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The Role of Learning Methods in the Dynamic
Assessment of Power Components

Loading Capability
Domenico Villacci, Member, IEEE, Gianluca Bontempi, Alfredo Vaccaro, Member, IEEE, and Mauro Birattari

Abstract—The need for dynamic loading of power components
in the deregulated electricity market demands reliable assessment
models that should be able to predict the thermal behavior when
the load exceeds the nameplate value.

When assessing network load capability, the hot-spot temper-
ature of the components is known to be the most critical factor.
The knowledge of the evolution of the hot-spot temperature during
overload conditions is essential to evaluate the loss of insulation
life and to evaluate the consequent risks of both technical and eco-
nomical nature. This paper discusses an innovative grey-box archi-
tecture for integrating physical knowledge modeling (a.k.a. white-
box) with machine learning techniques (a.k.a. black-box). In par-
ticular, we focus on the problem of forecasting the hot-spot temper-
ature of a mineral-oil-immersed transformer. We perform a set of
experiments and we compare the predictions obtained by the grey-,
white-, and black-box approaches.

Index Terms—Intelligent systems, learning systems, power
system monitoring, power transformers protection.

LIST OF SYMBOLS

Ambient temperature ( C).
Top oil temperature ( C).
Winding hot-spot temperature ( C).
Estimated winding hot-spot temperature ( C).
Rated winding hot-spot temperature ( C).
Low-voltage winding hot-spot temperature ( C).
Medium-voltage winding hot-spot temperature
( C).
Hot-spot temperature rise above top oil ( C).
Ultimate top oil temperature rise ( C).
Rated top oil temperature rise over ambient ( C).
Ultimate hot-spot temperature rise over top oil (for
a given load current) ( C).
Rated hot-spot temperature rise over top oil (for
rated load current) ( C).
Top oil rise time constant (h).
Hot-spot rise time constant (h).
Load current normalized to rated current (p.u.).
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Ratio of rated-load loss to no-load loss at applicable
tap position.
Empirically derived exponent, dependent on the
cooling method.
Empirically derived exponent to approximately ac-
count for effects of change resistance with change in
load.
Observed time (h).
Power transformer loss of life (h).
th time interval (sample time) (h).

Aging acceleration factor relative to the th time in-
terval.
Equivalent aging factor for the observed period.

I. INTRODUCTION

THEsafeguardofpowercomponentsisassumingamajorrole
in the deregulated market of electricity, where a malfunc-

tioning power system could be responsible for serious damage to
alargenumberof systemoperatorshavingaccess to theshareden-
ergy resource. The need for providing a reliable and safe service
has historically induced the asset owner to adopt a conservative
strategy in loading power components. This worst case approach
decreases the riskofmalfunctioningat thecostofa reducedpower
transfer capability. As a consequence, the conservative approach
appearstobeinadequateinthenewcompetitivescenariowherethe
strive for larger profits asks for pushing to the maximum the ex-
ploitation of plants. In this scenario, a reliable assessment of load
capabilities and an effective management of the associated risks
appear to be crucial.

The problem of supplying energy is time varying in nature
and demands, therefore, a dynamic solution in order to manage
risks related to load levels exceeding component’s nameplate
values, especially in presence of contingencies. In power com-
ponents an accurate prediction of the evolution of the hot-spot
temperature is an essential information to evaluate the risk asso-
ciated with a given load management policy. This demands the
design of a model able to predict the evolution of the hot-spot
temperature and the related maximum duration, on the basis of
the thermal state, the expected load level, and the forecasted en-
vironmental conditions,. This model should also exhibit adap-
tive features, to deal with the intrinsic time-varying phenomena
affecting the thermal exchange characteristic of the component
(e.g., aging, soil proprieties, etc.), and low computational times,
to comply with the requirements of Energy Management Sys-
tems/Distribution Management Systems.
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Once defined, the role and the relevant inputs of the thermal
model, the power engineer has still to address an important
issue: the choice of the most appropriate model structure. As
proposed by [1], model structures can be regrouped into the fol-
lowing three main classes:

• white-box models: first-principle models that condense
the physical insight of the expert; they might contain both
physical constants and unknown parameters;

• black-box models: a family of linear or nonlinear models
whose parameters do not have any physical significance;
the goal of black-box modeling is to fit the data rather than
gaining insight into the phenomena at hand, and thanks to
their data-driven nature these models can be used in an
adaptive way to cope with time-varying problems.

• grey-box models: an intermediate approach that aims to
preserve the best from the previous approaches by inte-
grating knowledge coming from the expert with empirical
evidence provided by observations; in particular, the adap-
tive feature of black-box models is preserved.

White-box models are the classical approach adopted for de-
scribing the thermal behavior of power components. They can
be divided into two main subclasses: 1) analytical and 2) nu-
merical. Analytical thermal models [2]–[4] are inadequate in
presence of changeable climatic conditions and of complex non-
linear phenomena affecting the component thermal dynamic [5].
Numerical thermal models [6]–[9] are more detailed and accu-
rate but require complex and time consuming numerical solvers.
It follows that they are not exploitable in a dynamic assessment
procedure.

Recently, research efforts have been oriented to develop
thermal models which should provide high accuracy at low
computational costs. In particular, the power systems commu-
nity started adopting black-box models [10]–[12] thanks to
the availability of empirical observations made possible by the
advent of hot-spot temperature acquisition modules, based on
fiber optical temperature sensing technology [7], [13], [14] or
advanced noninvasive identification techniques [15], [16].

To the best of our knowledge, the application of grey-box
models has not been so far explored in the literature of thermal
modeling of power components. With this paper, we precisely
intend to fill this gap. The paper explores dynamic strategies to
assess the loading capability of power components and presents
experimental results in the case of a distribution transformer.
The monitoring of power transformers is an important research
subject for several reasons: 1) power transformers are currently
subjected to reduced load levels (especially in transmission net-
works); 2) the performance of power transformers is rapidly im-
proving due to new materials and innovative construction tech-
niques; 3) power transformers (and power cables) are the bot-
tlenecks in networks load capability; and 4) a better load assess-
ment would have a noticeable effect on transmission and distri-
bution networks, especially during emergency conditions.

The paper brings two main contributions to the existing liter-
ature. The first is the introduction of a grey-box architecture in-
tegrating machine learning techniques [17] with first-principle
models. The second is an experimental comparison of white-,
black-, and grey-box techniques on short-term and long-term

forecasting of the hot-spot temperature. The black-box tech-
niques considered in this paper are the conventional recursive
least-squares (RLS) and some nonlinear learning methods. In
particular, we focus on the Lazy Learning (LL) method [18],
[19] that differentiates from other nonlinear approaches (like
neural networks) on the fact that no functional model of the
data is built: for each given query, LL obtains the prediction
by: 1) selecting the most relevant samples from the dataset ac-
cording to a distance metric, and then 2) interpolating the se-
lected points with a simple local approximator. As discussed in
Section II-B.1, this procedure can be easily made adaptive to
cope with time-varying settings.

The experimental setting proposed in the paper compares
white-, black-, and grey-box approaches on the prediction of
the winding hot-spot temperature of a 25-kVA mineral-oil-im-
mersed power transformer. The results show the effective role
played by adaptive learning methods in addressing the problem
of dynamic loading assessment.

The outline of the paper is as follows. A definition of the
problem of dynamic loading assessment is given in Section II.
In Section III the different modeling approaches to the thermal
modeling of a power transformer are introduced. Section IV
contains the description of the experiments and a discussion of
the results. Conclusions and future work are summarized in Sec-
tion V.

II. PROBLEM OF DYNAMIC LOADING CAPABILITY ASSESSMENT

The assessment of the dynamic loading capability of a power
component is carried out through two main stages: 1) the identi-
fication of the magnitude and the time duration of the electrical
load that a power component can support in excess of the de-
sign rating and 2) the management of the consequent technical
and economical risks. Technical risks are due to mechanical or
electrical phenomena (e.g., the aging of the insulation material)
or by second order effects specific to a component (e.g., the
maximum allowable sag of overhead lines [4] or the generation
of free gas bubbles in power transformers [3]). Economic risks
are consequent to the damages caused by malfunctioning of the
power network (e.g., outage).

An important support to the identification of the risks in
loading assessment can be provided by an accurate prediction
of the evolution of the hot-spot temperature. This prediction
requires the development of a suitable thermal model of the
power component in order to predict the evolution of the
hot-spot temperature and the associated maximum allowed
duration, on the basis of the thermal state, the forecasted en-
vironmental conditions and the load level. The prediction can
refer to different time horizons ranging from a few minutes
(short-term) to several hours (medium-term) or days (long-term
load capability estimation). In particular, short-term load capa-
bility estimation is essential during system security studies in
which the operators evaluate the effect of equipment loadings
according to simple or more onerous criteria (e.g.,

) [20]. As for the medium and long-term load capability
estimation, they are oriented to establish an acceptable level
of power transfer for a defined time period. This information
allows to address effectively several critical issues like the
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mitigation of the congestion effects or the exploitation of high
price differentials in interconnector circuits trading [20].

In summary, three are the features demanded to a methodology
to assess short, medium or long dynamic load capability: 1) high
accuracy; 2) adaptive features, in order to manage the intrinsic
time-varying phenomena affecting the thermal exchange charac-
teristic of the component (e.g., aging, soil proprieties, etc.); and
3) low computational requirements in order to make hardware
implementations feasible. The following section discusses how
these characteristics can be addressed by different types of
thermal models in the specific case of a power transformer.

III. DYNAMIC LOADING CAPABILITY ASSESSMENT

OF POWER TRANSFORMERS

The variable of interest in the case of a power transformer is the
temperature of the hottest part of the windings. An accurate pre-
diction of this quantity allows an accurate estimation of the insu-
lation state and the components’ residual thermal life. Unfortu-
nately, accurate hot-spot temperature evaluation is a difficult task
as stressed by the numerous studies carried out on the subject [5],
[10],[12].Difficultiesariseduetotheheattransferprocesswhichis
distributedovermanycomplexsurfacesmadeupofdifferentmate-
rials. This makes the mathematical description of the temperature
distributioninthetransformerverycomplex.Thissectionreviews
into detail three main approaches (white, black, andgrey) that can
bepursuedinordertoaddresstheproblemofmodelingthethermal
dynamic of a power transformer.

A. White-Box Modeling Approach

The instantaneous evolution of the winding hot-spot tempera-
ture at the top or in the center of the high or low voltage winding
of a power transformer can be estimated by solving the analyt-
ical model described in [3], and updated in [2]. The simplifying
assumptions adopted in the formulation of such a model are:
the oil temperature profile inside the winding increases linearly
from bottom to top; the difference between the winding tem-
perature and the oil temperature is constant along the winding;
the ambient temperature drives the oil temperature up and down
with the same time constant as the winding temperature does;
the solar flux incidence is neglected. Such assumptions led to
the adoption of the temperature profile inside the transformer
depicted in Fig. 1.

Once these assumptions are made, the hot-spot temperature
can be calculated as the sum of two components, the top oil

temperature and the hot-spot rise above top oil temperature
as expressed in the following equation:

(1)

As reported by [2] the evolution of such variables can be esti-
mated by the following physical model:

(2)

Fig. 1. Temperature profile assumed in the IEEE loading guide.

This simplified equivalent model requires the setting of some
specific transformer parameters, like which represents the
top oil temperature time constant. These parameters can vary
considerably from one transformer to another, making then the
accuracy of model (2) extremely sensitive to parameter vari-
ations and overload conditions [5], [10]. Adopting inaccurate
thermal models can induce a substantial error in determining the
real-time transformer load capability ratings: The loss of life is
exponential in the hot-spot temperature and inaccurate predic-
tions of the latter have dramatic effects on the accuracy of the
former. Additional warning should come from the fact that for
large transformers the computation of the load capability be-
comes more complex and inaccurate due to the leakage flux that
causes heating of structural parts with a consequent intensifica-
tion of gas-bubble formation [3]. This inaccuracy holds in spite
of the corrective terms that could be included in the model (2)
in order to take into account the cooling effects of forced oil cir-
culation [5].

B. Black-Box Modeling Approach

The general black-box approach to model an input/output
phenomenon (with the scalar as output, and the vector as
input) relies on the availability of a collection of observed pairs

typically called the training set. The
prediction problem consists in predicting the value of the output

when the value of the input is . Learning
methods [17] aim to find a suitable function such that the
output variable can be accurately represented by a model in the
form

(3)

where is usually thought of as the term including modeling
error, disturbances and noise. In the machine learning commu-
nity, the problem (3) is often referred to as a supervised learning
problem. If conventional assumptions of normality and white-
ness are made on , it follows that a reliable prediction of the
output, given the input, is returned by

(4)
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Traditional approaches address linear formulation of the model

(5)

where the vector of parameters is estimated on the basis of
the observed dataset by using conventional least-squares tech-
niques. Recent advances in machine learning and data mining
have proposed a set of powerful approximators of nonlinear re-
lationships [17], as discussed in the following section.

The formulation in (3) covers a number of prediction prob-
lems but especially applies to the generic discrete-time non-
linear autoregressive exogenous (NARX) system identification
setting [17] where the input vector takes the form

(6)

the constant defines the time horizon of the prediction
problem, and denotes the exogenous input signal of the
dynamical system. Note that the number of lagged outputs
and the number of lagged control actions are properly set in
order to describe accurately the dynamic of the system.

In our transformer problem, the output variable is the hot-
spot temperature , while the exogenous inputs are the cur-
rent load and the environmental conditions . In fact, the
practical experiments neglect the environmental conditions ,
as they are supposed to remain practically constant all along
the experiences. Their effect is incorporated in the noise term

. This is the resulting NARX form of our black-box predictor

(7)

where a single step corresponds to 5 min and the horizon
is expected to range over the interval [1, 12] (i.e., from 5 min
to 1 h). This model aims at predicting the hot-spot temperature
at time , when the last available measure has been collected at
time . In order to perform the prediction the model requires
the window of latest values of (i.e., ) and the load
profile of up to time (i.e., ). The choice of the
orders and has been suggested by a procedure of cross-val-
idated feature selection [17] performed on the available experi-
mental data.

In the following, we refer to model (7) as the short-term
black-box predictor of the hot-spot temperature. Two are the
remaining issues still to be addressed in the definition of the
short-term predictor. The first is to define the structure of the un-
known function , the second is to define an adaptive proce-
dure able to update sequentially the estimate of once new
observations are available.

As far as linear relationships are taken into account, the
identification procedure is well established (least-squares algo-
rithm) and the recursive procedure is well known (RLS: recur-
sive least squares) [21]. The problem becomes harder in terms
of prediction accuracy and computational requirements when
we move to the nonlinear case.

1) LL for Black-Box Modeling: In the Machine Learning lit-
erature [22], different criteria have been proposed for classifying

learning methods. Those of interest in this paper are based on the
dichotomies global/local, lazy/eager, and linear/nonlinear. Few
examples will be sufficient for clarifying these concepts. Neural
networks (NN) are classical instances of the global, eager, and
nonlinear approach: NN are global in the sense that a single rep-
resentation covers the whole input space. They are eager in the
sense that the examples are used for tuning the network and then
they are discarded without waiting for any query. Finally, NN
are nonlinear in the sense that the relation between the weights
and the output is nonlinear. The classical linear regression used
by statisticians is an example of global, eager, and linear ap-
proach. The LL method that we discuss in this paper is a lazy
and local approach: a dataset of examples is stored, and any pro-
cessing is deferred until an explicit request for a prediction is
received. When this happens, the dataset is searched for exam-
ples falling in a neighborhood of the query point. Such examples
are used for identifying a local model that is then evaluated in
the query point to return a prediction. The local model is then
discarded and the procedure is repeated from scratch for subse-
quent queries.

The major appeal of LL is precisely its divide-and-conquer
nature: LL reduces a complex and nonlinear modeling problem
into a sequence of easily manageable local linear problems, one
for each query. This allows to exploit, on a local basis, the whole
range of linear identification and validation techniques which
are fast, reliable, and come with a wealth of theoretical analyzes,
justifications, and guarantees.

The LL procedure essentially consists of the following steps
[23], [24].

• Associate at each sample a weight factor in
function of the distance and generate the ma-
trices and where is a diagonal
matrix having diagonal elements .

• Solve, using a number of neighbors of , a linear lo-
cally weighted regression problem

(8)

where is the vector descriptive of the first order polyno-
mial used as local approximator.

• Calculate the prediction by evaluating the model (8) in the
query point as

(9)

This algorithm demands the choice of the number of
neighbors of to be used in the local regression fit and
the tuning of the local model parameters. The black- and
the grey-box approaches proposed in this paper are based
on a version of LL that, on a query-by-query basis, tunes
the number of neighbors [23], [24]. This is done by
solving in a recursive fashion the (8). The idea consists in
starting from a minimum number of neighbors and recur-
sively adding neighbors until the predicted performance
of the corresponding local approximation decays signifi-
cantly or a maximum number of examples is reached [23].
More details on the LL technique and its applications can
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Fig. 2. Grey-box modeling architecture.

be found in [19], [24], [26], and [27]. Also, a compara-
tive analysis of LL and neuro-fuzzy inference systems for
modeling is presented in [6] and [25].

This paper illustrates and validates the use of LL in the spe-
cific problem of power transformer thermal modeling. The LL
algorithm exhibits a number of features that match the charac-
teristics of the hot-spot temperature prediction problem.

• The reduced number of assumptions: LL assumes no a
priori knowledge on the process underlying the data. For
example, it makes no assumption on the existence of a
global function describing the data and no assumptions on
the properties of the noise. The only available informa-
tion is represented by a finite set of input/output observa-
tions. This feature is particularly relevant in real datasets
where problems of missing features, nonstationarity and
measurement errors make appealing a data-driven and as-
sumption-free approach.

• Online learning capability: LL can easily deal with online
learning tasks where the number of training samples in-
creases with time. In this case, LL simply adds new points
to the dataset: unlike neural networks, LL does not need
time-consuming re-training when new data become avail-
able.

• Modeling nonstationarity: LL can deal with time-varying
configurations where the stochastic process underlying the
data is nonstationary. In this case, it is sufficient to inter-
pret the notion of neighborhood not in a spatial way but
both in a spatial and temporal sense. For each query point,
the neighbors are no more the samples that have similar
inputs but the ones that both have similar inputs and have

been collected recently in time. Therefore, the time vari-
able becomes a further precious feature to consider for ac-
curate prediction.

These considerations motivate the adoption of the LL algo-
rithm as an adaptive nonlinear black-box estimator and as an
adaptive correction estimator in the grey-box architecture (Sec-
tion III-C). Its accuracy is assessed in Section IV.

C. Grey-Box Modeling Approach

The grey-box modeling approach pursues the effective inte-
gration of the physical knowledge available about the system
with the additional information retrievable from experimental
measurements. This paper proposes a grey-box architecture
to improve the accuracy of white-box models in assessing
the loading capability of the transformer. The basic idea is to
combine the prediction returned by the physical transformer
thermal model with adaptive black-box correction algorithms.
The proposed grey-box architecture is sketched in Fig. 2.

We expect this architecture to be reliable both in terms of
robustness and speed since it combines a fast built-in physical
model with an adaptive dynamic corrector. The corrector model
is sequentially updated, in order to adapt the whole architecture
to “new” operating conditions. A way to detect a new condition
is checking regularly the prediction accuracy on fresh measure-
ments: a prediction error over a fixed threshold could be used to
trigger the dataset update. It is worth noting also that this struc-
ture, by avoiding recursive feedbacks, should in principle also
prevent stability problems and the consequent explosion of the
error (e.g., like in recurrent neural architectures).
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The design of the proposed grey-box scheme relies on two
main components: 1) a reliable white-box physical model de-
scribing the transformer and 2) an effective adaptive model able
to predict the correction on the basis of measurements.

We consider the IEEE model described in (2) and LL for
playing the role of the physical model and of the adaptive cor-
rector, respectively. We expect that their integration should en-
sure an high accuracy in the thermal estimation process pro-
viding, at the same time, the capability to adapt to the inherent
time-varying phenomena characterizing the thermal dynamic.
Another nonnegligible factor on behalf of this combination re-
lates to the advantageous computational requirements in view
of a hardware implementation. Low computational cost is guar-
anteed by the fact that: 1) the white-box is a simplified thermal
model and 2) the LL requires neither a heavy structural identi-
fication phase nor a long updating process.

1) The Identification of the Corrective Module: The correc-
tion module is the black-box component of the grey-box archi-
tecture. This module takes as input the information coming from
the physical model and the measured information coming from
the observations. The expected output is a correction of the pre-
diction returned by the white-box model.

Let be the real hot-spot temperature at time and
the prediction of returned by the physical model.

We denote by the white-box pre-
diction error. Once and are available, the quan-
tity can be easily measured and stored in the observa-
tion database. It follows that a black-box predictor can be used
to predict the value of , given a set of inputs. We pro-
pose the following black-box structure to address the problem
of short-term forecasting:

(10)

where the horizon ranges over the interval [1, 12] (or equiva-
lently in the range 5 min, 1 h). Note that the accessibility of the
physical prediction allows the use of a reduced set of
input features with respect to the black-box formulation in (7).
While the black-box approach in (7) requires a window of
past values, the grey-box approach can find equivalent informa-
tion in the physical quantity returned by the white-box
predictor. This shows clearly the benefit of the semi-physical
grey-box approach with respect to a pure black-box approach.

Experimental results show that the short-term correction
model returns an accurate prediction only for reduced values
of . Increasing the gap between the last measure of
and the prediction has as inevitable consequence the explosion
of the prediction error. This phenomenon rises the need for
addressing long-term assessment with a different correcting
model structure. Hence, we propose the following long-term
formulation:

(11)

Experiments show that this corrective structure allows a more
robust behavior than the correction (10) on middle (more than
1 h), long (one day), and very long horizons (two days). Since
this model structure is equivalent to the structure in (10) apart
from the removal of the measure of , some considerations

have to be made. We maintain that the better performance of
(11) with respect to (10) is due to a reduced complexity of the
corrector which makes it less prone to errors on long horizons.
At the same time, what seems a loss of information with respect
to (10) (i.e., the absence of ) is only apparent since the
variable re-enters the model as initial condition of the
computation of .

IV. EXPERIMENTAL SETTING

The measurement station (Fig. 3): It is formed of a set of
fiber-optical-based sensors that measures: 1) the hot-spot tem-
perature of the medium-voltage and low-voltage windings and
2) the top oil temperature [10], [15], [16]. The transformer main
characteristics are reflected in Table I. In order to measure the
load current a Hall-effect current transducer is used. The am-
bient temperature is monitored through a digital thermometer
located far enough away from the power transformer so that
the impact of heat dissipated from the transformer on the am-
bient temperature can be neglected. All sensors are interfaced
with a data acquisition unit, which is used also for controlling
the variac tap-changer. A data logging system records the tem-
perature registered by each sensor at 5-min intervals. The mea-
surement session consisted in imposing several realistic loading
current profiles and in acquiring the load current, the trans-
former top oil temperature, the weather conditions, and the cor-
responding winding hot-spot temperature.

Data collection: The data were recorded during 24 h by
loading the transformer according to the profile reported in
Fig. 4(a). This profile is expected to be representative of the
different operating conditions of the transformer as it contains
both situations of normal load and an overload condition of
about 2 h (around the seventh hour of functioning). The related
hot-spot behavior is reported in Fig. 4(b).

The training set, resulting from the from the measurement
procedure, is composed of input/output pairs1.

Validation procedure: The prediction experimental ses-
sion adopts a training-and-test procedure [22] in order to
have an accurate assessment of the accuracy of the different
modeling approaches. As measures of accuracy we use the
root mean square error (RMSE) and the peak error (PE)

at the winding hot-spot
temperature. The PE quantity represents an essential figure
of merit in the evaluation of the prediction accuracy since it
describes the suitability of the prediction algorithm to identify
the hot-spot evolution during overloads. Overloads are indeed
very critical situations where an extremely high accuracy is
required.

The accuracy of the modeling approaches is tested over two
different test sets, featuring two different load current profiles:
the first without overload [Fig. 5(a)] and the second with a 4-h
overload condition of 1.3 p.u. [Fig. 5(b)].

1This dataset is indeed a subset of the original set, and it has been obtained
by a preprocessing phase which removed those examples which are well mod-
eled or redundant according to a given index of performance. The rationale for
this subsampling is to store only those sample points that are relevant for the
description of the system dynamics, discarding the ones that are redundant or
less meaningful. In particular, we adopt a tolerance threshold of 0.5 C for load
current higher than 0.8 p.u. (per unit) and 2 C otherwise.
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Fig. 3. Power transformer.

TABLE I
TRANSFORMER CHARACTERISTICS

All computation tasks were performed by using Matlab, ver-
sion 62. Standard Matlab toolboxes (neural network toolbox)
and our own LL code [28] were employed in the experiments.

Short-term forecasting results: A linear RLS algorithm and a
nonlinear LL3 algorithm are used to approximate the unknown
relationship . We explore different prediction horizons
ranging between 5 min. and 1 hour. For each time horizon, we
report the accuracy of the prediction models assessed over the
two validation datasets. An adaptation mechanism is used to

2http://www.mathworks.com
3Hereafter, by LL we refer to an LL algorithm which adopts the model combi-

nation paradigm (b = 10 in (11)) and where the number of neighbors is allowed
to range in the interval [50], [70].

update sequentially the knowledge base with new samples when
the prediction error is detected to be worse than the threshold
discussed in footnote 1. The results of the black-box model
are reported in Fig. 6(a) (RMSE versus horizon). Note that the
RMSE error in Fig. 6 is averaged over the two validation sets.

The results of the grey-box model are reported in Fig. 6(b)
(RMSE versus horizon).

Looking at the figures we remark that the accuracy deterio-
rates for larger prediction horizons. This justifies the adoption of
specific methods for the long-term forecasting. Also, the anal-
ysis of the results reveals that LL and RLS ensure a good level
of accuracy both in the black-box and the grey-box architecture.
As far as the comparison grey/black is concerned, it appears that
in this case the performance of grey-box models does not sig-
nificantly outperform black-box methodologies. A substantial
equivalence in terms of prediction accuracy should then lead us
to favor less complex methodologies. On this matter, it appears
that the grey-box requires a simpler identification model (i.e.,
less input features). In terms of robustness this should guarantee
a better behavior in front of unexpected configurations.

As far as a comparison LL-RLS is concerned, a considerable
difference emerges with reference to the PE evolution (figures
not available for lack of space). In this context the experimental
results show that LL gives better accuracy than RLS. This is
probably due to a specific nonlinear effects appearing in over-
load regimes.

Long-term forecasting: The application of the short-term
models to a long-term forecasting problem does not guarantee
an acceptable performance in terms of accuracy (Fig. 7).
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TABLE II
LONG-TERM FORECASTING ACCURACY

Fig. 4. Training set. (a) Current load profile. (b) Hot-spot behavior.

This suggests the adoption of alternative models to address
this specific task. We present here the results obtained by using
the white-box and the grey-box architectures (Section III-C).

Note that the white-box model is based on the IEEE thermal
model where the transformer characteristic parameters are

C C

h C h

Fig. 8(a) reports three curves for the first test set: the measured
hot-spot temperature for the first test set, the predictions re-
turned by the white-box (IEEE) model, and the one returned
by the grey-box model where the correcting module is imple-
mented by a LL algorithm. Fig. 8(b) reports the same curves for
the second test set.

Looking at the PE error (i.e., the error at the maximum tem-
perature) we see that the white-box model underestimates the

Fig. 5. Load current profiles. (a) First test set. (b) Second test set.

temperature, then providing a conservative safety factor to pro-
tect the power transformer. A much lower PE is returned by the
grey-box models.

Table II summarizes the experimental results obtained so far.
Table II shows that, in terms of RMSE, the grey-box

architecture outperforms significantly the white-box approach
especially in presence of severe overload. It is worth noting
that although the two grey-box models are trained using the
same dataset, the LL-based correction algorithm exhibits a
better accuracy in the presence of overload conditions.

Dynamical load capability assessment: The availability of
a predictive model of the hot-spot temperature is a necessary
preconditiontoperformthedynamicalloadcapabilityassessment
procedure. This is carried out, once the real transformer thermal
state and the forecasted environmental conditions are given, by
solving iteratively the short or long predictive models for a set
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Fig. 6. Short-term forecasting. The figure reports the RMSE versus the time
horizon. (a) Black-box linear (RLS) and black-box nonlinear (LL) prediction.
(b) Grey-box linear (RLS) and grey-box nonlinear (LL) prediction.

Fig. 7. Long-term forecasting. RMSE accuracy versus horizon of two
short-term prediction models.

of loads comprised between 1 and 2 p.u.. The corresponding
hot-spot and aging profiles allow to identify the maximum
allowable duration for each load. The resulting diagram is
called the load capability curve. Dynamic load capability
curves make possible technical and economical considerations

Fig. 8. Long-term forecasting. The figure reports the real hot spot and the
predictions returned by the white-box (IEEE) and the grey-box nonlinear (LL)
models. (a) First test test. (b) Second test test.

about the load management. For example it allows to fix
a set of thresholds for the winding hot-spot temperature,
for the insulation loss of life and for the temperature of
bushings.

Fig. 9 reports the load capability curves identified starting
from two different thermal states of the transformer (cold
state and hot state) and adopting as technical constraint a
maximum hot-spot threshold of 90 C. Fig. 9(a) and (b)
show the curve obtained by the IEEE model and the LL
grey-box model. Again, the gap of the two curves puts into
evidence the important side effect of an inaccurate prediction
of the hot-spot temperature.

V. CONCLUSION AND FUTURE DEVELOPMENTS

The changing scenario in the energy market asks the asset
owners for new loading strategies in order to attain high profits
without losing reliability and security. This work shed light on
an innovative approach to loading assessment which aims at in-
tegrating consolidated knowledge about the components with
innovative techniques of data analysis. Although the experi-
mental study was limited to a power transformer, we expect
that the grey-box architecture could exhibit similar promising
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Fig. 9. Long-term forecasting. Load capability curve returned by the
white-box and the grey-box (LL) models. (a) Hot-spot temperature = 35

(cold state). (b) Hot-spot temperature = 75 (hot state).

results for other power components, like power electronics de-
vices, power cables, and overhead lines.

Further work will address also an hardware implementation
of the modeling architectures on a microcontroller-based unit
in order to develop advanced overloading protection units. The
availability of sophisticated micro controller, including com-
plete web based functionalities opens the ways to interesting
future scenarios like Energy Management Systems and Distri-
bution Management Systems featuring advanced functionalities
like remote control, monitoring and assessment (e-assessment).
Moreover, a diffused adoption of Web-based micro controller
units, equipped with reliable predictive models, could ensure a
capillary assessment of the overall network capability raising
the operative margins especially during emergency conditions.
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