analysis of two ACO approaches
for the traveling salesman problem. Swarm Intell. 6(1), 1–21 (2012)

109. U. Kumar, Jayadeva, S. Soman, Enhancing IACOR local search by Mtsls1-BFGS for con-
tinuous global optimization, in Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2015, ed. by S. Silva, A.I. Esparcia-Alcázar (ACM Press, New York,
2015), pp. 33–40

110. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, The Travelling Salesman
Problem (Wiley, Chichester, 1985), pp. 33–40

111. G. Leguizamón, Z. Michalewicz, A new version of Ant System for subset problems, in Pro-
ceedings of the 1999 Congress on Evolutionary Computation (CEC’99) (IEEE Press, Piscat-
away, 1999), pp. 1459–1464

112. L. Lessing, I. Dumitrescu, T. Stützle, A comparison between ACO algorithms for the set
covering problem, in Ant Colony Optimization and Swarm Intelligence: 4th International
Workshop, ANTS 2004, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Bir-
ratari, C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004),
pp. 1–12

113. T. Liao, M. Montes de Oca, D. Aydin, T. Stützle, M. Dorigo, An incremental ant colony algo-
rithm with local search for continuous optimization, in Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2011, ed. by N. Krasnogor, P.L. Lanzi (ACM
Press, New York, 2011), pp. 125–132

114. T. Liao, M. Montes de Oca, T. Stützle, M. Dorigo, A unified ant colony optimization algo-
rithm for continuous optimization. Eur. J. Oper. Res. 234(3), 597–609 (2014)

115. T. Liao, K. Socha, M. Montes de Oca, T. Stützle, M. Dorigo, Ant colony optimization for
mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18(4), 503–518 (2014)

116. A. Lissovoi, C. Witt, Runtime analysis of ant colony optimization on dynamic shortest path
problems. Theor. Comput. Sci. 561, 73–85 (2015)

117. M. López-Ibáñez, C. Blum, Beam-ACO for the travelling salesman problem with time win-
dows. Comput. Oper. Res. 37(9), 1570–1583 (2010)

118. M. López-Ibáñez, T. Stützle, The automatic design of multi-objective ant colony optimization
algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

119. M. López-Ibáñez, T. Stützle, An experimental analysis of design choices of multi-objective
ant colony optimization algorithms. Swarm Intell. 6(3), 207–232 (2012)

120. M. López-Ibáñez, L. Paquete, T. Stützle, On the design of ACO for the biobjective quadratic
assignment problem, in ANTS’2004, Fourth International Workshop on Ant Algorithms and
Swarm Intelligence, ed. by M. Dorigo, L. Gambardella, F. Mondada, T. Stützle, M. Birratari,
C. Blum. Lecture Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp.
214–225

121. M. López-Ibáñez, C. Blum, D. Thiruvady, A.T. Ernst, B. Meyer, Beam-ACO based on
stochastic sampling for makespan optimization concerning the TSP with time windows, in
Evolutionary Computation in Combinatorial Optimization, ed. by C. Cotta, P. Cowling. Lec-
ture Notes in Computer Science, vol. 5482 (Springer, Heidelberg, 2009), pp. 97–108

122. M. López-Ibáñez, J. Dubois-Lacoste, L. Perez Cáceres, T. Stützle, M. Birattari, The irace
package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–
58 (2016)

348 M. Dorigo and T. Stützle

123. M. Manfrin, M. Birattari, T. Stützle, M. Dorigo, Parallel ant colony optimization for the
traveling salesman problem, in ed. by Ant Colony Optimization and Swarm Intelligence: 5th
International Workshop, ANTS 2006, ed. by M. Dorigo, L.M. Gambardella, M. Birattari,
A. Martinoli, R. Poli, T. Stützle. Lecture Notes in Computer Science, vol. 4150 (Springer,
Heidelberg, 2006), pp. 224–234

124. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem, Technical Report CSR 98-1, Scienze dell’Informazione, Uni-
versitá di Bologna, Sede di Cesena, Italy, 1998

125. V. Maniezzo, Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

126. V. Maniezzo, A. Carbonaro, An ANTS heuristic for the frequency assignment problem. Fu-
tur. Gener. Comput. Syst. 16(8), 927–935 (2000)

127. D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Baesens, Classification
with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)

128. F. Massen, Y. Deville, P. van Hentenryck, Pheromone-based heuristic column generation for
vehicle routing problems with black box feasibility, in Integration of AI and OR Techniques
in Contraint Programming for Combinatorial Optimization Problems, CPAIOR 2012, ed.
by N. Beldiceanu, N. Jussien, E. Pinson. Lecture Notes in Computer Science, vol. 7298
(Springer, Berlin, 2012), pp. 260–274

129. F. Massen, M. López-Ibá nez, T. Stützle, Y. Deville, Experimental analysis of pheromone-
based heuristic column generation using irace, in Hybrid Metaheuristics, ed. by M. J. Blesa,
C. Blum, P. Festa, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 7919
(Springer, Berlin, 2013), pp. 92–106

130. M. Mavrovouniotis, S. Yang, Ant colony optimization with immigrants schemes for the dy-
namic travelling salesman problem with traffic factors. Appl. Soft Comput. 13(10), 4023–
4037 (2013)

131. M. Mavrovouniotis, S. Yang, Ant algorithms with immigrants schemes for the dynamic ve-
hicle routing problem. Inf. Sci. 294, 456–477 (2015)

132. M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm intelligence for dynamic optimiza-
tion: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

133. M. Mavrovouniotis, F. Martins Müller, S. Yang, Ant colony optimization with local search
for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017)

134. D. Merkle, M. Middendorf, Modeling the dynamics of ant colony optimization. Evol. Com-
put. 10(3), 235–262 (2002)

135. D. Merkle, M. Middendorf, Ant colony optimization with global pheromone evaluation for
scheduling a single machine. Appl. Intell. 18(1), 105–111 (2003)

136. D. Merkle, M. Middendorf, H. Schmeck, Ant colony optimization for resource-constrained
project scheduling, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2000), ed. by D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, H.-G.
Beyer (Morgan Kaufmann Publishers, San Francisco, 2000), pp. 893–900

137. D. Merkle, M. Middendorf, H. Schmeck, Ant colony optimization for resource-constrained
project scheduling. IEEE Trans. Evol. Comput. 6(4), 333–346 (2002)

138. N. Meuleau, M. Dorigo, Ant colony optimization and stochastic gradient descent. Artif. Life
8(2), 103–121 (2002)

139. B. Meyer, A. Ernst, Integrating ACO and constraint propagation, in Ant Colony Optimization
and Swarm Intelligence, 4th International Workshop, ANTS 2004, M. Dorigo, M. Birattari,
C. Blum, L.M. Gambardella, F. Mondada, T. Stützle. Lecture Notes in Computer Science,
vol. 3172 (Springer, Heidelberg, 2004), pp. 166–177

140. R. Michel, M. Middendorf, An ACO algorithm for the shortest supersequence problem, in
New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw Hill, London,
1999), pp. 51–61

141. M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant algorithms. J. Heuristics 8(3),
305–320 (2002)

142. N. Monmarché, G. Venturini, M. Slimane, On how Pachycondyla apicalis ants suggest a new
search algorithm. Futur. Gener. Comput. Syst. 16(8), 937–946 (2000)

10 Ant Colony Optimization: Overview and Recent Advances 349

143. R. Montemanni, L.M. Gambardella, A.E. Rizzoli, A.V. Donati, Ant colony system for a
dynamic vehicle routing problem. J. Comb. Optim. 10(4), 327–343 (2005)

144. T.E. Morton, R.M. Rachamadugu, A. Vepsalainen, Accurate myopic heuristics for tardi-
ness scheduling, GSIA Working Paper 36-83-84, Carnegie Mellon University, Pittsburgh,
PA, 1984

145. F. Neumann, D. Sudholt, C. Witt, Analysis of different MMAS ACO algorithms on unimodal
functions and plateaus. Swarm Intell. 3(1), 35–68 (2009)

146. F. Neumann, C. Witt, Algorithmica 54, 243 (2009). https://doi.org/10.1007/
s00453-007-9134-2

147. F. Neumann, C. Witt, Ant colony optimization and the minimum spanning tree problem.
Theor. Comput. Sci. 411(25), 2406–2413 (2010)

148. F.E.B. Otero, A.A. Freitas, C.G. Johnson, cAnt-Miner: an ant colony classification algorithm
to cope with continuous attributes, in Ant Colony Optimization and Swarm Intelligence, 6th
International Workshop, ANTS 2008, ed. by M. Dorigo, M. Birattari, C. Blum, M. Clerc,
T. Stützle, A.F.T. Winfield. Lecture Notes in Computer Science, vol. 5217 (Springer, Heidel-
berg, 2008), pp. 48–59

149. P.S. Ow, T.E. Morton, Filtered beam search in scheduling. Int. J. Prod. Res. 26(1), 297–307
(1988)

150. C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994)
151. R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony optimization algo-

rithm. IEEE Trans. Evol. Comput. 6(4), 321–332 (2002)
152. C. Rajendran, H. Ziegler, Ant-colony algorithms for permutation flowshop scheduling to

minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 155(2), 426–438 (2004)
153. M. Randall, A. Lewis, A parallel implementation of ant colony optimization. J. Parallel Dis-

trib. Comput. 62(9), 1421–1432 (2002)
154. M. Reimann, K. Doerner, R.F. Hartl, D-ants: savings based ants divide and conquer the ve-

hicle routing problems. Comput. Oper. Res. 31(4), 563–591 (2004)
155. G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications. Lecture

Notes in Computer Science, vol. 840 (Springer, Heidelberg, 1994)
156. Z.-G. Ren, Z.-R. Feng, L.-J. Ke, Z.-J. Zhang, New ideas for applying ant colony optimization

to the set covering problem. Comput. Ind. Eng. 58(4), 774–784 (2010)
157. A.E. Rizzoli, R. Montemanni, E. Lucibello, L.M. Gambardella, Ant colony optimization for

real-world vehicle routing problems. From theory to applications. Swarm Intell. 1(2), 135–
151 (2007)

158. R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

159. R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz, Ant-based load balancing in
telecommunications networks. Adapt. Behav. 5(2), 169–207 (1996)

160. A. Shmygelska, H.H. Hoos, An ant colony optimisation algorithm for the 2D and 3D hy-
drophobic polar protein folding problem. BMC Bioinf. 6, 30 (2005)

161. K.M. Sim, W.H. Sun, Ant colony optimization for routing and load-balancing: Survey and
new directions. IEEE Trans. Syst. Man Cybern. Syst. Hum. 33(5), 560–572 (2003)

162. K. Socha, ACO for continuous and mixed-variable optimization, in Ant Colony Optimiza-
tion and Swarm Intelligence: 4th International Workshop, ANTS 2004, ed. by M. Dorigo,
L. Gambardella, F. Mondada, T. Stützle, M. Birratari, C. Blum. Lecture Notes in Computer
Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 25–36

163. K. Socha, C. Blum, An ant colony optimization algorithm for continuous optimization: an
application to feed-forward neural network training. Neural Comput. Appl. 16(3), 235–248
(2007)

164. K. Socha, M. Dorigo, Ant colony optimization for mixed-variable optimization problems,
Technical Report TR/IRIDIA/2007-019, IRIDIA, Université Libre de Bruxelles, Brussels,
2007

165. K. Socha, M. Dorigo, Ant colony optimization for continuous domains. Eur. J. Oper. Res.
185(3), 1155–1173 (2008)

https://doi.org/10.1007/s00453-007-9134-2
https://doi.org/10.1007/s00453-007-9134-2

350 M. Dorigo and T. Stützle

166. K. Socha, J. Knowles, M. Sampels, AMAX − MIN Ant System for the university course
timetabling problem, in Ant Algorithms: Third International Workshop, ANTS 2002, ed.
by M. Dorigo, G. Di Caro, M. Sampels. Lecture Notes in Computer Science, vol. 2463
(Springer, Heidelberg, 2002), pp. 1–13

167. K. Socha, M. Sampels, M. Manfrin, Ant algorithms for the university course timetabling
problem with regard to the state-of-the-art, in Applications of Evolutionary Computing, Pro-
ceedings of EvoWorkshops 2003, ed. by G.R. Raidl, J.-A. Meyer, M.Middendorf, S. Cagnoni,
J.J.R. Cardalda, D.W. Corne, J. Gottlieb, A. Guillot, E. Hart, C.G. Johnson, E. Marchiori.
Lecture Notes in Computer Science, vol. 2611 (Springer, Heidelberg, 2003), pp. 334–345

168. C. Solnon, Combining two pheromone structures for solving the car sequencing problem
with ant colony optimization. Eur. J. Oper. Res. 191(3), 1043–1055 (2008)

169. C. Solnon, S. Fenet, A study of ACO capabilities for solving the maximum clique problem.
J. Heuristics 12(3), 155–180 (2006)

170. T. Stützle, An ant approach to the flow shop problem, in Proceedings of the Sixth European
Congress on Intelligent Techniques & Soft Computing (EUFIT’98), vol. 3 (Verlag Mainz,
Wissenschaftsverlag, Aachen, 1998), pp. 1560–1564

171. T. Stützle, Parallelization strategies for ant colony optimization, in Proceedings of PPSN-V,
Fifth International Conference on Parallel Problem Solving from Nature, ed. by A.E. Eiben,
T. Bäck, M. Schoenauer, H.-P. Schwefel. Lecture Notes in Computer Science, vol. 1498
(Springer, Heidelberg, 1998), pp. 722–731

172. T. Stützle, Local Search Algorithms for Combinatorial Problems: Analysis, Improvements,
and New Applications. Dissertationen zur künstlichen Intelligenz, vol. 220 (Infix, Sankt Au-
gustin, 1999)

173. T. Stützle, M. Dorigo, A short convergence proof for a class of ACO algorithms. IEEE Trans.
Evol. Comput. 6(4), 358–365 (2002)

174. T. Stützle, H.H. Hoos, Improving the Ant System: A detailed report on the MAX–MIN
Ant System, Technical Report AIDA–96–12, FG Intellektik, FB Informatik, TU Darmstadt,
1996

175. T. Stützle, H.H. Hoos, The MAX–MIN Ant System and local search for the traveling
salesman problem, in Proceedings of the 1997 IEEE International Conference on Evolution-
ary Computation (ICEC’97), ed. by T. Bäck, Z. Michalewicz, X. Yao (IEEE Press, Piscat-
away, 1997), pp. 309–314

176. T. Stützle, H.H. Hoos,MAX–MIN Ant System. Futur. Gener. Comput. Syst. 16(8), 889–
914 (2000)

177. D. Sudholt, Theory of swarm intelligence: tutorial at GECCO 2017, in Genetic and Evolu-
tionary Computation Conference, Berlin, July 15–19, 2017, Companion Material Proceed-
ings, ed. by P.A.N. Bosman (ACM Press, New York, 2017), pp. 902–921

178. D. Sudholt, C. Thyssen, Running time analysis of ant colony optimization for shortest path
problems. J. Discret. Algorithms 10, 165–180 (2012)

179. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,
1998)

180. E.-G. Talbi, O.H. Roux, C. Fonlupt, D. Robillard, Parallel ant colonies for the quadratic
assignment problem. Futur. Gener. Comput. Syst. 17(4), 441–449 (2001)

181. S. Tsutsui, Ant colony optimisation for continuous domains with aggregation pheromones
metaphor, in Proceedings of the 5th International Conference on Recent Advances in Soft
Computing (RASC-04), Nottingham (2004), pp. 207–212

182. S. Tsutsui, cAS: ant colony optimization with cunning ants, in Parallel Problem Solving
from Nature–PPSN IX, 9th International Conference, ed. by T.P. Runarsson, H.-G. Beyer,
E.K. Burke, J.J. Merelo Guervós, L.D. Whitley, X. Yao. Lecture Notes in Computer Science,
vol. 4193 (Springer, Heidelberg, 2006), pp. 162–171

183. S. Tsutsui, An enhanced aggregation pheromone system for real-parameter optimization in
the ACO metaphor, in Ant Colony Optimization and Swarm Intelligence: 5th International
Workshop, ANTS 2006, ed. by M. Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli,
R. Poli, T. Stützle. Lecture Notes in Computer Science, vol. 4150 (Springer, Berlin, 2006),
pp. 60–71

10 Ant Colony Optimization: Overview and Recent Advances 351

184. C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, M. Birattari, An analysis of communica-
tion policies for homogeneous multi-colony ACO algorithms. Inf. Sci. 180(12), 2390–2404
(2010)

185. W. Wiesemann, T. Stützle, Iterated ants: an experimental study for the quadratic assignment
problem. in Ant Colony Optimization and Swarm Intelligence: 5th International Workshop,
ANTS 2006, ed. by M. Dorigo, L.M. Gambardella, M. Birattari, A. Martinoli, R. Poli, T. Stüt-
zle. Lecture Notes in Computer Science, vol. 4150 (Springer, Heidelberg, 2006), pp. 179–190

186. M. Yagiura, M. Kishida, T. Ibaraki, A 3-flip neighborhood local search for the set covering
problem. Eur. J. Oper. Res. 172(2), 472–499 (2006)

187. Q. Yang, W.-N. Chen, Z. Yu, T. Gu, Y. Li, H. Zhang, J. Zhang, Adaptive multimodal contin-
uous ant colony optimization. IEEE Trans. Evol. Comput. 21(2), 191–205 (2017)

188. M. Yannakakis, Computational complexity, in Local Search in Combinatorial Optimization,
ed. by E.H.L. Aarts, J.K. Lenstra (Wiley, Chichester, 1997), pp. 19–55

189. Z. Yuan, A. Fügenschuh, H. Homfeld, P. Balaprakash, T. Stützle, M. Schoch, Iterated greedy
algorithms for a real-world cyclic train scheduling problem, in Hybrid Metaheuristics, 5th
International Workshop, HM 2008, ed. by M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández,
J.E. Gallardo, A. Roli, M. Sampels. Lecture Notes in Computer Science, vol. 5296 (Springer,
Heidelberg, 2008), pp. 102–116

190. Y. Zhang, L.D. Kuhn, M.P.J. Fromherz, Improvements on ant routing for sensor networks, in
Ant Colony Optimization and Swarm Intelligence: 4th International Workshop, ANTS 2004,
ed. by M. Dorigo, L.M. Gambardella, F. Mondada, T. Stützle, M. Birattari, C. Blum. Lecture
Notes in Computer Science, vol. 3172 (Springer, Heidelberg, 2004), pp. 154–165

191. M. Zlochin, M. Birattari, N. Meuleau, M. Dorigo, Model-based search for combinatorial
optimization: a critical survey. Ann. Oper. Res. 131(1–4), 373–395 (2004)

	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Contributors
	1 Simulated Annealing: From Basics to Applications
	1.1 Introduction
	1.2 Basics
	1.2.1 Local Search (or Monte Carlo) Algorithms
	1.2.2 Metropolis Algorithm
	1.2.3 Simulated Annealing (SA) Algorithm

	1.3 Theory
	1.3.1 Statistical Equilibrium
	1.3.2 Asymptotic Convergence

	1.4 Practical Issues
	1.4.1 Finite-Time Approximation
	1.4.2 Geometric Cooling
	1.4.3 Cooling in Polynomial Time
	1.4.3.1 Initial Temperature c0
	1.4.3.2 Decay of the Control Parameter
	1.4.3.3 Length of Markov Chains
	1.4.3.4 Stopping Criterion
	1.4.3.5 Summary

	1.4.4 Simulation-Based Evaluation

	1.5 Illustrative Applications
	1.5.1 Knapsack Problem
	1.5.1.1 Mathematical Modeling
	1.5.1.2 Simulated Annealing Implementation

	1.5.2 Traveling Salesman Problem
	1.5.2.1 Mathematical Modeling
	1.5.2.2 Simulated Annealing Implementation

	1.6 Large-Scale Aircraft Trajectory Planning
	1.6.1 Mathematical Modeling
	1.6.2 Computational Experiments with SA

	1.7 Conclusion
	References

	2 Tabu Search
	2.1 Introduction
	2.2 The Classical Vehicle Routing Problem
	2.3 Basic Concepts
	2.3.1 Historical Background
	2.3.2 Tabu Search
	2.3.3 Search Space and Neighborhood Structure
	2.3.4 Tabus
	2.3.5 Aspiration Criteria
	2.3.6 A Template for Simple Tabu Search
	2.3.7 Termination Criteria
	2.3.8 Probabilistic TS and Candidate Lists

	2.4 Intermediate Concepts
	2.4.1 Intensification
	2.4.2 Diversification
	2.4.3 Allowing Infeasible Solutions
	2.4.4 Surrogate and Auxiliary Objectives

	2.5 Advanced Concepts
	2.6 Key References
	2.7 Tricks of the Trade
	2.7.1 Getting Started
	2.7.2 More Tips
	2.7.3 Additional Tips for Probabilistic TS
	2.7.4 Parameter Calibration and Computational Testing

	2.8 Conclusion
	References

	3 Variable Neighborhood Search
	3.1 Introduction
	3.2 Basic Schemes
	3.3 Some Extensions
	3.4 Changing Formulation Within VNS
	3.4.1 Variable Neighborhood-Based Formulation Space Search
	3.4.2 Variable Formulation Search

	3.5 Primal-Dual VNS
	3.6 VNS for Mixed Integer Linear Programming
	3.6.1 Variable Neighborhood Branching
	3.6.2 VNDS Based Heuristics for MILP
	3.6.2.1 VNDS for 0-1 MILPs with Pseudo-Cuts
	3.6.2.2 A Double Decomposition Scheme
	3.6.2.3 Comparison

	3.7 Variable Neighborhood Search for Continuous Global Optimization
	3.8 Variable Neighborhood Programming (VNP): VNS for Automatic Programming
	3.9 Discovery Science
	3.10 Conclusions
	References

	4 Large Neighborhood Search
	4.1 Introduction
	4.1.1 Example Problems
	4.1.2 Neighborhood Search

	4.2 Large Neighborhood Search
	4.3 Adaptive Large Neighborhood Search
	4.3.1 Designing an ALNS Algorithm
	4.3.2 Properties of the ALNS Framework
	4.3.3 Relation to Other Metaheuristics
	4.3.4 Parallelism

	4.4 Applications of LNS and ALNS
	4.4.1 Vehicle Routing Applications
	4.4.2 Other Applications

	4.5 Very Large-Scale Neighborhood Search
	4.5.1 Variable-Depth Methods
	4.5.2 Network Flow-Based Improvement Algorithms
	4.5.2.1 Neighborhoods Defined by Cycles
	4.5.2.2 Neighborhoods Defined by Paths
	4.5.2.3 Neighborhoods Defined by Assignments and Matching

	4.5.3 Other VLSN Algorithms

	4.6 Conclusion
	References

	5 Iterated Local Search: Framework and Applications
	5.1 Introduction
	5.2 Iterating a Local Search
	5.2.1 General Framework
	5.2.2 Random Restart
	5.2.3 Searching in S*
	5.2.4 Iterated Local Search

	5.3 Getting High Performance
	5.3.1 Initial Solution
	5.3.2 Perturbation
	5.3.2.1 Perturbation Strength
	5.3.2.2 Adaptive Perturbations
	5.3.2.3 More Complex Perturbation Schemes
	5.3.2.4 Speed

	5.3.3 Acceptance Criterion
	5.3.3.1 Example 1: TSP
	5.3.3.2 Example 2: QAP

	5.3.4 Local Search
	5.3.5 Global Optimization of ILS

	5.4 Selected Applications of ILS
	5.4.1 ILS for the TSP
	5.4.2 ILS for Other Routing Problems
	5.4.3 ILS for Scheduling Problems
	5.4.4 ILS for Other Problems
	5.4.5 Summary

	5.5 Relation to Other Metaheuristics
	5.5.1 Neighborhood-Based Metaheuristics
	5.5.2 Multi-Start-Based Metaheuristics

	5.6 Conclusions
	References

	6 Greedy Randomized Adaptive Search Procedures: Advances and Extensions
	6.1 Introduction
	6.2 Construction of the Restricted Candidate List
	6.3 Alternative Construction Mechanisms
	6.3.1 Random Plus Greedy and Sampled Greedy Construction
	6.3.2 Reactive GRASP
	6.3.3 Cost Perturbations
	6.3.4 Bias Functions
	6.3.5 Intelligent Construction: Memory and Learning
	6.3.6 POP in Construction
	6.3.7 Lagrangean GRASP Heuristics
	6.3.7.1 Lagrangean Relaxation and Subgradient Optimization
	6.3.7.2 A Template for Lagrangean Heuristics
	6.3.7.3 Lagrangean GRASP

	6.4 Path-Relinking
	6.4.1 Forward Path-Relinking
	6.4.2 Backward Path-Relinking
	6.4.3 Back and Forward Path-Relinking
	6.4.4 Mixed Path-Relinking
	6.4.5 Truncated Path-Relinking
	6.4.6 Greedy Randomized Adaptive Path-Relinking
	6.4.7 Evolutionary Path-Relinking
	6.4.8 External Path-Relinking and Diversification

	6.5 Restart Strategies
	6.6 Extensions
	6.7 Applications
	6.8 Concluding Remarks
	References

	7 Intelligent Multi-Start Methods
	7.1 Introduction
	7.2 An Overview
	7.2.1 Memory Based Designs
	7.2.2 GRASP
	7.2.3 Constructive Designs
	7.2.4 Hybrid Designs
	7.2.5 Theoretical Analysis

	7.3 A Classification
	7.4 The Maximum Diversity Problem
	7.4.1 Multi-Start Without Memory (MSWoM)
	7.4.2 Multi-Start With Memory (MSWM)
	7.4.3 Experimental Results

	7.5 Conclusion
	References

	8 Next Generation Genetic Algorithms: A User'sGuide and Tutorial
	8.1 Introduction
	8.2 Classic Simple Genetic Algorithms (SGA)
	8.2.1 The Population and Selection
	8.2.2 Tournament Selection

	8.3 Steady State and Monotonic Genetic Algorithms
	8.4 The Demise of Hyperplane Sampling Theory
	8.5 Gray Box Optimization
	8.6 The k-Bounded Pseudo-Boolean Functions
	8.6.1 Tunneling Between Optima
	8.6.2 How to Select Improving Moves in Constant Time
	8.6.3 Looking Multiple Steps Ahead

	8.7 The Traveling Saleman (TSP): Tunneling Between Optima
	8.8 An Iterated Hybrid Genetic Algorithm
	8.8.1 The Limitations of Tunneling and Partition Crossover

	8.9 The EAX Algorithms for the TSP
	8.10 Massively Parallel Genetic Algorithms
	8.11 Conclusions
	References

	9 An Accelerated Introduction to Memetic Algorithms
	9.1 Introduction and Historical Notes
	9.2 Memetic Algorithms
	9.2.1 Basic Concepts
	9.2.2 Search Landscapes
	9.2.3 Local vs. Population-Based Search
	9.2.4 Recombination
	9.2.5 A Memetic Algorithm Template
	9.2.6 Designing an Effective Memetic Algorithm

	9.3 Algorithmic Extensions of Memetic Algorithms
	9.3.1 Multiobjective Memetic Algorithms
	9.3.2 Continuous Optimization
	9.3.3 Memetic Computing Approaches
	9.3.4 Self- Memetic Algorithms
	9.3.5 Memetic Algorithms and Complete Techniques

	9.4 Applications of Memetic Algorithms
	9.5 Conclusions
	References

	10 Ant Colony Optimization: Overview and Recent Advances
	10.1 Introduction
	10.2 Approximate Approaches
	10.2.1 Construction Algorithms
	10.2.2 Local Search Algorithms

	10.3 The ACO Metaheuristic
	10.3.1 Problem Representation
	10.3.2 The Metaheuristic

	10.4 History
	10.4.1 Biological Analogy
	10.4.2 Historical Development
	10.4.2.1 The First ACO Algorithm: Ant System and the TSP
	10.4.2.2 Ant System and Its Extensions
	10.4.2.3 Applications to Dynamic Network Routing Problems
	10.4.2.4 Towards the ACO Metaheuristic

	10.5 Applications
	10.5.1 Example 1: The Single Machine Total Weighted Tardiness Scheduling Problem (SMTWTP)
	10.5.2 Example 2: The Set Covering Problem (SCP)
	10.5.3 Example 3: AntNet for Network Routing Applications
	10.5.4 Applications of the ACO Metaheuristic
	10.5.5 Main Application Principles
	10.5.5.1 Definition of Solution Components and Pheromone Trails
	10.5.5.2 Balancing Exploration and Exploitation
	10.5.5.3 ACO and Local Search
	10.5.5.4 Heuristic Information

	10.6 Developments
	10.6.1 Non-standard Applications of ACO
	10.6.1.1 Multi-Objective Optimization
	10.6.1.2 Dynamic Versions of NP-hard Problems
	10.6.1.3 Stochastic Optimization Problems
	10.6.1.4 Continuous Optimization

	10.6.2 Algorithmic Developments
	10.6.2.1 Hybridizations of ACO with Other Metaheuristics
	10.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques
	10.6.2.3 Combinations of ACO with Constraint and Integer Programming Techniques

	10.6.3 Parallel Implementations
	10.6.4 Theoretical Results

	10.7 Conclusions
	References

	11 Swarm Intelligence
	11.1 Introduction
	11.2 Biological Examples
	11.3 Particle Swarm Optimization
	11.3.1 Inertia Weighted and Constricted PSOs
	11.3.2 Memory-Swarm vs. Explorer-Swarm
	11.3.3 Particle Dynamics Through a Simplified Example
	11.3.3.1 One Particle
	11.3.3.2 Two Particles

	11.4 PSO Variants
	11.4.1 Fully Informed PSO
	11.4.2 Bare-Bones PSO
	11.4.3 Binary PSO
	11.4.4 Discrete PSO
	11.4.5 SPSO-2011
	11.4.6 Other PSO Variants

	11.5 PSO Applications
	11.5.1 Multiobjective Optimization
	11.5.2 Optimization in Dynamic Environments
	11.5.3 Multimodal Optimization

	11.6 PSO Theoretical Works
	11.7 Other SI Applications
	11.7.1 Swarm Robotics
	11.7.2 Swarm Intelligence in Data Mining

	11.8 Conclusion
	References

	12 Metaheuristic Hybrids
	12.1 Introduction
	12.2 Classification
	12.3 Finding Initial or Improved Solutions by Embedded Methods
	12.4 Multi-Stage Approaches
	12.5 Decoder-Based Approaches
	12.6 Solution Merging
	12.7 Strategic Guidance of Metaheuristics by Other Techniques
	12.7.1 Using Information Gathered by Other Algorithms
	12.7.2 Enhancing the Functionality of Metaheuristics

	12.8 Strategic Guidance of Other Techniques by Metaheuristics
	12.9 Decomposition Approaches
	12.9.1 Exploring Large Neighborhoods
	12.9.2 Hybrids Based on MIP Decomposition Techniques
	12.9.2.1 Lagrangian Decomposition
	12.9.2.2 Column Generation
	12.9.2.3 Benders Decomposition

	12.9.3 Using Metaheuristics for Constraint Propagation

	12.10 Summary and Conclusions
	References

	13 Parallel Metaheuristics and Cooperative Search
	13.1 Introduction
	13.2 Metaheuristics and Parallelism
	13.2.1 Sources of Parallelism
	13.2.2 Performance Measures
	13.2.3 Parallel Metaheuristics Strategies

	13.3 Low-Level Parallelization Strategies
	13.4 Domain Decomposition
	13.5 Independent Multi-Search
	13.6 Cooperative Search
	13.6.1 pC/KS Synchronous Cooperative Strategies
	13.6.2 pC/C Asynchronous Cooperative Strategies

	13.7 pC/KC Cooperation Strategies: Creating New Knowledge
	13.8 Conclusions
	References

	14 A Classification of Hyper-Heuristic Approaches: Revisited
	14.1 Introduction
	14.2 Previous Classifications
	14.3 The Proposed Classification and Definition
	14.4 Heuristic Selection Methodologies
	14.4.1 Approaches Based on Construction Low-Level Heuristics
	14.4.1.1 Representative Examples

	14.4.2 Approaches Based on Perturbation Low-Level Heuristics
	14.4.2.1 Representative Examples

	14.4.3 Recent Research Trends
	14.4.3.1 Software Frameworks
	14.4.3.2 Multi-Objective
	14.4.3.3 Theoretical and Foundational Studies

	14.5 Heuristic Generation Methodologies
	14.5.1 Representative Examples
	14.5.2 Some Recent Examples

	14.6 Conclusions
	References

	15 Reactive Search Optimization: Learning While Optimizing
	15.1 Introduction
	15.2 Different Reaction Possibilities
	15.2.1 Reactive Prohibitions
	15.2.2 Reacting on the Neighborhood
	15.2.3 Reacting on the Annealing Schedule
	15.2.4 Reacting on the Objective Function
	15.2.5 Reactive Schemes in Population-Based Methods

	15.3 Applications of Reactive Search Optimization
	15.3.1 Classic Combinatorial Tasks
	15.3.1.1 Knapsack and Related Problems
	15.3.1.2 Problems on Graphs
	15.3.1.3 Vehicle Routing Problems
	15.3.1.4 Satisfiability and Related Problems

	15.3.2 Neural Networks and Learning Systems
	15.3.3 Continuous Optimization
	15.3.4 Real-World Applications
	15.3.4.1 Power Distribution Networks
	15.3.4.2 Industrial Production and Delivery
	15.3.4.3 Telecommunication Networks
	15.3.4.4 Vehicle Routing and Dispatching
	15.3.4.5 Industrial and Architectural Design
	15.3.4.6 Biology

	15.4 Conclusion
	References

	16 Stochastic Search in Metaheuristics
	16.1 Introduction
	16.2 General Framework
	16.3 Convergence Results
	16.4 Runtime Results
	16.4.1 Some Methods for Runtime Analysis
	16.4.2 Instance Difficulty and Phase Transitions
	16.4.3 Some Notes on Special Runtime Results

	16.5 Parameter Choice
	16.6 No-Free-Lunch Theorems
	16.7 Fitness Landscape Analysis
	16.8 Black-Box Optimization
	16.9 Stochastic Search Under Noise
	16.10 Stochastic Search and Robustness
	16.11 Conclusions
	References

	17 Automated Design of Metaheuristic Algorithms
	17.1 Introduction
	17.2 Automatic Algorithm Configuration
	17.2.1 Design Choices for Metaheuristic Algorithms
	17.2.2 Parameters and the Configuration Problem
	17.2.3 Automatic Algorithm Configuration
	17.2.3.1 ParamILS
	17.2.3.2 SMAC
	17.2.3.3 irace

	17.3 Towards Metaheuristic Algorithm Design
	17.3.1 Basic Uses of Configurators
	17.3.2 Advanced Uses of Configurators

	17.4 Examples
	17.4.1 Improving the Anytime Behavior of Metaheuristics
	17.4.2 Multi-Objective Ant Colony Optimization
	17.4.3 Automated Design of Hybrid Stochastic Local Search Algorithms

	17.5 Relevant Connections and Related Work
	17.5.1 Online Parameter Control
	17.5.2 Algorithm Portfolios and Algorithm Selection
	17.5.3 Automated Design of Metaheuristics/Metaheuristic Algorithm
	17.5.4 Other Related Work

	17.6 Conclusions
	References

	18 Computational Comparison of Metaheuristics
	18.1 Introduction
	18.2 The Testbed
	18.2.1 Using Existing Testbeds
	18.2.2 Developing New Testbeds
	18.2.2.1 Goals in Creating the Testbed
	18.2.2.2 Accessibility of New Test Instances
	18.2.2.3 Problem Instances with Known Optimal Solutions

	18.2.3 Problem Instance Classification

	18.3 Parameters
	18.3.1 Parameter Space Visualization and Tuning
	18.3.2 Parameter Interactions
	18.3.3 Fair Testing Involving Parameters

	18.4 Solution Quality Comparisons
	18.4.1 Solution Quality Metrics
	18.4.2 Comparative Performance on Different Types of Problem Instances

	18.5 Runtime Comparisons
	18.5.1 Runtime Limits Using the Same Hardware
	18.5.2 Runtime Limits Using Different Hardware
	18.5.3 Runtime Growth Rate
	18.5.4 Alternatives to Runtime Limits

	18.6 Parallel Algorithms
	18.6.1 Evaluating Parallel Metaheuristics
	18.6.2 Comparison When Competing Approaches Can Be Run
	18.6.3 Comparison When Competing Approaches Cannot Be Run

	18.7 Conclusion
	References

