A few selected publications
[J69] K. Hasselmann, A. Ligot, J. Ruddick, and M. Birattari (2021). Empirical assessment and comparison of neuro-evolutionary methods for the automatic off-line design of robot swarms. Nature Communications, 12:4345
[J62] M. Birattari, A. Ligot, and K. Hasselmann (2020). Disentangling automatic and semi-automatic approaches to the optimization-based design of control software for robot swarms. Nature Machine Intelligence, 2(9):494–499
[J56] L. Garattoni and M. Birattari (2018). Autonomous task sequencing in a robot swarm. Science Robotics, 3(20):eaat0430
[J76] M. Salman, D. Garzón Ramos, and M. Birattari (2024). Automatic design of stigmergy-based behaviours for robot swarms. Communications Engineering, 3:30
[J74] A. Ligot and M. Birattari (2022). On using simulation to predict the performance of robot swarms. Scientific Data, 9:788
[J52] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia, V. Trianni, and M. Birattari (2015). AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intelligence, 9(2/3):125-152
[J45] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari (2014). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2):89-112
[J33] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1):1-41
[B02] M. Birattari (2009). Tuning Metaheuristics: A machine learning perspective. Springer, Berlin, Germany
[P18] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp (2002). A Racing Algorithm for Configuring Metaheuristics. In W. B. Langdon et al. (Eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11-18. Morgan Kaufmann, San Francisco, CA, USA