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Abstract. Self-organised aggregation is one of the basic collective
behaviours studied in swarm robotics. In this paper, we investigate an
aggregation problem occurring on two different sites. Previous studies
have shown that a minority of robots, informed about the site on which
they have to aggregate, can control the final distribution of the entire
robot swarm on the sites. We reproduce this strategy by adapting the
previous probabilistic finite-state machine to a new simulated robotic
platform: the Kilobot. Our simulation results highlight that the update
time (i.e., the amount of time a robot waits before making a decision on
leaving a site) impacts the dynamics of the aggregation process. Namely,
a longer update time lowers the number of robots wandering in the arena,
but can slow down the dynamics when the target final distribution is far
from the one initially formed. To ensure a low number of wandering
robots while maintaining a quick convergence towards the target final
distribution of the swarm, we introduce the concept of a dynamic update
time increasing during the aggregation process.

1 Introduction

Swarm robotics studies the coordination of decentralised robot swarms display-
ing self-organised collective behaviours emerging from local interactions between
the agents. The goal is to design swarms that are robust to the loss of robots,
scalable in size, and flexible to different environments and tasks [2]. Several basic
collective behaviours have been identified and studied in robotic swarms such
as collective motion, task allocation, pattern formation, or consensus [16,25]. In
this paper, we study an aggregation behaviour. This collective behaviour is often
a prerequisite used to group a part or the totality of the swarm physically before
starting another behaviour requiring the proximity of the robots [27]. Two types
of control systems have been used to achieve aggregation in swarms of robots:
probabilistic finite-state machines and artificial neural networks. The first one
is inspired by biology studies that investigate the aggregation behaviours of
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animals like cockroaches [17] or bees [28] and have been adapted to robotic sys-
tems [14,27]. The second one employs neural networks as controllers to generate
aggregation behaviours through training in simulation [7,13].

The controller used in this paper is a probabilistic finite-state machine com-
posed of simple states such as leaving a site or exploring the environment (see
Fig. 1a). We study an aggregation problem on two distinct sites where a swarm
of robots is equipped with the controller of Fig. 1a. A minority of robots in
the swarm are informed about which of the two sites they have to aggregate
on. Black-informed robots selectively avoid to aggregate on the white site and
only aggregate on the black site, and white-informed robots avoid the black site
and only aggregate on the white site. By adjusting the ratio of informed robots
choosing to aggregate exclusively on the black or the white site, the designer
can bias the entire swarm to reach a target distribution (e.g., 70% of robots
on the black site and 30% on the white site). This method used to steer the
group dynamic of the aggregation process is inspired by collective behaviours
observed in biology where a minority of individuals aware of pertinent environ-
mental information dictate the group behaviour [3,5]. The concept of informed
robots has already been applied to a number of diverse collective behaviours in
swarm robotics such as flocking [4,8,9], collective decision making [6,22] or, as
in our study, self-organised aggregation [10–12,15].

Firat et al. [10,11] originally introduced informed robots in an aggregation
task on two sites in order for the entire swarm to aggregate on only one of them.
Informed robots in this study were programmed to aggregate on only one of the
two sites. This was extended by another study [12] allowing informed robots to be
divided in two groups reflecting the target final distribution on the two sites. In
parallel, an analytical model for this problem was developed by Gillet et al. [15],
showing that the quantity of informed robots needed to have an effect on the
final distribution was dependent of the site carrying capacity. In subsequent
work [26], we simplified the controller designed by Firat et al. [12] by employing
a memoryless reactive controller based on a simpler communication protocol, and
we conducted a comparative study showing that the novel controller resulted in a
more flexible behaviour of the swarm, together with equal or better performance
compared to the original controller.

Our end goal is to implement this controller on physical robots on a different
robotic platform than the one used in [26] to show that the controller is not
robot-specific but generic for other mobile robots capable of minimal motion
and minimal communication. Moreover, in swarm robotics, the validation of the
simulated controller on the physical robots is of paramount importance due to the
so-called reality gap. This gap generally translates in a performance drop when
porting the control software on the physical robots due to the differences between
the simulation and the real world [19]. In this paper, we adapt the controller to
the new robotic platform by taking into account the different sensors, actuators
and programming language while keeping the same individual behaviour found
in [26]. Then, we recreate the experimental setup in simulation to validate our
modifications. In this study, we also investigate the impact of the update time on
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the aggregation dynamics of the swarm: our results indicate a trade-off between
the speed of the aggregation process and the number of robots not aggregating
on any of the two sites when the system has reached a stable final distribution.
Finally, we propose a new simple method acting on the update time to avoid a
slowdown of the dynamics while keeping the number of robots wandering in the
arena low; fast convergence of the number of robots on the sites is indeed required
to stay inside the limits of the robots’ battery autonomy. Our methodology is
presented in Sect. 2 along the robotic platform and our results in Sect. 3.

2 Materials and Methods

The scenario we consider investigates the aggregation process of a swarm of 50
robots inside a squared arena containing a black and a white site (see Fig. 1b).
We control the aggregation by introducing a bias in the swarm through the use of
a minority of informed robots. Informed robots are robots that are programmed
to selectively aggregate on one of the two sites only. With a swarm of size N
containing Nsb black-informed robots only aggregating on the black site and
Nsw white-informed robots only aggregating on the white site, we can define
the proportion of informed robots in the swarm by ρI = Nsb+Nsw

N . In a similar
manner, the proportion of black-informed robots and white-informed robots rel-
ative to the total number of informed robots are defined as ρsb = Nsb

Nsb+Nsw
and

ρsw = Nsw

Nsb+Nsw
, respectively. Starting from positions and orientations randomly

chosen in the arena following a uniform distribution, the swarm should redis-
tribute itself on the aggregation sites to obtain a final distribution of the robots
approaching N × ρsb on the black site and N × ρsw on the white site.

The robotic platform used for the implementation of our controller is the
Kilobot [24], which is a low-cost robot designed to facilitate the testing of collec-
tive behaviours requiring a large number of robots (see Fig. 1c). Two vibrations
motors are used for locomotion, allowing a forward speed of 1 cm/s and a rotation
speed of 45 ◦/s. The robot is also equipped with an infrared LED emitter and an
infrared photodiode receiver which allow communication between robots up to
10 cm by sending light that reflects on the ground. There is also a visible light
sensor on the top of the robot and a three-colour LED to visualise the state in
which the robot is. These robots are widely employed also because they can eas-
ily be programmed in batches using an overhead controller that sends infrared
messages.

While it is user friendly, the Kilobots are limited by the simplicity of their
sensors. This restricts the types of experiments that can be performed with the
robots as they can not get feedback on their physical environment (other than
with the light sensor). To overcome this problem, solutions have been proposed
such as the ARK system [23] which allows the use of virtual sensors through an
overhead controller and a camera tracking system. In this paper, we equip the
Kilobots with virtual sensors using the Kilogrid [29]; an electronic table made
of a grid of infrared modules allowing communication to and from the Kilobots.
Each module (10 cm × 10 cm) is divided equally into four cells, each capable of
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Fig. 1. (a) The probabilistic finite-state machine controller composed of four states:
Random Walk (RW), Stay (S), Leave (L) and Obstacle Avoidance (OA). Letters
in lowercase represent events triggering the transition between states: a is finding a
suitable site for aggregating, b is getting out of a site or the obstacle area, and c is
entering the obstacle area. PLeave is the probability to leave the site as described in
Eq. (2). (b) The simulated Kilogrid with a swarm of 50 Kilobots, an aggregation site
in white, an aggregation site in black, the obstacle area in red and a neutral area in
blue. (c) The Kilobot robot. (Color figure online)

communicating with the Kilobots above them. Each cell is also equipped with
two RGB LEDs that can be colored to inform the user. The Kilogrid monitors
continuously the position and state of each Kilobot, and allows the implementa-
tion of virtual sensors measuring different values in each cell (e.g. to measure the
humidity or the temperature of a virtual environment). The Kilobots are also
able to modify the environment by sending messages to the current cell that will
be processed as actions.

Experiments were performed using the ARGoS simulator [21] with the
ARGoS-Kilobot plugin to model the Kilobots [20], and the ARGoS-Kilogrid
plugin [1] which allow the use of identical code in simulation and on the real
Kilobots and Kilogrid. In our previous experimental scenario [26], the arena was
a circle with two circular aggregation sites. Here, we test a different environ-
ment with a squared arena of 100 × 100 cm2 (Fig. 1b) allowing experimentation
with swarms of 50 Kilobots. The two aggregation sites are stripes positioned
symmetrically at the edges of the arena. One stripe stands for the white site
and the other one for the black site. Each stripe is composed of 16 × 3 Kilogrid
cells, corresponding to 80 × 15 cm2. We added a red zone with a width of 2
Kilogrid cells (10 cm) around the perimeter of the arena which acts as an obsta-
cle for the Kilobots. Once in the red area, the robots enter a state of obstacle
avoidance until they get back inside the arena. The use of the Kilogrid enhances
the capabilities of the Kilobots with virtual ground sensors: each cell broadcasts
continuously its colour which is received by the robots present at the location.

We reproduced the controller from [26] which is a probabilistic finite-state
machine composed of three states and we added a state of obstacle avoidance
for the walls of the arena (Fig. 1a). The robot can be in the state: (RW) random
walk during which it explores the environment, (S) stay during which it aggre-
gates on a site, (L) leave during which it gets out of a site, and (OA) obstacle
avoidance during which it gets out of the obstacle area. Different from [26], in our
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experimental setup, the Kilobots are not equipped with physical sensors capa-
ble of detecting the position of other close robots or obstacles. Therefore, the
controller used in this paper does not implement a collision avoidance scheme
between the robots. However, to keep the robots from getting stuck on the walls
of the arena, we added the OA state which triggers as soon as the robots enter
the red area surrounding the environment and allows the robot to get out of it.
This differs from [26] where robots can directly detect close obstacles with their
physical sensors and avoid them while in any state of the probabilistic finite-state
machine.

The initial state is random walk (RW); in this state, the robot explores the
environment following an isotropic random walk with turning angles obtained
from a wrapped Cauchy distribution [18] with the following density function:

fω(θ, μ, ρ) =
1
2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − μ)
, 0 < ρ < 1, (1)

with μ the average value of the distribution and ρ the skewness. At ρ = 0,
the distribution becomes uniform and the turning angles of the robot are not
correlated. At ρ = 1, the distribution becomes a Dirac distribution and the
robot’s path is a straight line. In this paper, we use ρ = 0.5. We define a fixed
step length by taking a step duration of 10 s (the Kilobot average speed is 1 cm/s).
If the robot enters a valid aggregation site (any site if it is non-informed, the
white site if it is white-informed or the black site if it is black-informed), it
transitions from state RW to state S. During this transition, it continues to
move straight during 10 s to avoid aggregating on the border of the site.

While in state S, the robot stops moving and signals its presence to other
robots by broadcasting infrared messages containing its unique ID. At the same
time, it receives messages from other robots resting in the nearby neighbourhood
(the maximum communication range of the Kilobot is 10 cm). Each time the
robot receives a message with a new ID, it stores this ID in an array. Periodically,
every update period of length Tupdate, it estimates n, the local number of robots,
by counting the total number of unique messages received. This number is then
used to compute the probability to leave the site:

PLeave =

{
αe−βn for non-informed robots
0 for informed robots

(2)

where α = 0.5 and β = 2.25. The higher is the number of robots in the local
neighbourhood, the higher is the probability to stay on the site. Informed robots
do not leave their site after finding it. After sampling the probability, the robot
stays in state S or transitions to state L.

In state L, the robot tries to leave the aggregation site by moving forward.
Once out, it transitions to state RW. In some cases where the robot is encircled
by a cluster of other robots, it will not be able to get out of the site. To avoid a
situation where the robot tries to go forward indefinitely but cannot get out of
the cluster, we implemented a timer limiting the time spent in state L. If after
30 s, the robot is not outside the site, it transitions back to state S.
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The robot can also transition from state RW to state OA by entering the
obstacle area near the surrounding walls. In state OA, the robot first turns
left for 4 s, then moves straight for 10 s. Once the robot is out of the obstacle
area, it transitions to state RW. If not, it repeats the operation. Our simulation
experiments show that this simple method is sufficient to allow the Kilobots to
exit the obstacle area.

3 Results

This section discusses the impact of the update time on the dynamics of the
swarm for all configurations of the parameters found in Table 1. We run 50 trials
for each combination of these parameters. The swarm size is set to N = 50
robots and the proportion of informed robots in the swarm to ρI = 0.3. We
vary the update time Tupdate = {2 s, 8 s} for different proportions of black/white
informed robots: ρsb = {0.5, 0.7, 1}, and ρsw = 1−ρsb. The robots are randomly
placed at the start of the simulation in the neutral area (the blue area in Fig. 1b)
following a uniform distribution. The time length of the simulation experiments
is set to 5 h to capture the slow convergence of the system occurring in some
cases, even if the battery autonomy of the real robots is limited to 2.5 h. After
discussing the obtained results, we also propose a simple method to drive the
convergence of the swarm towards the target final distribution in a shorter time
while limiting the number of wandering robots in the arena.

Table 1. Parameters values

Experiment parameters Values

Swarm size (N) {50}
Proportion of informed robots (ρI) {0.3}
Proportion of black informed robots (ρsb) {0.5, 0.7, 1}
Update time (Tupdate) {2, 8} s

Figure 2 shows the evolution of the numbers of robots aggregated on the
white site and the black site as well as the number of robots wandering in the
arena in function of the time. In all graphs, the solid black lines are the median
and the interquartile range of the number of robots aggregated on the black site
over the 50 trials. The same applies for the number of robots aggregated on the
white site in grey and the number of wandering robots in blue. We set Tupdate

to 2 s in Figs. 2a, 2c, 2e and to 8 s in Figs. 2b, 2d, 2f. The proportion of informed
robots staying on the black site is set to ρsb = 0.5 in Figs. 2a and 2b, to ρsb = 0.7
in Figs. 2c and 2d and to ρsb = 1 in Figs. 2e and 2f. The target final distributions
of the swarm at the end of the experiment for these proportions are, respectively,
25 robots on each site; 35 robots on the black site and 15 on the white site; 50
robots on the black site.
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Fig. 2. Evolution over time of the number of robots over 50 trials for ρI = 0.3. Tupdate =
2 s on the graphs of the first column and Tupdate = 8 s on the graphs of the second
column. ρsb = 0.5 in the first row, ρsb = 0.7 in the second row and ρsb = 1 in the
third row. The solid grey lines represent the median and the interquartile range of the
number of robots aggregated on the white site. The same applies to the black lines
corresponding to the number of robots aggregated on the black site and the blue lines
corresponding to the number of wandering robots.

The dynamics of the system are the following. The numbers of robots aggre-
gated on the sites increase rapidly in the first phase of the simulation. Afterwards,
they vary slowly before stabilising around a certain value. In the graphs of the
left column of Fig. 2, the median of the number of robots not aggregated on
any of the two sites and wandering in the environment decreases quickly (as a
consequence of robots aggregating on the two sites), and then remains stable
throughout the simulation around a value of 10 robots. The same occurs for
the graphs of the right column of Fig. 2 but the number of wandering robots
stabilises around 5. This effect is due to the longer update time of 8 s which
improves the total number of robots staying on the sites. A robot with a short
update time has more occasions to sample the probability to leave the site in a
given time frame, compared to a robot having a longer update time. Thus, the
proportion of robots staying at a site that choose to leave is higher for shorter
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update time, resulting in a higher quantity of robots wandering the arena. This
is well illustrated by comparing Fig. 2a where the number of robots on the black
or white site converges around 20 robots and Fig. 2b where the distribution of
robots stabilises around 22 robots on each site.

We can also see that, in Fig. 2f, the numbers of robots staying on the sites
converge more slowly towards their stabilised value compared to Fig. 2e. These
slower dynamics are another effect of a longer update time inducing a lower
tendency to get out of the sites. This slowdown is not visible in Figs. 2a, 2b, 2c
and 2d for other values of ρsb and ρsw. These values are used to obtain target
final distributions of robots between the two sites that are similar to the distri-
bution initially formed at the start of the aggregation process, where the robots
distribute themselves randomly between the two sites, hence in a distribution
with approximately half of the swarm on the black site and the other half on the
white site. Thus, the effect of a longer update time in these cases is less evident
but manifests more clearly when the swarm should attain a more extreme final
distribution (e.g. for ρsb = 1 and ρsw = 0 in Fig. 2f).

In order to obtain a relatively quick convergence to the target final distribu-
tion and to limit the number of wandering robots in the arena at a later stage, we
introduce the idea of a dynamic update time. The time Tupdate is initialised at 1 s
and increases linearly throughout the aggregation process by a quantity Δupdate

every minute. Here we selected Δupdate = 0.125 s after testing multiple values.
Our time-varying strategy ensures a short update time which makes the swarm
more dynamic in the first part of the aggregation process where the distribution
of robots begins its formation on the sites, and a longer update time afterwards
which lowers the probability of robots getting out of the sites and makes the
swarm more static. Results for the same parameters described in Table 1 are
shown in Fig. 3. For all graphs, the median of the number of wandering robots
gradually decreases to attain a value of 5. Figure 3a shows a convergence of the
median of the number of robots on both sites around a value of 22. In Fig. 3b, the
median of the number of robots aggregated on the black site stabilises around 31
and the one for the white site around 14. In Fig. 3c, the median of the number
of robots aggregated on the black site converges to 45 and the median of the
number of robots aggregated on the white one to 0.

These results show that the performance of the swarm at attaining the target
final distributions is improved by the use of our strategy of dynamic update time.
In all studied cases, the number of wandering robots remain close to 5, as it was
the case for a update time of 8 s. In addition, the use of a dynamic update time
cancels the slow dynamics observed with a longer update time when the target
final distribution was far from the one initially formed in the first phase of the
aggregation process. The numbers of robots aggregated on the two sites stay
stable after 2 h which will allow us to test our controller on the physical robots
with an experiment time that do not exceed the Kilobot’s battery autonomy.
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Fig. 3. Evolution over time of the number of robots over 50 trials for ρI = 0.3, and
different proportions of informed black robots: (a) ρsb = 0.5, (b) ρsb = 0.7 and (c)
ρsb = 1 with a linear increase of the update time. The solid grey lines represent the
median and the interquartile range of the number of robots aggregated on the white site.
The same applies to the black lines corresponding to the number of robots aggregated
on the black site and the blue lines corresponding to the number of wandering robots.
(Color figure online)

In all the graphs, there is a small number of robots that do not aggregate
on the sites. Visual inspection of the simulations show that this could be due to
the nature of the robots used and the shape of the arena. No collision avoidance
scheme is implemented on the Kilobots. When the aggregation has occurred
and the numbers of robots aggregated on the sites are high, there is a higher
probability for the remaining robots trying to enter a site to push other robots
out of the site while entering. Furthermore, robots choosing to leave an already
heavily populated site also have a higher probability to push other robots out of
the site while getting out of it. This could explain the constant remaining number
of wandering robots at the end of the experiment: even if new robots manage to
aggregate on the sites, a small amount of aggregated robots are constantly being
pushed out of the sites. Another cause could also be that the entrance of the few
remaining robots into the already populated sites is hindered by the physical
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barrier formed by clusters of robots near the borders of the sites. Nevertheless,
while we recognise that a small number of wandering robots always subsist at
the end of the aggregation process, the influence of the informed robots on the
dynamics is clearly visible as well as the impact of the update time.

4 Conclusions

We successfully reproduced the controller defined in [26] in simulation and
adapted it to a second robotic platform, the Kilobot [24]. Namely, we introduced
an obstacle avoidance state to avoid the edges of the arena and we removed
the collision avoidance scheme between the robots. Through simulations, we
conducted an empirical study showing the impact of the update time on the
dynamics of the aggregation of a swarm of robots on two distinct sites. This was
realised for three different ratios of black/white informed robots in the swarm
targeting three final distributions of the swarm on the sites. Our results show
that a longer update time reduces the number of robots that do not aggregate
on any of the two sites and wander in the arena. However, this also induces a
slower convergence towards the target final distributions when the swarm needs
to attain a distribution that is far from the one initially formed in the first phase
of the aggregation process. To solve this problem, we introduced a dynamic
update time linearly increasing during the experiment. This resulted in a quick
convergence towards the target final distributions and an overall low number of
wandering robots. Future work will consist of implementing our controller on the
physical robots in order to validate our results and evaluate its ability to cross
the reality gap.
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