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Stigmergy is a form of indirect communication and coordination in which individuals influence their
peers by modifying the environment in various ways, including rearranging objects in space and
releasing chemicals. For example, some ant species lay pheromone trails to efficiently navigate
between food sources and nests. Besides being used by social animals, stigmergy has also inspired
the development of algorithms for combinatorial optimisation and multi-robot systems. In swarm
robotics, collective behaviours based on stigmergy have always been designed manually, which is
time consuming, costly, hardly repeatable, and depends on the expertise of the designer. Here, we
show that stigmergy-based behaviours can be produced via automatic design: an optimisation
process based on simulations generates collective behaviours for a group of robots that can lay and
sense artificial pheromones. The results of our experiments indicate that the collective behaviours
designed automatically are as good as—and in some cases better than—those produced manually.
By taking advantage of pheromone-based stigmergy, the automatic design process generated
collective behaviours that exhibit spatial organisation, memory, and communication.

Stigmergy1–3 is a coordination mechanism in which agents self-organise
through indirect local communication mediated by the environment.
When using stigmergy, agents leave indications of their presence or actions
in the environment and this stimulates/inhibits the behaviours of their
peers4. Some animals physically transform the environment thus producing
visual cues that influence their peers. For instance, humans leave footprints
on the ground and flatten vegetation while walking in the wild, thereby
creating visually detectable paths that others tend to follow5. Other animals
secrete chemicals that their peers can detect and to which they react—for
instance, Argentine ants lay pheromone trails that are then followed by
nestmates6.

For many social insects, pheromone-based stigmergy plays an
important role in self-organisation7. These insects can sense environmental
features, locally interact with other members of the colony and with the
environment, and process information to make decisions8. However, they
have short perception and communication ranges, are not aware of the
global state of the colony, are unable to remember their actions, and are
unable to plan their contributions to the collective activities of the colony8.
The pheromones laid in the environment function as a collective and dis-
tributed memory: they effectively encode the state of the colony. The
pheromones enable coordination, as the individuals can work together and
self-organise without the need to communicate directly or receive instruc-
tion on the tasks they must perform9,10.

In a robot swarm, which operates similarly to a colony of social
insects11, a collective behaviour emerges due to local interactions between
individual robots and between the robots and the environment12. A robot
swarm, like an insect colony, can use pheromone-based indirect commu-
nication mediated by the environment13. Designers of robot swarms can
develop pheromone-based interaction strategies for specific missions.
However, giving real robots the capability to mark the environment with
indications of their activities is still an open technological challenge14. In
some studies, researchers have developed smart environments to enable
pheromone-based stigmergy, for instance, by using: (i) a system of sta-
tionarydevices (e.g., RFID tags) spread throughout the environment to store
virtual pheromones15–19, (ii) devices to display or project virtual pheromones
on the ground20–23, or (iii) augmented reality to immerse the robots in a
virtual environment inwhich they can lay and sense pheromones24–26. These
systems are flexible, powerful, and enable the implementation of complex
coordination mechanisms. However, as these systems rely on external
infrastructures (for tracking robots, displaying the pheromones, and storing
information), they can be expensive and are only suitable under restricted
conditions. Alternatively, several approaches to physically deposit artificial
pheromones have been proposed, using specialised onboard actuators to lay
trails of alcohol or wax, without the assistance of any external
infrastructure27–29. However, these solutions would be impractical in most
real-world applications due to the hazards of using flammable material
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(alcohol) or heating devices (formelting wax). To address the issue, we have
recently proposed a hardware module for robots that project UV light
downwards, laying an artificial pheromone trail on ground that has pre-
viously been coated with photochromic material30. The part of the ground
that is exposed to UV light changes in colour from white to magenta. Once
theUV light is removed, themagenta colour fades back towhite, in about 50
s, mimicking the evaporation of a pheromone. This approach does not
present safety risks and does not rely on complex or expensive infra-
structure, however, it still requires the environment to be prepared before
deploying the robots.

The technological problem of endowing the robots with the ability to
lay and sense artificial pheromones is not the only problem to be addressed.
The concept of stigmergy is not easily understood intuitively31 and therefore,
designing collective behaviours based on stigmergy is itself a challenge.
Even without using stigmergy, designing any collective behaviour for a
robot swarm is already complex: individuals are autonomous and loosely
coupled, and the interactions between individuals and between them and the
environment become fully defined only at run time32,33. The design problem
becomes even more complex if the interaction strategies that enable coor-
dination are regulated by modifications to the environment. No formal
design method exists to tell under what conditions and in what amount
individuals should release the pheromone, nor how they should react to
pheromone trails so that a desired collective behaviour emerges. In the
swarm robotics literature, pheromone-based stigmergy has been pre-
dominantly designed manually, via trial and error, to address specific mis-
sions under specific conditions26,34,35. Manual design is a time-consuming
approach in which a human designer conceives, tests, and iteratively
improves the control software of the robots, until a desired collective
behaviour is obtained36,37. The quality of the results obtained via manual
design is not consistent and greatly depends on the experience of the
designer. Typically, a manual design process is neither easily repeatable, nor
directly generalisable to other—albeit similar—robotic platforms or
missions38. The only exception to manual design is one study in which deep
reinforcement learning was used to develop a collision avoidance behaviour
based on a virtual pheromone39. Although restricted to simulation-only
experiments, this study showed that control software produced through deep
reinforcement learning can outperform the one generated viamanual design.
The proposed approach was conceived for scenarios where a centralised
infrastructure stores global pheromone information and makes it accessible
to the robots. On the one hand, this approach provides a solution to the
problem of designing pheromone-based behaviours in virtual environments.
On the other hand, the approach is not directly applicable in scenarios where
the robots are expected to autonomously lay and sense the artificial pher-
omones in their physical environment.

In this paper, we focus on the automatic design of stigmergy-based
collective behaviours for robot swarms. We present Habanero, an auto-
matic off-line design method that belongs to the AutoMoDe family40. In
AutoMoDe, as is customary in automatic off-line design38,41, the design
problem is reformulated as an optimisation problem that is solved in
simulation, prior to the deployment of the robots in their target
environment41,42. The solution space of the optimisation problemcomprises
instances of control software that can be obtained by selecting and com-
bining pre-existing software modules (i.e., low-level behaviours and the
conditions to transition between them) into a modular architecture (e.g.,
finite-state machines, behaviour trees) and by tuning the free parameters43.
Once the optimisation process is completed, the selected control software is
uploaded to the robots without undergoing any manual transformations,
and the robots are eventually deployed in the target environment. It has been
observed that the control software produced by AutoMoDe crosses the
reality gap44–47 better than traditional approaches based on
neuroevolution43,48, in which robots are controlled by a neural network that
is optimised using an evolutionary algorithm49–51. This improvement can be
attributed to AutoMoDe’s constraint that control software must be gener-
ated by assembling the given modules within a specific architecture (e.g., a
probabilistic finite-state machine). By applying this constraint, AutoMoDe

limits the size of the design space to the set of possible combinations of
modules, and therefore reduces the variance of the design process43. This
reduces the risk of over-fitting the control software produced to the idio-
syncrasies of the simulation environment, which is the main reason why
control software might fail to cross the reality gap satisfactorily47.

AutoMoDe is a general framework. To define a specific design
method that conforms to it and produces control software to address a
specific class of missions, the following steps must be taken: (1) select a
target robot platform that is appropriate for the given class of missions,
(2) define software modules for the selected robot platform, (3) specify
the architecture into which the software modules will be assembled, (4)
select a simulator to be used in the automatic design process, and (5)
define an appropriate optimisation algorithm to search the space of the
possible ways in which the software modules can be assembled and
tuned. Our proposed AutoMoDe method, Habanero, designs collective
behaviours to address missions in which the robot swarm relies on
stigmergy to coordinate. The target robot platform is the e-puck52 aug-
mented with the Overo Gumstix Linux board, the aforementioned
hardware module that lays artificial pheromone trails by focusing UV
light onto ground coated with photochromic material30, and an omni-
directional camera to detect artificial pheromone trails. The software
modules of Habanero are based on those previously defined for
TuttiFrutti53, another AutoMoDe method that generates control
software for robots that can display colours via RGB LEDs and react to
them. The main difference between TuttiFrutti and Habanero is
that the latter features some original hardware and software devices to lay
and detect pheromone trails. The architecture into which these modules
are assembled are probabilistic finite-state machines. The simulator used
in the design process is ARGoS54 with an original library for the simu-
lation of pheromone trails. The optimisation algorithm utilised is Iterated
F-race 55, as originally used in TuttiFrutti53 and in Chocolate, the
state-of-the-art AutoMoDe method56. See Fig. 1 for a graphical illustra-
tion of Habanero, Fig. 2 for a description of the platform for which
Habanero was developed, and the Methods section for further details.
The collective behaviours designed by Habanero enable the robots to
operate in a fully autonomous and distributed way without requiring any
form of centralised control and coordination.

In this study, we demonstrate Habanero by generating control
software for a swarm of eight e-puck robots. We consider four missions in
which the robots should rely on stigmergy-based coordination: AGGRE-
GATION, DECISIONMAKING, RENDEZVOUS POINT, and STOP. See
Fig. 3 and theMethods section for details. To assess the quality of the control
software produced by Habanero, we compare its performance to that of
several alternatives, shown in Fig. 4: (1) control software produced via
neuroevolution (EvoPheromone), (2) control software manually pro-
ducedbyhumandesigners (Human-Designers), and (3)a random-walk
behaviour (Random-Walk).

The results of the experiments indicate that: (i) Habanero is a viable
approach to designing pheromone-based stigmergy; (ii) it can produce
control software that is comparable to, or even outperforms, control soft-
ware produced by a human designer; and (iii) although its modules are
conceived in amission-agnostic way, the interaction strategies it devises are
mission-specific.

Results
Habanero designed stigmergy-based collective behaviours that proved to
be effective: the robots used the artificial pheromone to complete each
mission in a way that is meaningful and appropriate to the mission con-
sidered. Statistical analysis shows that the control software generated by
Habanero performed significantly better than the alternatives included in
the empirical study. In the following sections,wefirst present the results on a
per-mission basis, and then we aggregate them across all missions.
Simulation-only experiments with different swarm sizes are provided as
Supplementary Note 1.We also provide an analysis of the robustness to the
reality gap as Supplementary Note 2.
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AGGREGATION
In this mission, the robots must aggregate anywhere in the arena. To
aggregate, the robots cannot rely on any form of direct communication nor
on the ability to directly sense the presence of their peers in their vicinity.
The only way in which they can coordinate is the laying and detecting of
artificial pheromone trails. Theycan leverage this ability to attract their peers
and aggregate using stigmergy. However, as all robots could release some
pheromone at the same time in different areas, they could saturate the
environment and/or be trapped in the local accumulation of their own
pheromone emissions.

Habanero, EvoPheromone, and Human-Designers pro-
duced control software that performed equivalently well in simulation—
see Fig. 5a. However, when transferred to the real robots, the control
software produced by Habanero performed significantly better than the
one produced by all other design methods.

Habanero produced collective behaviours in which the robots laid
pheromone trails only for short periods of time and kept searching the
environment for pheromone traces left by their peers. By laying pheromone
trails only intermittently, the robots avoided saturating the environment
and marked only isolated spots, which then served as aggregation points.
Around these points, they eventually gathered in clusters—see Fig. 6 and
Supplementary Video 1.

EvoPheromone produced a different strategy: the robots laid pher-
omone trails while moving along a circular trajectory and followed the
pheromone trails to gather at places where pheromone concentration was
high. This strategy produced good results in simulation but not on the real
robots. The robots did not properly avoid the walls and failed to reproduce
the behaviour observed in the simulation.

The control software produced by Human-Designers con-
tinuously laid pheromone trails with the expectation that all robots
would gather at one place. Results were good in simulation but failed to
transfer to reality. In the real-robot experiments, the robots remained
trapped in local pheromone accumulations. Eventually, they gathered in
separate clusters.

DECISIONMAKING
In this mission, the robots must make the decision to congregate in one of
two regions of the arena, designated by RGB blocks that display blue or
green colour, respectively—see Fig. 3b. Each robot scores one point for each
time step spent in the green region and twopoints for each time step spent in
the blue one. Halfway through each run of the experiment, the blue and
greenRGBblocks are switchedoff, leaving the robots without any visual cue
to identify the two regions. In order to maximise the score, the robots must
quickly congregate in the region that provides thehighest score per time step

Fig. 1 | AutoMoDe-Habanero. a Habanero automatically produces control
software for e-puck robots by assembling predefined and mission-independent
software modules into a probabilistic finite-state machine. A set of seven low-level
behaviours and six transition conditions function as states and edges of the finite-
state machine, respectively. Using the Iterated F-race algorithm, the design process

determines the topology of the finite-state machine by maximising the performance
of the robot swarm. The performance of an instance of control software is assessed in
simulation, before the swarm is deployed. b The set of low-level behaviours:
operations a robot can execute. c The set of transition conditions: criteria to switch
from a low-level behaviour to another one.
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—i.e., the blue one—and remain there even once the environmental cues are
removed.

When evaluated in simulation, the control software produced by
Habanero and Human-Designers performed equally well, and

significantly better than the one produced by EvoPheromone—see
Fig. 5b. However, in the real-robot experiments, the control software pro-
duced by Habanero performed significantly better than that of Human-
Designers. The control software produced by both Habanero and

Fig. 3 | Construction of the arenas for the fourmissions.Technical drawings of the
arena with dimensions and positions of different regions, along with photos of the
real arena, in the four mission configurations: a AGGREGATION, b DECISION

MAKING, cRENDEZVOUS POINT, and d STOP. All measurements are expressed
in meters. The missions are described in the Methods section.

Fig. 2 | The e-puck robot, its reference model, and the experimental setup. a An
e-puck robot equipped with a Linux board, a hardware module to focus UV light
onto the ground, and an omni-directional camera. b The experimental arena. The
floor is coated with photochromic material. It changes in colour from white to
magenta when exposed to UV light, and gradually returns to its normal white colour

when the UV light is removed. The walls of the arena are constructed using modular
RGB (Red, Green, Blue) blocks, which have the ability to display various colours
using the RGB colour code. A tracking system is used to automatically measure
performance indicators. cThe referencemodel RM4.1, which formally describes the
interface between the robot and the control software.
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Human-Designers performed significantly better than that of Evo-
Pheromone, which obtained results comparable with those of
Random-Walk.

In all experimental runs, the robot swarm designed by Habanero
correctly selected the blue region to congregate. The robots relied on

stigmergy not only to attract other robots to the blue region, but also to stay
there after the cueswere removed. The behaviour displayed in the real-robot
experiments was qualitatively similar to the one displayed in simulation—
see Fig. 6 and Supplementary Video 2. However, in the real-robot experi-
ments, some robots that gathered in the blue region spilled out of the

Fig. 4 | Pictorial representation of the design methods under analysis.
a Habanero, b EvoPheromone, c Human-Designers, and d Random-Walk.
Habanero is an automatic modular design method. EvoPheromone is an

implementation of the neuroevolutionary approach. Human-Designers is a
manual design method. Although Random-Walk is not a design method, we include
it to serve as a lower bound of performance. See the Methods section for the details.
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boundaries of the region, although remaining in its vicinity. Because of this,
the performance in the real-robot experiments was lower than that in
simulation. The robot swarm generated byEvoPheromonewas unable to
congregate in a single region: the robots stayed in the first region in which
they entered. Consequently, the score was significantly worse than the one
obtained by other designmethods. The robot swarm produced by Human-
Designers was able to correctly congregate in the blue region but was
unable to remain there once the cues were removed.

RENDEZVOUS POINT
In thismission, a wall with a narrow gate laterally divides the arena into two
sections: the left side, where the robots are deployed at the beginning of the
experiment; and the right side, which contains two regions designated by
RGB blocks that display blue or green colour, respectively—see Fig. 3c.
Similar to DECISION MAKING, halfway through each run of RENDEZ-
VOUS POINT, the blue and green RGB blocks are switched off, leaving the
robots without any visual cue to identify the two regions. The robots must
cross the narrow gate to gather in the green region. The score is given by the
number of robots that, at the end of the experimental run, are positioned in
the green region.

When evaluated in simulation, the control software produced by all
design methods performed equally well—see Fig. 5c. However, in the real-
robot experiments, the control software produced by Habanero

performed significantly better than the one produced by all other methods.
Moreover, the one produced by EvoPheromone performed significantly
worse than that produced by all other methods.

The robot swarms designed by Habanero relied on random walk to
cross the gate and find the green region. Once the robots reached the green
region, they took advantage of stigmergy to attract their peers and to keep
themselves inside the region even when the green light was removed. The
robots laid pheromone trails to mark the green region and kept laying the
pheromone trails at that place to avoid fading—see Fig. 6 and Supple-
mentary Video 3.

In the control software produced by EvoPheromone, the robots do
not randomly search for the narrow passage. Instead, they move along the
walls of the arena to eventually cross the gate and reach the green region—
see Supplementary Video 3. Although this behaviour worked effectively in
simulation, it failed in the real-robot experiments: the robots were unable to
move along the walls and remained stuck. Consequently, they were unable
to cross the gate. In the real-robot experiments, theperformanceof the robot
swarmdesignedbyEvoPheromonewasevensignificantlyworse than that
of Random-Walk.

In the control software produced byHuman-Designers, the robots
were mostly able to reach the green region. However, the swarm produced
by Human-Designers was not always effective in using stigmergy to
remain in the green region, especially after the green light was removed.

Fig. 5 | Results of the empirical analysis. We report results of the evaluation of
160 instances of control software, 10 per method and per mission. All instances
of control software were evaluated once in simulation and once with physical robots—
more details on the protocol are provided in Methods. The results are presented using
boxplots on a per-mission basis: a AGGREGATION, b DECISION MAKING,
c RENDEZVOUS POINT, and d STOP. In all missions, for each method, we report the

performance obtained in simulation and with physical robots using thin and thick
boxes, respectively. e Friedman rank sum test on real-robot performance to aggregate
the overall performance of each method across the four missions—the lower the rank,
the better. An explanation of the graphical convention adopted in the boxplots and in
the Friedman test are provided in the Methods section under the heading Statistics.
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STOP
In thismission, the robotsmust halt and stand still as soon as a stop signal is
perceived. The stop signal is a (random) RGB block that switches on at a
randommoment in time and emits blue light—see Fig. 3d. Before the signal,
each robot scores one point for each time step during which it moves. After
the signal, each robot scores one point for each time step during which it
stays in place. As the robots considered in this study are incapable of direct
communication, the individuals that detect the signal can only rely on
stigmergy to inform any peers that are in a position from which the signal
cannot be seen.

The control software produced by Habanero and Human-
Designers performed similarly well when evaluated both in simulation
and reality, and performed significantly better than the one produced by
EvoPheromone—see Fig. 5d.

In the robot swarms designed by Habanero, the robots kept moving
to search for a block emitting the stop signal. As soon as a robot detected the
signal, it stoppedor startedwaggling in place,while laying a pheromone trail
to alert its peers. Other robots also stopped and started laying pheromone
trails either after detecting the signal or the pheromone trails laid by their
peers—see Supplementary Video 4.

Human-Designers produced collective behaviours similar to those
generated by Habanero, and so no significant difference in the perfor-
mance could be observed—see Fig. 5d.

The collective behaviours produced by EvoPheromone achieved
good scores in some cases, but were unable to accomplish the mission in its
true sense. The robots took advantage of stigmergy to gradually repel each
other, approach the walls, and eventually stop against them. The

evolutionary process tuned the timing of the behaviour tomatch the typical
amount of time that elapsed between the beginning of the experiment and
themomentwhen the blue signal appeared. This allowed the robots to score
points by moving towards the walls before the appearance of the signal and
remaining still against the walls after the appearance of the signal. Although
this behaviour was reasonably well synchronised with the typical case, its
failure to properly react to the appearance of the signal prevented it from
achieving good scores consistently. Consequently, the performance
achieved by EvoPheromone is significantly worse than the one achieved
by both Habanero and Human-Designers.

Aggregate results
To aggregate the performance of each design method across the four mis-
sions,we used aFriedman rank sum test on the performance observed in the
real-robot experiments. The test indicates that, in the experiments pre-
sented, Habanero outranked all other design methods, with a confidence
of at least 95%—see Fig. 5e. Human-Designers performed significantly
better than both EvoPheromone and Random-Walk.

Figure 6 shows the aggregated execution timeof thebehaviourmodules
in the finite-state machines produced by Habanero and Human-
Designers—measured in simulation. Results indicate that the finite-
state machines produced by Habanero and Human-Designers are
different: the execution time of the behaviour modules is different in
Habanero and Human-Designers across all missions. Although
Habanero and Human-Designers used the same set of modules, they
combined them in a different way. The aggregated execution-time plot
highlights four major differences between Habanero and Human-

Fig. 6 | Behaviours produced by Habanero and Human-Designers. For each
mission, we show: a snapshot of robots executing an instance of Habanero control
software in (a–d) simulation and (e–h) real-robot experiments, as well as a plot of the
aggregate execution time of each software module in the control software produced
by (i–l) Habanero and (m–p) Human-Designers. We use the aggregate

execution time of the modules to qualify the behaviour we observe in the robot
swarms. In the aggregate plots, the colour gradient shows the percentage of time one
behaviour was executed throughout all instances of control software produced for a
mission. We identify the behaviour modules using the labels defined in Fig. 1.
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Designers. First,Habanero used the Explorationmodule considerably
less than Human-Designers. Second, Habanero relied more on modules
that react to pheromone information compared to Human-Designers.
Third, Human-Designers employed for a longer time the modules that
respond to the walls’ colour compared to Habanero. Finally, Habanero
made greater use of the waggle module than Human-Designers.

While our experiments highlight performance differences between the
two methods, we cannot definitively determine how the design choices
made by Habanero and Human-Designers influence the overall
performance. More precisely, our experimental setup cannot adequately
explain the rationale behind the selection, tuning, and combination of the
modules for either Habanero or Human-Designers, and its rela-
tionship with the performance obtained.

Discussion
Automating the production of control software for pheromone-based robot
swarms is a step further towards their real-world application. Automatic
design can ease the realisation of robot swarms across different missions,
whileminimisinghuman intervention36,41,42,57. The experimentspresented in
this paper show that this holds true also in the case of robot swarms that rely
on pheromone-based stigmergy. Indeed, Habanero automatically
designed stigmergy-based collective behaviours that were effective across all
missions considered. For eachmission, it found appropriate ways to use the
pheromone effectively. Although the software modules on which Haba-
nero operates were conceived in a mission-agnostic way, the interaction
strategies that Habanero eventually generated for each mission were tai-
lored to each of them and are different from one another. In these inter-
action strategies, the limited perception and computation capabilities of the
individual robots are compensated at the swarm level by exploiting
pheromone-based stigmergy. The e-puck used in the experiments, as a
single robot, has limited spatial coordination,memory, and communication
abilities. However, spatial organisation, external memory, and commu-
nication in the swarm emerged at the collective level thanks to pheromone-
based stigmergy. Spatial organisation: In AGGREGATION, DECISION
MAKING, and RENDEZVOUS POINT, the e-pucks self-organised and
distributed in space guided by their pheromone trails and other environ-
mental cues. Memory: In DECISION MAKING and RENDEZVOUS
POINT, the swarm of e-pucks retained relevant information about the past
state of the environment by laying pheromone trails. Communication: The
semantics of pheromone trails is mission-specific. For example, the pher-
omone trails that the e-pucks laid in STOP had a meaning (stop where you
are) that is radically different from themeaning inAGGREGATION (come
here). It is interesting to note that spatial organisation, memory, and
communication (including the semantics of pheromone trails) were not
hand-coded in the modules on which Habanero operates: they were the
product of the way in which Habanero automatically combined these
modules on a per-mission basis.

The study leaves two main questions open. (i) Can automatic design
leverage the intensity of pheromone trails and their decay time? In the
experiments presented, a robot either did or didnot sense thepheromone, in
a binary fashion. A more thorough investigation is required to determine
whether an automaticmethod can simultaneously tune the concentrationof
the pheromone deployed and the concentration to which a robot should
react. (ii) Can automatic design methods realise robot swarms that alter-
natively, or simultaneously, operate with direct and indirect communica-
tion? We have shown in the past that direct communication can emerge
from an automatic design process53,58. In this paper, we have shown that
indirect communication can emerge as well. Further research is required to
determine whether an automatic method can select direct or indirect
communication as more suitable for a specific mission. In this sense, we
deem particularly interesting the idea of automatically designing collective
behaviours in which the robots operate with combinations of the two.

In this study, we adopted an existing technology to enable pheromone-
based stigmergy with real robots—the photochromic artificial pheromone
system30. Although viable, it is a technology that—like all the existing

solutions—has some critical limitations: namely, it is only suitable for
indoor applications in which the environment can be prepared beforehand
with the photochromic material. As of today, no technology exists to pro-
vide robots with a universally applicable capability to mark their environ-
ment with the indication of their activities. However, by analysing the
strengths of the available solutions, we can outline desirable properties for
such technology. First, pheromones should be produced by robots, mini-
mising the need for environment preparation and/or external infra-
structure. Additionally, robots should have the ability to modulate the
intensity of the pheromones they lay and respond to, enabling precise
control over their behaviour. We also envision that pheromone-based
stigmergy should facilitate the design ofmore complex behaviours, possibly
by functioning over diverse types of pheromones that communicate dif-
ferent information. The devices that lay and sense pheromones should be
easy to build and integrate in modern robot platforms at different scales—
from small educational robots to larger platforms. Finally, the pheromone
laid by the robotsmust be safe andnondestructive, and anymarks left by the
robots should disappear once the swarm completes its operation. Engi-
neering solutions that meet these properties would facilitate their broad
adoption, development, and validation, as well as the establishment of
benchmarks for robotics stigmergy.

With Habanero we demonstrated that it is possible to generate
pheromone-based collective behaviours through an automatic process that
is repeatable and generally applicable. We contend that this result can
motivate further research to overcome the limitations of the currently
available hardware solutions to implement pheromone-based stigmergy.

Methods
Arena
All experiments were performed in a rectangular arena whose walls were
realised with modular RGB blocks that display colours according to the
mission requirements53,59—see Fig. 2b. The technical diagrams of the arenas
used in the study are shown in Fig. 3. The floor of the arena was white and
coated with a photochromic material that acts as a medium to encode the
pheromone trails30. The coating was realised using an acrylic binder with a
20% (w/w) concentration of photochromic pigments. Technical informa-
tion to reproduce the arena is provided as Supplementary Note 5. The
photochromic material adopted turns magenta when exposed to UV light.
Once the UV light is removed, the magenta colour gradually fades and the
floor returns white in about 50 s—see Supplementary Video 5.

The e-puck robot
The experiments were performed with e-puck robots—small-sized
differential-drive robots that are widely adopted in swarm robotics
research52,60. We used an extended version of the e-puck that is equipped
with the Overo Gumstix computer-on-module to run Linux on the robot;
the ground sensormodule to detect the gray-level colour of the floor; a UV-
light module and an omnidirectional camera to deposit and detect artificial
pheromone trails, respectively. The UV-light module is a ring-shaped add-
on module for e-puck that is equipped with nine down-facing UV LEDs
positioned at the rear of the robot30. A picture of the hardware configuration
of the e-puck robot adopted in the research is given in Fig. 2a. The cap-
abilities of the e-puck for laying and detecting the artificial pheromone are
illustrated in Supplementary Video 5.

Referencemodel: the extended version of e-puck adopted is described
by reference model RM 4.1, which formally defines the input and output
variables associated with sensors and actuators, respectively—see Fig. 2c.
The control software of the robot reads/writes the input/output variables at
every control step, which has a duration of 100 ms61.

Simulator: all simulations were performed using ARGoS3Version 48,
along with the argos3-epuck-phormica library—see section Code Avail-
ability. ARGoS was specifically developed to simulate robot swarms54; the
argos3-epuck-phormica library enables the cross-compilation of control
software for the e-puck so that it can be ported to the robots without any
manually applied modification.
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Habanero
Habanero is an instance of AutoMoDe40 specialised in the design of
swarm of robots that can lay and detect pheromone trails. Habanero
produces control software by assembling predefined software modules into
probabilistic finite-state machines in which states are low-level behaviours
performed by the robots and transitions are enabled by conditions on the
contingencies experienced by the robot.

Habanerooperates on seven low-level behaviours and six conditions.
Both low-level behaviours and conditions have free parameters that affect
their functioning. The space of solutions that Habanero can produce
comprises all the possible probabilistic finite-state machines—with at most
4 states and atmost 4 outgoing transitions per state—that canbeobtainedby
assembling the available modules and by fine-tuning their free parameters.
There are a total of 105parameters tobe tuned—with categorical parameters
for the selection of software modules; and categorical, integer and real
parameters that affect their functioning. The optimisation problem is
mixed-variable in nature62. Habanero searches this space using Iterated
F-race55 with the goal of maximising a given mission-specific objective
function. Iterated F-race samples, fine-tunes and selects candidate solutions
performing simulations in ARGoS3. There is a limited number of simula-
tions available toHabanero to produce an instance of control software—a
simulations budget. Once the budget is exhausted, Habanero returns the
best control software foundup to thatmoment.Apictorial representationof
Habanero is given in Fig. 1a.

The seven low-level behaviours are: exploration, stop, go-to-colour,
avoid-colour, go-to-pheromone, avoid-pheromone, and waggle. The six
conditions are: white-floor, gray-floor, black-floor, colour-detected, pher-
omone-detected, fixed-probability—see Fig. 1b,c and Table 1. All the low-
level behaviours and the conditions interact with the e-puck hardware
(sensors and actuators) via the input/output variables defined in reference
model RM 4.1—see Fig. 2b.

We chose Iterated F-race to conduct Habanero’s optimisation pro-
cess as, for historical reasons, it is the de facto standard optimisation algo-
rithm in the AutoMoDe family. Notably, Iterated F-race outperformed
human experts in the modular design of control software for robot
swarms56. Moreover, Iterated F-race was successful when applied to the
problemof producing collective behaviours with a diverse set of AutoMoDe
methods40. Iterated F-race has properties that make it suitable to tackle
problems in the automaticmodular design of control software. Particularly,
it was conceived for the statistical selection of candidate solutions when (i)
the problem instances are stochastic and (ii) the solutions comprise

discrete and continuous parameter spaces55,63,64. Recent studies have shown
that other optimisation algorithms are suitable for the AutoMoDe
family (e.g., simulated annealing65 and sequential model-based algorithm
configuration66,67). However, there is no evidence that indicates that they
offer a definite advantage over Iterated F-race—see Kuckling68 for a recent
in-depth discussion.

Comparisons
EvoPheromone is an adaptation of EvoStick, which is a standard
neuroevolutionary method to design robot swarms43. EvoPheromone
produces control software for an extended version of the e-puck robot
formally described by reference model RM 4.1—same as Habanero. The
architecture of the control software is a fully connected feed-forward arti-
ficial neural network. The neural network has 61 input nodes, 7 output
nodes, and no hidden layer. The input and output nodes are directly con-
nected by synaptic connections with weights. There are a total of 427
parameters to be tuned—all real values, which encode the synaptic weights.
The optimisation problem is continuous in nature62. EvoPheromone
tunes the synaptic weights of the neural network via elitism andmutation43.
The evolutionary process is based on simulations executed in ARGoS3 with
the argos3-epuck-phormica library—same setting as Habanero. The
design process ends when a predefined simulation budget is exhausted.We
developed EvoPheromone on the basis of EvoStick, as the latter is a
readily available method for the e-puck that has served as a yardstick to
apprise the performance ofAutoMoDemethods in the past43,56.EvoStick
is the only neuroevolutionary method that has been tested in the automatic
design of robot swarms for several missions, without undergoing any
mission-specific modification48. Moreover, EvoStick served as a starting
point todevelop other neuroevolutionarymethods for robots endowedwith
enhanced capabilities—see, for example, adaptations of EvoStick to
study direct communication53,58 and spatial organisation69.EvoStick, and
therefore EvoPheromone, are simple and straightforward implementa-
tions of the neuroevolutionary approach. We do not consider more
advanced neuroevolutionary methods (e.g., CMA-ES70, xNES71, and
NEAT72) as previous research has shown that they do not provide any
performance advantage over EvoStick when applied off the shelf48.

Human-Designers is a manual designmethod in which 10 human
designers were requested to produce control software using the software
modules of Habanero. In a sense, a human designer acts as an optimi-
sation agent that assembles a finite-state machine and fine-tunes its para-
meters. Human-Designers produces control software for an extended

Table 1 | Habanero’s low-level behaviours and transition conditions

Low-level behaviours Parameters Description

Exploration phe, τ Robot moves by random walk

Stop phe Robot stops in place

Go-to-Colour phe, c, fov Robot moves toward objects displaying a specific colour

Avoid-Colour phe, c, fov Robot moves away from objects displaying a specific colour

Go-to-Pheromone phe, fov Robot moves towards pheromone perceived in the surroundings

Avoid-Pheromone phe, fov Robot moves away from pheromone perceived in the surroundings

Waggle phe Robot rotates in place for a random period of time

Transition conditions Parameters Description

White-Floor β White floor detected

Gray-Floor β Gray floor detected

Black-Floor β Black floor detected

Colour-Detected β, c, fov Objects of a specific colour perceived

Pheromone-Detected β, fov Pheromone detected in the surroundings

Fixed-Probability β Transition with a fixed probability

Whileperformingall the low-level behaviours, the robot releases thinor thickpheromone trails ifphe is set to thinor thick, respectively.Otherwise, ifphe is set tonone, the robot doesnot releaseapheromone
trail. The parameter fov 2 f 1

12 π; 2πg determines the field of view of the camera. The parameter τ∈ {1, . . , 100} denotes the number of control steps for which a robot rotates in place while performing the
exploration behaviour: a control cycle is 100ms. The parameter β∈ [0, 1] determines the probability of transitioning in all transition conditions. The parameter c 2 R;G;B;C;Yf g denotes the colour to which
the robots react when performing a particular behaviour or transition from colour-detected behaviour to another.
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version of the e-puck robot formally described by referencemodel RM4.1—
same as Habanero. The human designers who participated in this study
had various levels of expertise in swarm robotics—ranging from bachelor
students to post-doctoral researchers in swarm robotics. Seven of them had
previous experience with real robots, seven had previous experience with
ARGoS3, and six had experience with the e-puck—either in simulation or
reality. We provided the designers with a visualisation tool to produce and
manipulate finite-state machines, to visualise simulations, and to compute
the value of the objective function73. All simulations were executed in
ARGoS3 with the argos3-epuck-phormica library—same setting as
Habanero. The designers were allotted 4 hours per mission—see Sup-
plementary Note 4. The guidelines and experimental description given to
the designers are provided as Supplementary Note 3.

Random-Walk, although not an automatic design method, is inclu-
ded in the study as a lower bound on the performance of robot swarms. In
Random-Walk, the robots move straight in the arena, when they
encounter an obstacle, they rotate for a randomnumberof control steps and
then resume their straight motion. Random-Walk was conceived for an
extended version of the e-puck robot formally described by referencemodel
RM 4.1—same as Habanero.

Missions
The empirical study is based on four missions. Each mission must be per-
formed within T = 180 s by a swarm ofN = 8 robots. The size of the swarm
was determined in accordance with the number of robots available for the
experiments.

AGGREGATION: initially, the robots are randomly placed in the
arena—see Fig. 3a. The robots must approach one another to form a cluster
and remain close until the end of the mission. Formally, the mission is
specified by the following objective function, which must be minimised:

Fa ¼
XT=100ms

t¼1

davgðtÞ: ð1Þ

At each control step t, the average distance davg between the robots is
added to Fa.

DECISIONMAKING: initially, the robots are randomly placed in the
arena—see Fig. 3b. The robotsmust select betweena greenandablue region:
at every control step t, the score is increase by+1 for every robot that is in the
green region, and by+2 for every robot that is in the blue one. Both green
and blue light signals disappear after a random amount of time, which is
uniformly sampled between 70 and 90 s. Formally, the mission is specified
by the following objective function, which must be maximised:

Fd ¼
XT=100ms

t¼1

XN

i¼1

IiðtÞ; IiðtÞ ¼
1 if robot i is in green region;

2 if robot i is in blue region;

0 otherwise.

8
><

>:

ð2Þ
RENDEZVOUSPOINT: initially, the robots are placed in the left side

of the arena. The robotsmust reach the green region and stay there until the
end of themission. A blue region is added as a decoy to possibly confuse the
robots—see Fig. 3c. Both green and blue light signals disappear after a
random amount of time, which is uniformly sampled between 70 and 90 s.
Formally, themission is specified by the following objective function, which
must be maximised:

Fr ¼ K in � Kout; ð3Þ

where Kin is the number of robots inside the green region at the end of the
mission, and Kout is the number of robots outside.

STOP: initially, the robots are randomly placed in the arena. A blue
light signal appears after a random amount of time �t, which is uniformly
sampled between 70 and 90 s—see Fig. 3d. All the robots must stop as soon
as the signal appears, but not before. Formally, themission is specifiedby the

following objective function, which must be minimised:

Fs ¼
X�t

t¼1

XN

i¼1

�IiðtÞ þ
XT

t¼�tþ1

XN

i¼1

IiðtÞ; IiðtÞ

¼ 1 if robot i is moving;

0 otherwise;

�
�IiðtÞ ¼ 1� IiðtÞ:

ð4Þ

In the absence of well-established benchmark missions, we chose a set of
missions that allowed us to estimate the expected performance of
Habanero in typical swarm robotics tasks. AGGREGATION,DECISION
MAKING, RENDEZVOUS POINT and STOP are missions that belong
into the same class—they allow the pheromone-based coordination of
robots. Yet, they are sufficiently different to benefit from a tailored design—
they vary in the nature of their goals and in the presence of reference points
of interest. By selecting a varied set of missions, we also aimed at testing
Habanero’s ability to handle diverse challenges without undergoing any
mission-specific adjustment.

It is worth noting that these missions—likewise Habanero—are not
suitable for drawing conclusions onwhether automaticmethods can handle
more complexmissions or design relativelymore complex stigmergy-based
interactions. For instance, missions that require precise behavioural control
via careful modulation of the pheromone deposition and response, or
missions that involve more complex communication strategies through
various types of pheromones.

Protocol
All experiments were executed without any human intervention or any
mission-specific modification in the design process. In the case of Haba-
nero and EvoPheromone, for eachmission, we independently executed
the design process 10 times to obtain 10 instances of control software. Both
methods operated with a budget of 100,000 simulation runs for each
execution of the design process.We executed all automatic design processes
on a high-performance computational cluster with about 1500 computing
cores. In case of Human-Designers, 10 human designers were involved
and each of them produced one instance of control software for each mis-
sion. After obtaining all the instances of control software, we assessed their
performance once in simulation and once in reality. We varied the initial
positionof the robotswhenassessing instancesof control software of a single
method, and we used the same set of initial positions across the four
methods. To perform the experiments in reality, the instances of control
software, regardless of the design method that produced them, were auto-
matically cross-compiled and deployed on the e-puck robots without
undergoing any manually-applied modification.

Tracking system. We used a tracking system to automatically compute
the performance of a robot swarm during each run of a real-robot
experiment74. The tracking system uses an overhead camera to record the
positions of the robots by recognising squared markers mounted on
the robots. We also used the overhead camera to record videos of the
experiments—see Supplementary Video 6. The overhead camera was
used only to measure the performance of the swarm and was not used to
provide any information to the robots.

Statistics
We present the performance of the different methods with notched box-
and-whiskers plots onaper-missionbasis. In these plots, boxes represent the
interquartile range, covering the central 50% of the values observed.
Whiskers extend from the lower quartile to the lowest recorded perfor-
mance, and fromtheupperquartile to thehighest one.Thehorizontal line in
the middle of each box plot represents the median performance, and the
notches on the box represent a 95%confidence interval on themedian. If the
notches of two boxes do not overlap, then the difference between their
respective medians is significant, with a confidence of at least 95%75. For
each method, we present the performance obtained in simulation and in
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real-robot experiments using thin and thick boxes, respectively. We exe-
cuted a mission-specific comparison of the performance of methods with
Wilcoxon paired rank sum tests at 95% confidence76.

We also performed a Friedman rank sum test76 that aggregates the
performance of each method across all four missions. More precisely, we
applied a Friedman two-way analysis of variance to the performances
recorded in the experiments with physical robots, across all missions, and
for all methods. The Friedman test is nonparametric and implements a
block design. In our protocol, the treatment factor is the method under
analysis and theblocking factor is themission.Byoperatingon the ranks, the
Friedman test is invariant to themagnitude of the objective functions of the
missions considered.Also, due to its nonparametric nature, it can be applied
with no assumption on the distribution of the performance. These prop-
erties are instrumental for aggregating the performance observed across the
fourmissions.Wepresent the results of the testwith the average rankof each
method (computed across all missions), and its 95% confidence interval. A
method is significantly better thanother if it has a lower average rankand the
confidence interval of the two methods do not overlap.

Data availability
The data that support the findings of this study are available in figshare with
the identifier https://doi.org/10.6084/m9.figshare.24707154.

Code availability
The software used to produce the results of our study is available in the
following public repositories under the MIT License: ARGoS3 (https://doi.
org/10.5281/zenodo.4889111) for the ARGoS3 simulator; irace (https://doi.
org/10.5281/zenodo.4888996) for the implementation of Iterated F-race;
ARGoS3-AutoMoDe (https://doi.org/10.5281/zenodo.7090227) for the
implementation ofHabanero andRandom-Walk; demiurge-epuck-dao
(https://doi.org/10.5281/zenodo.7150581) for the reference model of the
robots used by all designmethods; experiments-loop-functions (https://doi.
org/10.5281/zenodo.7150584) for the objective functions used to compute
the score in a mission in simulation; argos3-epuck-private (https://doi.org/
10.5281/zenodo.7241397) ARGoS3 plugin for the e-puck robot endowed
with the UV module; argos3-phormica (https://doi.org/10.5281/zenodo.
7241409) ARGoS3 plugin to enable the simulation of Phormica—a
pheromone release and detection system; ARGoS3-NEAT (https://doi.org/
10.5281/zenodo.7150530) for the implementation of EvoPheromone;
experiments-loop-functions-ros (https://doi.org/10.5281/zenodo.7241441)
plugin to compute the performance score in real robot experiments; and
AutoMoDe-visualisation-tool (https://doi.org/10.5281/zenodo.7241468) a
web editor tool that allows Human-Designers to manually edit Auto-
MoDe finite-state machines and visualise its performance in simulation.
Installation and execution instructions are provided as Source Data.
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