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ABSTRACT
Automated algorithm configuration methods have proven to
be instrumental in deriving high-performing algorithms and
such methods are increasingly often used to configure evo-
lutionary algorithms. One major challenge in devising au-
tomatic algorithm configuration techniques is to handle the
inherent stochasticity in the configuration problems. This
article analyses a post-selection mechanism that can also
be used for this task. The central idea of the post-selection
mechanism is to generate in a first phase a set of high-quality
candidate algorithm configurations and then to select in a
second phase from this candidate set the (statistically) best
configuration. Our analysis of this mechanism indicates its
high potential and suggests that it may be helpful to improve
automatic algorithm configuration methods.

Categories and Subject Descriptors
[Computing Methodologies]: Artificial Intelligence-
Search Methodologies

Keywords
Automatic Algorithm Configuration, Post-selection, Search

1. INTRODUCTION
The performance of many optimization algorithms de-

pends on their parameter settings. Obtaining high per-
formance requires that the parameters are appropriately
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set. In the last few years, it has been shown that the off-
line configuration of algorithm parameters can effectively
been done by automatic algorithm configuration techniques
such as ParamILS [15], F-Race [7] and iterated racing ap-
proaches [8], gender-based genetic algorithm [2], or model-
based search approaches [12]. These aforementioned meth-
ods can be applied to general configuration tasks that in-
clude the setting of categorical, ordinal and numerical al-
gorithm parameters. If only numerical parameters require
to be determined, these methods remain applicable but
they may be sidelined by methods from numerical optimiza-
tion [21], estimation of distribution algorithms [17] or meth-
ods based on classical experimental designs such as CALI-
BRA [1]. Whatever the configuration task, these methods
not only free humans from a tedious, manual trial-and-error
process, but they often result in parameter configurations
that substantially improve over default configurations pro-
posed by the algorithm’s designers.

In this paper, we focus on offline configuration [6], i.e. on
finding a good parameter configuration before the algorithm
is actually applied, a typical situation in algorithm design.
The task in offline configuration is to identify an algorithm
parameter configuration based on a set of training instances,
such that the best-found configuration performs well on fu-
ture, unseen problem instances. Offline configuration in-
volves two sub-tasks, namely generation and evaluation.
The first sub-task, the generation of candidate algorithm
configurations, is typically done by search algorithms includ-
ing, e.g. direct search methods [15, 8], model-based search
methods [5, 14, 12], or modern continuous optimizers [21],
etc. The second sub-task requires evaluating candidate al-
gorithm configurations and at some point selecting the one
with the best evaluation. This second sub-task is stochastic
due to two main sources of randomness [6]: first, the algo-
rithm to be configured may be a stochastic algorithm—this
is always the case if randomized decisions are taken during
the algorithm execution; second, the stochasticity due to es-
timating algorithm performance of candidate algorithm con-
figurations by different training instances—these instances
may be seen as drawn from some random distribution of
problem instances. Most work on configuration problem fo-
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cuses on the first sub-task, while the second sub-task is less
discussed and studied.
In this paper, we extend the analysis of post-selection [21],

which is a promising mechanism designed to address the
second sub-task in the offline configuration, the evaluation
and selection of candidate configurations. The basic idea
of the post-selection mechanism is to divide the configura-
tion process into two phases: in the initial elite qualifica-
tion phase, a number of elite algorithm configurations are
identified; then, in the subsequent elite selection phase, the
best of these elite algorithm configurations is carefully se-
lected using, for example, a racing method. Initial results
[21] indicated that with a careful elite selection in the final
phase, the post-selection mechanism allows to use a more
coarse evaluation of the candidate configurations in the elite
qualification phase (that is, evaluating most of the candi-
date configurations on less training instances) As a result,
more candidate configurations may be generated and, thus,
potentially better configurations may be found. In the em-
pirical study in this paper, we extend the analysis of the
post-selection method in [21] to (i) study the impact of the
maximum number of algorithm runs (called configuration
budget) on the con gurator performance; (ii) examine the
impact of using a very small number of training instances in
the elite qualification phase; (iii) consider more search meth-
ods for generating the elite candidate configurations; (iv)
empirically investigate some new settings of post-selection
and derive a new high-performing configurator for setting
numerical parameters.
The article is structured as follows. Section 2 reviews au-

tomatic algorithm configuration and Section 3 describes the
experimental setup. Section 4 studies post-selection before
we compare our post-selection configurators to iterated F-
Race and ParamILS in Sections 5 and 6, respectively.

2. CONFIGURATION ALGORITHMS
A configuration algorithm (or configurator) typically com-

bines a search method that generates candidate algorithm
configurations and a mechanism for handling stochasticity
through evaluating the configurations and selecting the most
promising. In this article, we examine post-selection, a re-
cent mechanism for combining search and evaluation meth-
ods. Here, we introduce briefly the search methods and the
evaluation methods we consider for comparisons.

2.1 Black-box search methods
A search mechanism in a configurator iteratively generates

candidate algorithm configurations. In this article, the al-
gorithm to be configured use mainly numerical parameters,
in which case we refer to the configuration problem also as
tuning problem. For these numerical parameters, includ-
ing continuous or quasi-continuous (e.g. integer, for which
rounding may be applied) parameters, we consider the fol-
lowing (black-box) continuous optimizers as search methods:
Bound Optimization BY Quadratic Approximation
(BOBYQA). BOBYQA [18] is a model-based trust-region
continuous optimizer that iteratively builds and refines a
quadratic model based on which the trial points are sampled.
Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). CMA-ES [9] is a (µ, λ)-evolutionary strategy.
It iteratively samples candidate solutions from a multivari-
ate Gaussian distribution, with a sample mean as a linear

combination of µ elite parents and a covariance matrix au-
tomatically adapted based on the search trajectory.
Mesh Adaptive Direct Search (MADS). MADS [3] is
an extension of generalized pattern search algorithms. It is
a mesh-based search method that systematically adapts the
mesh coarseness, search radius, and search direction.

For discrete parameter configurations, an iterated local
search method underlying ParamILS is considered in Sec. 6.

2.2 Evaluation method
Configurators typically have a limited evaluation budget

B, which can be a maximum number of times the algorithm
to be configured can be run on training instances. The eval-
uation method needs to determine how good candidate con-
figurations are and select the one that performs best. How
to allocate the available budget for evaluation is an impor-
tant topic in the study of configuration algorithms, since on
one side the evaluation budget is limited due to the high
computational cost of each evaluation, but on the other side
the evaluation error of a candidate reduces with the number
of evaluations. A good compromise is to allocate more bud-
get to promising candidates, so that they can be evaluated
more carefully. The evaluation methods considered in this
article include:
Repeated evaluation. It evaluates each candidate config-
uration by the same, fixed number of algorithm runs.
Racing. A racing method [16, 7, 6] evaluates candidate
configurations instance by instance and eliminates inferior
ones as soon as statistical evidence is gathered against them.
Thus, better candidate also receive more evaluations. Rac-
ing methods differ in the statistical tests that are used to
detect inferior candidates; e.g., F-Race adopts the Friedman
and its post-hoc tests, and t-Race uses Student’s t-test.
Intensification. Intensification mechanisms are used in
methods such as FocusedILS [15], SPO+ [14], ROAR or
SMAC [12]. It is used to compare a newly generated configu-
ration to the incumbent, i.e. the best configuration found so
far, and eliminate a new configuration as soon as it is worse
than the incumbent in the sequence of instances the incum-
bent was already evaluated on; if a new candidate is not
eliminated, its number of evaluations increases by, e.g. one,
and compares with the incumbent again, until it reaches the
same number of evaluations as the incumbent, then a new
incumbent is determined.

2.3 Combination of search and evaluation
Given a search method and an evaluation method, a con-

figurator essentially consists of an efficient, non-trivial com-
bination of the two. We discuss two possibilities below, the
second being the mechanism studied here.
Iterated selection. Iterated selection we call the approach
where two distinctive phases are iterated: first new candi-
date configurations are generated, and then evaluated by an
evaluation method, possibly updating the incumbent. Most
of the established configurators are based on some form of it-
erated selection, including SPO [5] and SPO+ [14], iterated
racing techniques such as iterated F-Race [4, 8], MADS/F-
Race [22], and CMA-ES/F-Race [21], or FocusedILS [15].
These methods include the incumbent from iteration to it-
eration. Some of them consider using an intensification
mechanism to preserve the incumbent (e.g. FocusedILS and
SPO+). The possible drawbacks of iterated selection are
that an incumbent may be lost if no specific mechanism
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Algorithm 1 Post-selection

Phase 1: elite qualification. Run configurator and col-
lect the best configurations as elite configurations. Each
elite configuration θe is stored in Θe. A budget of Rn

(n = |Θe|) depending on the number of elite configura-
tions is reserved for Phase 2. Go to Phase 2 when the
budget for qualification phase finishes.
Phase 2: elite selection. Use an evaluation method,
e.g. racing, to select the best θ∗ from Θe.

Table 1: The range of MMAS parameters.
param. α β ρ m
range [0.0, 5.0] [0.0, 10.0] [0.0, 1.00] [1, 1200]
param. γ nn q0
range [0.01, 5.00] [5, 100] [0.0, 1.0]

for incumbent preservation is used, while if an incumbent
preservation mechanism is used, it may be too aggressive in
eliminating potentially promising new candidates, leading to
stagnation as observed occasionally in FocusedILS [15].
Post-selection. The basic idea of the post-selection mech-
anism is to divide the configuration process into two phases:
a first elite qualification phase and a second elite selection
phase. During the qualification phase, a number of elite con-
figurations are identified by running a configurator. These
elite configurations can be collected by, for example, enforc-
ing quick convergence of the configurator and then taking
the best configuration in each independent restart. Alter-
natively, different configurators may be run simultaneously
and the best configurations returned by various configura-
tors may be qualified as elites. In the elite selection phase,
an evaluation method is applied to select the best from these
elite configurations. See Algo. 1 for a summary of the post-
selection mechanism. A number of configurators are devised
following the post-selection approach and investigated in the
following sections. We also compare post-selection configu-
rators to iterated racing techniques and FocusedILS.

3. EXPERIMENTAL SETUP
In this article, we focus on one configuration domain,

where the algorithm to be configured is MAX–MIN Ant
System (MMAS) [20] applied to the traveling salesman
problem (TSP). The numerical parameters in MMAS that
are considered in this study include: α and β, the relative
importance of pheromone trail and heuristic information; ρ,
the proportion of the pheromone evaporated after each it-
eration; m, the number of ants; γ, which controls the gap
between the minimum and maximum pheromone trail lim-
its in MMAS; nn, the size of the nearest neighbor candi-
date list in the solution construction; and q0, the probability
with which an ant selects deterministically the best possible
choice at each construction step. The range of the values
considered for these parameters is listed in Table 1. In the
configuration process, each search algorithm generates the
parameter space with a precision of two significant digits.
From these seven numerical parameters we extracted a

number of case studies, where a subset of parameters is to
be set while the others assume their default values. More in
detail, we extracted three case studies for d ∈ {2, 3, 4, 5, 6}

Table 2: The 15 case studies of configuring 2 to 6
parameters (each with 3 case studies) of MMAS.

n.param. case 1 case 2 case 3
2 α β; ρ m; γ nn;
3 α β m; β ρ nn; ρ γ nn;
4 α β ρ m; α β γ nn; ρ m γ nn;
5 α β ρ m nn; α β ρ m γ; α β m γ nn;
6 α β ρ m γ nn; α β ρ m γ q0; α β ρ m nn q0;

parameters to be set, resulting in 3 × 5 = 15 case studies.
These case studies are listed in Table 2.

The instances are uniformly randomly distributed Eu-
clidean TSP instances. Two sets of instances are considered
in this article: the homogeneous (hom) set consists of uni-size
instances of 750 nodes, 1 000 instances for the training phase,
and 300 for the testing phase; the heterogeneous (het) set
consists of instances ranging from 100 nodes to 1 200 nodes,
900 instances for training and 300 for testing. The computa-
tion time for MMAS is 5 seconds. The MMAS implemen-
tation is based on the ACOTSP software [19] with minor
extensions to allow the usage of the parameter γ.

In each case study, seven budget levels are considered. The
minimum level of the configuration budget is chosen to be
B1 = 5·(2d+2), which results in a budget B1 = 30 when d =
2 and in a budget B1 = 70 for d = 6. The other six levels of
the configuration budget are Bi = 2i−1 ·B1, i = 2, 3, 4, 5, 6, 7,
which doubles the budget for each next level. Each budget
level of each case study is considered as one test domain,
resulting, thus, in 7× 15 = 105 test domains. For each test
domain, 10 trials were run. To reduce experimental variance,
in each trial, the same random order of training instances
is used for running each configurator, and each instance is
evaluated with a common random seed. The instance order
and random seed change from trial to trial. In each trial,
an archive is used in order to prevent the same parameter
configuration being evaluated twice on the same instance; in
such case, the evaluation is read from the archive without
consuming configuration budget.

When comparing testing results, we suppose every test-
ing instance, large or small, is of the same importance.
Therefore, in each test domain, we perform a standardized
z-score normalization of the performance of configurations
on each testing instance, such that for any given instance,
the distribution of performance over tested configurations
has mean zero and variance one. Whenever ranking results
are presented, each rank is based on the mean value of the
normalized performance in one test domain. Whenever re-
sults of statistical tests are reported in the following, we use
Wilcoxon’s signed-rank test with α = 0.05, and with Holm’s
method in case of multiple comparison.

4. STOCHASTICITY HANDLING USING
POST-SELECTION

In this section, we examine the impact post-selection has
on the performance and the behavior of various search meth-
ods with which it is combined. Before the presentations of
these details, we concisely show that, in general, there ex-
ist interactions between the budget level and settings of the
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Figure 1: Average ranks of six nr settings (nr ∈
{1, 3, 5, 10, 20, 40}) for repeated evaluation over seven
budget levels across 15 case studies of MMAS.

evaluation method used. This sheds also some light on side-
advantages of the post-selection mechanism, namely to make
the configurator more robust to specific parameter settings
for the evaluation method.

4.1 Repeated evaluation
The simplest evaluation method is probably repeated eval-

uation, where each candidate configuration is evaluated nr
times. We consider here values of nr ∈ {1, 3, 5, 10, 20, 40}
and evaluate their performance on the 105 test domains. To
illustrate the trade-offs incurred between the setting of nr
and different configuration budgets, we use a uniform ran-
dom search (we observed similar behavior with other search
methods). Fig. 1 shows the average ranks of the six settings
of nr. The relative performance of different nr settings de-
pends strongly on the configuration budget: while for the
lowest budget levels B1 and B2 the setting of nr = 1 appears
to be best, the performance of low nr settings downgrades
as the configuration budget increases. The clearest example
is the setting nr = 1, which is the best for B1 and B2 but
becomes the worst for the two highest budgets B6 and B7.
On the contrary, large nr settings are the worst for low bud-
gets but they improve as the configuration budget increases.
Similar trade-offs were also observed in [13].

4.2 Effectiveness of Post-selection
For the experiments with post-selection, we adopted

whenever possible the settings used in [21]: The budget re-
served for elite selection phase is set to

Rn =

{
2 · n2 if n < 10
20 · n if n > 10

(1)

and the first Friedman test starts at fn = min{n + 2, 10}-
th instance, where n is the number of candidates for the
elite selection. The first line in Equation 1 extends [21] to
ensure reasonable settings for the low budget levels. In post-
selection, the default is that only restart-best configurations
qualify as candidates for the elite selection, where a restart-
best solution is the best solution in one independent restart
of the algorithm–restarts are triggered by convergence of the
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Figure 2: The rank distribution of 12 settings: re-
peated evaluation without post-selection (the left
six light-blue box-plots in each plot) or with post-
selection (the right six yellow box-plots dubbed with
“P”), using nr ∈ {1, 3, 5, 10, 20, 40}. BOBYQA (top)
and MADS (bottom) are tested on eight case stud-
ies, each with budget levels from B4 to B7.

algorithm. Finally, each configuration generated in the elite
qualification phase is evaluated by nr same instances.

We present results with the search methods BOBYQA
and MADS with either repeated evaluation or post-selection.
Each search method is restarted when it stagnates. Stagna-
tion can be detected, for example, if the search radius drops
to less than the degree of significant digits (two in this work).
In earlier work [21], post-selection was studied with nr rang-
ing from 5 to 40, and it was shown that post-selection is
effective when nr is small. Here, we explore smaller set-
tings of nr equal to one and three on a subset of the test
domains on the four high budget levels from B4 to B7 and
taken from eight of the case studies and the homogeneous
instance set. The box-plots for the ranking of each of the
explored settings are given in Figure 2.

Considering the versions without post-selection (left six
boxes in each plot), the best setting of nr appears to be 5 or
10, in accordance to what was observed in the previous sec-
tion for uniform random sampling. However, for the versions
with post-selection (right six yellow boxes dubbed with “P”
for post-selection), the best setting is nr = 1, resulting in
the best ranking improving also over the a posterior best set-
tings of nr for BOBYQA and MADS without post-selection.
Hence, the overall best performance with post-selection is
obtained when during the run of the search method each
candidate configuration is evaluated on one same instance.
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Saving evaluations allows to evaluate more configurations
and to obtain more restart-best configurations, which then
are evaluated more carefully in the elite selection phase.

4.3 Advanced settings of post-selection
Next, we extended the study in Sec. 4.2 by consider-

ing also the low budget levels B1, B2, and B3. Here,
we empirically examine several advanced settings of post-
selection, including nr setting (Sec. 4.3.1), alternating in-
stances (Sec. 4.3.2, dubbed A in Figure 3), early qualifica-
tion (Sec. 4.3.3, dubbed E in Figure 3), and iterated selection
hybrid (Sec. 4.3.4, dubbed IS in Figure 3).

4.3.1 nr setting
As high nr settings perform poorly with post-selection

(see Fig. 2), here we consider only values of nr ∈ {1, 3, 5}.
In Fig. 3(a-d), it can generally be observed that the best
post-selection configurator in each plot uses nr = 1. Consid-
ering the curves identified by “nr = 1, P”, “nr = 3, P”, and
“nr = 5, P” in Fig. 3(a-d), nr = 1 ranks either best or very
well, and nr = 3, 5 rank slightly better only in the smallest
budget levels of BOBYQA-based configurators (Fig. 3(a,b))
and in high budget levels of CMA-ES-based configurators
(Fig. 3(d)). The reason for the latter is further discussed
and addressed in Sec. 4.3.3.

4.3.2 Alternating instances
Note that in our basic setting each configurator restart

uses the same instances (or the same instance if nr = 1)
and only in the final elite selection phase different instances
would be used. This may lead to poor results especially
on instance sets where instances are heterogeneous (as in
our het set—for this instance set good MMAS settings are
known to depend on instance size).
Here we consider a different variant, where we use alter-

nating instances instead of fixed instances; hence, each elite
configuration is qualified through nr different instances. We
compared this approach empirically with the basic post-
selection using fixed instances, taking BOBYQA as case
study across 105 test domains of configuring MMAS in
both homogeneous instance set (hom, see Fig. 3(a)) and the
heterogeneous instance set (het, see Fig. 3(b)). As nr = 1
is the best nr setting for post-selection, we compared di-
rectly nr = 1 fixed instance (“nr = 1, P” in Fig. 3(a, b))
with alternating instances (“nr = 1, P,A’). In hom, using
alternating instance performs as well as using a same, fixed
instance and no statistically significant difference was de-
tected (p-value 0.3). However, in het, using alternating in-
stances leads to significant improvement. We included also
nr = 3 alternating instances (“nr = 3, P,A”) for het; it
again performs significantly better than using nr = 3 same
instances (“nr = 3, P”), but significantly worse than nr = 1
with alternating instance. To sum up, using alternating in-
stances results in better performance, especially when the
target instance set is heterogeneous.

4.3.3 Early qualification
CMA-ES is the only of the three search methods, where

the setting nr = 1 does not perform as well as nr > 1 espe-
cially for higher budget levels (see Fig. 3(d)). One reason is
probably that CMA-ES is slower than MADS and BOBYQA
to converge and restart and in our basic setting only restart-
best configurations qualify for the elite selection. However,

one may obtain more configurations for post-selection by
qualifying configurations earlier, as done, e.g., by picking all
iteration-best configurations instead of only the restart-best.
Besides, as suggested in Sec. 4.3.2 for BOBYQA, each itera-
tion may use alternating instances for evaluation. This new
setting “nr = 1, P,A,E” (E for early qualification) of CMA-
ES configurator is shown in Fig. 3(d) to be the significantly
best-performing configurator on all budget levels.

4.3.4 Iterated selection with post-selection
Instead of using a fixed number of nr instances, one may

apply iterated selection during the elite qualification phase.
Such examples include MADS/F-Race [21, 22] and CMA-
ES/F-Race [21], where F-Race is not only used in the elite
selection phase to select the best of the elite configurations,
but also used within each iteration of the search method in
the elite qualification phase to select the best among the
incumbent and newly-generated configurations.1 Besides,
our CMA-ES/F-Race applies also the idea of early qualifi-
cation (Sec. 4.3.3), i.e. both iteration-best and restart-best
configurations are qualified as elites. However, this inter-
esting hybrid, either MADS/F-Race (“IS, P” in Fig. 3(c))
or CMA-ES/F-Race (“IS, P,E” in Fig. 3(d)), does not per-
form well compared with the other post-selection variants
derived in this work. MADS/F-Race is significantly outper-
formed by post-selection with nr ≤ 5, despite the better
performance of MADS/F-Race over MADS with fixed nr
evaluations without post-selection [22]. CMA-ES/F-Race is
also significantly outperformed by post-selection CMA-ES
with one alternating instance and early qualification.

5. POST-SELECTION VS. I/F-RACE
We compare the best post-selection configurators with

I/F-Race, a state-of-the-art iterated selection configura-
tor [8]. Additionally, we compare also to U/F-Race, which
generates configurations uniformly at random and then se-
lects the best by F-Race. As the best post-selection con-
figurators we select the best setting for each of the three
search methods found in Sec. 4.3, including BOBYQA with
one alternating instances (“nr = 1, P,A” in Fig. 3(a,b)),
CMA-ES with one alternating instance and early qualifica-
tion (“nr = 1, P,A,E” in Fig. 3(d)) and MADS with nr = 1
(“nr = 1, P” in Fig. 3(c), only shown in hom).

Fig. 4 shows the comparison of these configurators in de-
pendence of the budget level (top row) and the number of
parameters to be configured (bottom row) on the homo-
geneous (left column) and the heterogeneous instance set
(right column). The clear winner is the CMA-ES configu-
rator: it significantly outperforms all other configurators in
almost every budget level and every number of parameters
being configured. BOBYQA generally performs well in case
studies with 2, 3, or 4 parameters being configured, but its
performance declines in case studies with 5 or 6 parameters,
as shown in Fig. 4(c) and Fig. 4(d). I/F-Race is only applica-
ble in the four high budget levels due to its default param-
eter settings, and it is outperformed by CMA-ES. MADS
is not considered in the experiments of het due to its un-
satisfactory performance in hom. All the above-mentioned
configurators outperform U/F-Race.

1Note that in BOBYQA, each configuration has to be eval-
uated on the same number of instances due to the way its
quadratic model is built; therefore, F-Race cannot be com-
bined with BOBYQA in the iterated selection manner.
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Figure 3: Average ranks of different settings for post-selection. These settings include nr values (Sec. 4.3.1),
“P” for post-selection (Algo. 1), “A” for alternating instances (Sec. 4.3.2), “E” for early qualification
(Sec. 4.3.3), or “IS” for iterated selection hybrid (Sec. 4.3.4). This study is done using three search methods
as testbed, BOBYQA, MADS, and CMA-ES, and each setting is tested on seven budget levels (shown in the
X-axis) for 15 case studies of MMAS with either homogeneous (hom) or heterogeneous (het) instance sets.

6. POST-SELECTION IN PARAMILS
For a final set of experiments we introduce post-selection

into ParamILS with the goal of comparing it to the inten-
sification mechanism used in FocusedILS. We adopted the
version 2.3.5 of ParamILS [11], kept the search mechanism
(ILS), and adapted its intensification mechanism into a post-
selection mechanism in a straightforward manner. Since
the best setting of post-selection found in Sec. 4.2 is using
nr = 1, alternating instance, BasicILS(1) is adopted for the
elite qualification phase of post-selection. The main question
then is how to define configurations that qualify as elite. In
this study, only the best configuration found in each restart
is qualified. We adopted three restart schemes.
Natural restart. We restart ParamILS either when it is
naturally restarted as triggered by the parameter prestart
(set to 0.01 by default) or when the search falls into a local
optimum and perturbation starts. Post-selection ParamILS
with natural restart is denoted as PPn.
Fixed early restart. We enforce ParamILS to restart ear-
lier so as to qualify more elites. The simplest way to enforce
early restart is to restrict the maximum number of evalua-
tion Br for each run to a small value. Considering that each
ParamILS run evaluates 10 uniformly random initial config-
urations before starting ILS, Br = 30 appears to be a setting
that allows reasonable exploitation while keeping reasonably
frequent restarts. This version is denoted as PP30.
Incremental early restart. Besides fixing Br, we also
consider incrementing Br by 10 from restart to restart, i.e.
let Br = 10 in the first restart, increment Br to 20 in the

second restart, Br = 30 in the third, etc. Post-selection
ParamILS with incremental early restart is denoted as PPi.

We compared FocusedILS with the three versions of post-
selection ParamILS, PPn, PP30, and PPi on the six case stud-
ies of MMAS with five or six parameters to be configured.
Both homogeneous and heterogeneous instance sets are con-
sidered. Since ParamILS handles only discrete parameters,
each parameter of our case studies is discretized into 10 equi-
distant values. ParamILS does not support standardized
z-score normalization, and so we adopted the mean algo-
rithm performance as the objective measure. Accordingly,
the post-selection applies a t-Race without adjustment for
multiple comparisons [6] instead of F-Race.

The results are presented in Fig. 5. They show that post-
selection with early restart, especially PP30, is clearly the
best configurator in budget levels B1 to B6. FocusedILS
performs better than PP30 only in the highest budget level
B7. PPn doesn’t perform very well as expected, since it usu-
ally takes around 100 to 400 evaluations to reach a natu-
ral restart; this leads to very few elite configurations, which
greatly worsens the impact of post-selection. Enforcing early
restart in PP30 and PPi proves to be a more successful set-
ting of post-selection than natural restart. However, fre-
quent restart may weaken the exploitation ability in finding
promising configurations during the elite qualification phase.
A better approach than enforcing early restart is to use early
qualification as done for CMA-ES in Sec. 4.3.3, qualifying
elite configurations without interrupting the search proce-
dure. However, we leave this possibility for future research.
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Figure 4: Comparison of best post-selection configurators with I/F-Race U/F-Race for configuring 15 case
studies of MMAS with either homogeneous (hom) or heterogeneous (het) instance sets.

7. DISCUSSION AND CONCLUSIONS
Post-selection adopts two distinct phases in the automatic

algorithm configuration process. In the elite qualification
phase, a number of elite configurations are identified, for
example, by independent runs of some algorithm configura-
tor. The subsequent elite selection phase tries to identify
then the best of these elite configurations, for example, by
a racing method. In this paper, we have examined in more
detail such a post-selection mechanism, proposed earlier in
[21], using the example application of algorithm configura-
tors for setting numerical parameters of MAX–MIN Ant
System applied to the traveling salesperson problem (TSP).
Our analysis of post-selection showed that it is enough to
evaluate candidate configurations on rather few instances
during the elite qualification stage. In our case studies only
one instance was even enough, but we expect that on other
configuration tasks with more heterogeneous instances than
in the TSP a larger number of instances in the elite qualifi-
cation stage may be better. If the configurator in the elite
qualification phase cannot gather many elite configurations,
enforcing early restarts or an early qualification mechanism,
as proposed in this paper, may be useful. Overall, our re-
sults showed that post-selection is a promising approach that
should receive further attention. In addition, we identified
a post-selection CMA-ES configurator with alternating in-
stances and early qualification, as a high-performing config-
urator for setting numerical parameters.
In future work, we plan to test the effectiveness of post-

selection on other configuration tasks with more parameters
and to explore complementing other configuration methods
with post-selection. The fact that with post-selection, each
run of automatic algorithm configuration method in the elite

qualification stage may use few same instances, makes post-
selection also applicable to model-based search methods such
as SPO, which cannot easily be enhanced by iterated selec-
tion methods that evaluate candidate configurations with
different numbers of instances (see BOBYQA in Sec. 4.3.4
as an example). Furthermore, post-selection can be seen as
a form of stochasticity handling and it may also be useful
for optimization problems with noise, e.g., it may be in-
tegrated into deterministic algorithms for optimizing noisy
functions such as those of the black-box optimization bench-
marking workshop series [10]. The positive results obtained
with post-selection in this paper indicate that the directions
outlined above are promising ideas to pursue.
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