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Abstract. The design of control software for robot swarms is a challeng-
ing endeavour as swarm behaviour is the outcome of the entangled inter-
play between the dynamics of the individual robots and the interactions
among them. Automatic design techniques are a promising alternative to
classic ad-hoc design procedures and are especially suited to deal with the
inherent complexity of swarm behaviours. In an automatic method, the
design problem is cast into an optimisation problem: the solution space
comprises instances of control software and an optimisation algorithm is
applied to tune the free parameters of the architecture. Recently, some
information theory and complexity theory measures have been proposed
for the analysis of the behaviour of single autonomous agents; a simi-
lar approach may be fruitfully applied also to swarms of robots. In this
work, we present a preliminary study on the applicability of complexity
measures to robot swarm dynamics. The aim of this investigation is to
compare and analyse prominent complexity measures when applied to
data collected during the time evolution of a robot swarm, performing
a simple stationary task. Although preliminary, the results of this study
enable us to state that the complexity measures we used are able to cap-
ture relevant features of robot swarm dynamics and to identify typical
patterns in swarm behaviour.

1 Introduction

The behaviour of a swarm of robots is the result of the dynamic interplay among
the robots, and between robots and environment. As a consequence, the design
of control software for a robot swarm presents hard challenges. Typical tech-
niques for designing robot swarm are based on code-and-fix methods [4], usually
tailored to the specific problem at hand. A promising alternative to these ad hoc
approaches is provided by automatic design techniques [9], which are especially
suited to deal with the inherent complexity of swarm behaviours. In automatic
methods, the design problem is cast into an optimisation problem, whereby the
solution space contains instances of control software and an optimisation algo-
rithm is applied to tune the free parameters of the architecture [10,29]. For the
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sake of completeness, we observe that the design process is not simply reduced
to an optimisation problem because it also involves the definition of proper merit
factors and experimental settings, likewise learning methods.

Recently, some information-theoretical measures have been proposed for the
analysis and design of the behaviour of single autonomous agents [1,8,25,28].
These studies support the use of information theory and complexity science
concepts in the field of autonomous agents and robotics. We believe that these
techniques may be fruitfully applied also to swarms of robots. Indeed, complex
systems science may provide a corpus of theories and methods that enable the
designer to formally and quantitatively analyse the dynamics of a robot swarm
and its internal information processes.

Complexity measures may be applied to the automatic design of robot
swarms with the following objectives:

1. understanding individual and swarm behaviour from observations of measur-
able quantities (e.g. sensor readings, actuation, controller state);

2. providing task-agnostic merit factors for the automatic design procedures;
3. classifying swarm tasks in terms of their intrinsic complexity so as to optimally

tune the complexity of individual robot and robot interactions.1

In the long term we plan to address the following questions: (i) Are the
intuition behind the measures in accordance with the observed robot swarm
behaviour? And is the observed behaviour coherent with the complexity values
measured? (ii) What are the most informative measures? (iii) What are the com-
plexity measures most suited for such an application? (iv) Are there phenomena
in the swarm behaviour that can be detected just by observing the complexity
values measured? The outcome of this study is expected to provide guidelines
for the choice of the most informative indicators for more complex tasks.

In this work, we present a preliminary study on the applicability of com-
plexity measures to robot swarm dynamics. The aim of this investigation is to
compare and analyse prominent complexity measures when applied to data col-
lected during the time evolution of a robot swarm performing a simple stationary
task. In the following, we first summarise the measures considered in this study
in Sect. 2; subsequently, we detail the robot swarm task (Sect. 3). In Sect. 4, we
provide a summary of the main results, emphasising the ones that enable us
contributing to answer the questions raised above. Finally, we conclude with an
outlook of ongoing and future work.

2 Measures of Complexity

In the scientific literature the word complexity is overloaded, as it appears with
different meanings, each related to a specific interpretation of the term. As a
consequence, there is no unique measure of complexity and in fact many met-
rics have been proposed in the literature. In general, each metric addresses one
1 This goal is motivated by a conjecture on the so-called reality gap, which has been

advanced in [3,10].
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specific aspect of the general notion of complexity, therefore we should aim at
producing a complexity fingerprint by evaluating several measures, rather than
identifying a single metric able to summarise all the relevant properties related
to complexity.

A measure of complexity was first proposed by Kolmogorov [14] who provided
an algorithmic view of information: the complexity of a string of symbols is
defined as the length of the shortest program producing it. As this measure is
not computable some approximations have been proposed, such as the ones based
on compression algorithms. In fact, algorithmic complexity estimates the amount
of randomness in a string, as they turn out to be very low for regular sequences
and maximised for completely random strings. The definition of complexity we
are interested in tries to capture the notion of presence of (dynamical) patterns,
often related to the extent to which correlations distribute across the element of
the system observed [13]. Intuitively, high complexity is associated to situations
between order and disorder, as patterns in both ordered and completely random
dynamics are negligible. Along this line, several measures have been proposed [12,
13,16,18,26]. However, a survey on the literature on complexity measures is out
of the scope of this contribution and we refer the interested reader to prominent
works on the subject [2,13,18,20,24]. A nice introduction to information theory
for complex systems can be found in the lecture notes by Lindgren [17].

In this work, we focus primarily on the complexity of the dynamics of the
system observed in its environment, rather than the individual complexity of a
controller of an isolated robot. Moreover, as a consequence of the fact that we
deal with data collected during experiments, the measures used should be applied
to time series of finite length. Among the measures proposed in the literature,
we selected and implemented the following ones:

1. Shannon entropy [27]
2. Block entropy and entropy excess [22]
3. Correlation information [17]
4. Mutual information [6]
5. LMC complexity [21]
6. Lempel-Ziv complexity [15]
7. bz2 compression factor [5]
8. Linguistic complexity [30]
9. Set-based complexity [11]

The choice of these metrics has been motivated by the intent of covering
the diverse facets of complexity, and also taking into account computational
requirements.2

Measures 1–5 are based on the Shannon entropy of a sequence s of symbols
in a finite set X . We suppose that the frequency of symbols appearing in s
approximates the probability distributions of the symbols. Therefore, we can
2 Indeed, due to excessive computational resources required, for this preliminary step

we did not applied measures of complexity based on model construction, such as the
ones by Crutchfield et al. [7].
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provide the definition of entropy in terms of random variables. Let X be a
random variable which can assume values from a finite and discrete domain X ,
the Shannon entropy of X is defined as

H(X) = −
∑

x∈X
P (x) log P (x)

where the logarithm is expressed in base 2. This definition can be extended to
blocks of symbols of length n in s, so as to take into account also correlations
among symbols. This leads to the definition of the block entropy of length n:

Hn = −
∑

sn∈S
P (sn) log P (sn)

The entropy excess3 is defined as the difference between block entropies of length
n and n − 1 and estimates the information required to predict the n-th symbol
conditioned to the observation of n − 1 preceding symbols. In formulas:

hn = ΔHn = Hn − Hn−1

We can extend this process to the second derivative (in discrete domains) and
obtain the correlation information from length n:

kn = Δ2H(n) = −H(n) + 2H(n − 1) − H(n − 2), n ≥ 3

Intuitively, the peaks of kn identify significant block regularities, i.e. maximum
gain in information for specific block lengths.

Also the mutual information I(X,Y ) between random variables X and Y is
defined in terms of entropies and estimates the average information one gains
about Y after the observation of X, and viceversa:

I(X,Y ) = H(X) + H(Y ) − H(X,Y )

where H(X,Y ) denotes the conjunct entropy of X and Y .
For completeness, we also introduce the LMC complexity4 which is defined

in terms of entropy and disequilibrium:

LMC(X) = H(X) · D(X)

where D(X) =
∑
x∈X

(
P (x) − 1

|X |
)2

. Unfortunately, this metric is quite sensitive

to numeric factors—mainly the values of H and D at the borders—and the
results it returns should be taken with care.

Measures 6–9 are instead based on computing properties of the sequence
at hand, rather than referring to a probability distribution. In particular, the

3 Not to be confused with the excess entropy [26], which is defined for n → ∞.
4 The name comes from the name initials of its inventors.
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Lempel-Ziv complexity (LZ) is a sort of algorithmic information measure com-
putable on finite sequences, therefore it estimates the randomness of a string.
LZ(s) returns the number of shortest different blocks composing s. Along the
same line is the compression factor achieved when compressing the string, in our
case with algorithm bzip, which takes into account blocks of different size. Lin-
guistic complexity is another metric that based on the occurrences of different
blocks in a sequence of symbols and is computed for blocks of varying size.

Finally, the complexity of a set of strings S = {s1, s2, . . . , sN} can be esti-
mated by means of the set-based complexity SBC, which accounts for the infor-
mative contribution of each string to the set. The intuition behind this measure
is that a random string and a duplicated string do not contribute to the overall
complexity of the set. This metric is defined in terms of Kolmogorov complexity
K(s) and it is empirically computed by approximating it with a compression
algorithm, providing an estimation K̂(s). Based on algorithmic complexity, the
distance between two strings can be computed as follows:

d(i, j) =
K̂(x ⊕ y) − min(K̂(x), K̂(y))

max(K̂(x), K̂(y))

where x ⊕ y denotes the concatenation of strings x and y. The SBC of the set of
strings S is defined as:

SBC(S) =
N∑

i=1

K̂(si)Fi(S)

where

Fi(S) =
2

N(N − 1)

∑

j∈{1,2,...,N},i �=j

dij(1 − dij), dij := d(si, sj)

3 Case Study: Random Walk with Collision Avoidance

We defined a case study that requires a simple software controller for the robots
and few parameters to be tuned. Moreover, the mission the swarm has to accom-
plish should be modelled as a stationary process, and its level of complexity
should be sufficiently high to be measured and produce non-trivial results. At
the same time, the complexity should be limited so as to allow an easy interpre-
tation of the results. We performed our experiments in a simulated environment
by the means of ARGoS [23], one of the most widespread swarm robotics simu-
lators. The robot chosen to be simulated is an e-puck, equipped with 8 infra-red
proximity sensors positioned around the circular body and two wheels.

3.1 Behaviour: Random Walk with Collision Avoidance

The random walk behaviour is a strategy for space exploration commonly used
in swarm robotics. We implemented this strategy as the alternate execution of
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Function ControlStep()

if State == STRAIGHT then
if StraigthSteps == 0 OR obstacle in front then

State = LEFT or RIGHT with same probabilities;
Bernouilli(0,5) == 1 ? State ← LEFT : State ← RIGHT;

TurningSteps ← Uniform(0, Ra
10

);

else
GoStraight();
StraightSteps ← StraightSteps - 1;

end

end
if State != STRAIGHT then

if TurningSteps > 0 then
if State == RIGHT then

TurnRight();
else

TurnLeft();
end
TurningSteps ← TurningSteps - 1;

else
State ← STRAIGHT;
StraightSteps ← Ws;
ControlStep();

end

end
Algorithm 1. Control step of the random walk behaviour executed every
100 milliseconds. The methods GoStraight(), TurnRight() and TurnLeft() are
responsible for affecting the required values to the wheels actuator in order
for the robot to move forward, rotate clockwise or anti-clockwise, respectively.
The recursive call to ControlStep() allows the robot to verify the absence of
obstacle before starting to move forward.

straight movements and static rotations: at each time step of an experiment, the
e-puck robots can either move forward for a given distance or rotate at a given
angle. In our implementation of the random walk behaviour the robots walk
straight for a maximal distance Ws. After this maximal distance is travelled,
or if an obstacle is perceived in front of the robot, the static rotation phase is
triggered. During the rotation, a robot turns left or right with same probability,
with a rotation angle given by a multiple of 10◦ taken uniformly between 0 and a
maximal angle Ra. Once the robot has completed the rotation, it can once again
move forward under the condition that no obstacles are on the way. Conversely,
if the path is not clear in front of the robot, another static rotation phase is
immediately started. Algorithm 1 resumes the behaviour that we implemented.
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3.2 Experimental Settings

For this study, we executed multiple runs of the random walk behaviour with
two parameters: the maximal straight distance Ws ∈ {10, 20, 30} expressed in
centimeters, and the maximal angle of rotation Ra ∈ {40, 90, 180} expressed in
degrees.

Fig. 1. Picture of the enclosed environment setup containing a swarm of 20 e-puck
robots. The 8 cyan lines around each robots represent their proximity sensors. (Color
figure online)

We ran two types of experiments. The first one is a control scenario involving
a single robot that moves in an infinite space with no obstacles nor boundaries.
This scenario represents a baseline for the comparisons with the swarms. The
second experiment involves a swarm of N ∈ {1, 10, 20, 40} robots moving in an
enclosed environment in which the walls form a dodecagonal shape with an area
equal to 4.91 m2 (see Fig. 1). The swarm is composed of robots all controlled
by the same random walk behaviour. At the beginning of each experiment,
the robots are uniformly distributed in the dodecagonal arena. Every possible
combinations of the parameters Ws and Ra were used in the two experiments.
Each experiment was repeated 10 times. Therefore, a total of 450 experiments
were ran.

The state of a robot performing this kind of random walk can be simplified
and expressed by means of three possible states: Straight, Left, and Right. Hence,
at each instant, the state of the whole swarm of N robots can be represented by
a vector of symbols, each from the alphabet {S,L,R}. For each run, we recorded
the state vector of the swarm every 100 ms. As runs last 20 min, a total of 12000
state vectors were recorded for each experiment. The complexity measures were
applied to this symbolic sequence depending on the definition of the measure, i.e.,
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either to the whole vector state (e.g., for set-based complexity) or by averaging
the values computed across all the robots (e.g., for entropies).

4 Results

The factors influencing swarm behaviour that we expect to be reflected into
a complexity metrics analysis are the number of forward steps, the maximum
turning angle and the number of robots in the arena. In particular, the metrics
should provide information on the amount of regularity in robots’ trajectories
and on their interactions. As we will show, although preliminary, the results
of this analysis enable us to state that the complexity measures we used are
able to capture these relevant features of robot swarm dynamics. Moreover,
we discovered that some metrics were able to capture non-trivial properties of
the dynamics of the swarm. In this paper we show and discuss a representative
sample of the results. The metrics we have omitted in this discussion are anyway
in agreement with the ones we have chosen for this presentation.

In the following plots, colours are used to differentiate among the three pos-
sible turning angle values: 40◦ in red, 90◦ in green and 180◦ in blue. The plots
shown are produced by analysing one run for each possible combination of exper-
imental factors; qualitatively analogous results are observed in the other runs.
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Fig. 2. LZ complexity for the case with 1 robot (left) and 40 robots (right) in the
dodecagonal arena. Maximum turning angles: � 40◦ � 90◦ � 180◦ (Color figure online)

In general, Shannon entropy and all the metrics measuring randomness are
in agreement with the expectations, as they show that randomness increases if
the number of forward steps decreases, the maximum turning angle decreases
or the number of robot increases. In Fig. 2 a representative example is shown
for the LZ complexity. Note that the maximum values reached in the case of
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40 robots are higher than those for one robot, providing a quantitative account
of the positive correlation between number of robots and randomness in their
trajectories. In addition, the LZ complexity decreases with the number of steps
and the maximum turning angle, specifically confirming that robots’ trajectories
are more regular when they have more possibilities to avoid obstacles.
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Fig. 3. Block entropy for the dodecagonal arena case, with 1 robot (left) and the 40
robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

Block entropies and their derivatives are particularly informative because
they provide a picture of the correlations at different lengths in the dynamics of
the swarm. The block entropy as a function of block size is plotted in Fig. 3 for
the two extreme cases of the scenario with the dodecagonal arena. As expected,
the curves grow more rapidly for the dynamics characterised by a higher level
of randomness. The curves saturate when the length of the block considered
is about 40; in fact, as data series are of finite length, the frequency of large
blocks is underestimated and the block entropy values tend to converge even if,
in principle, the asymptote should have a strictly positive derivative for non-
periodic dynamics [17]. Therefore, the block entropy values are meaningful for
shorter block lengths. The block entropy trends suggest two main observations.
First, the initial slope of the curves is higher on average in the 40 robots case; this
is a direct consequence of the fact that the denser the robots the less regular their
trajectories in the arena. Second, the top and bottom limiting curves correspond
to the least (10 steps, 40◦) and most (30 steps, 180◦) regular case, respectively.

The correlation information (i.e. the second discrete derivative of the block
entropy) makes it possible to identify the points at which the block entropy slope
changes, thus providing a tool for a detailed inspection of the regularities in the
time series. The plots in Fig. 4 summarise the results of the correlation length
analysis. The most notable fact to observe is that in every condition considered,
and independently of the turning angle, there is a marked peak corresponding to
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Complexity Measures in Automatic Design of Robot Swarms 253

the number of forward steps. Indeed, this is one of the most relevant regularities
in robots’ trajectories. We can also observe lower peaks corresponding to multi-
ples of the number of forward steps. This picture is particularly striking in the
control case (one robot, infinite arena) and gets blurred when delimiting walls
are present and mainly when robots in the arena are dense, as their avoidance
behaviour introduces randomness in their trajectories. We observe also a surpris-
ing phenomenon: a second peak appears at the left of the previously mentioned
one. This peak is particularly marked in the case of 40 robots and 30 forward
steps, where it is even higher than the other peak. This second local maximum
captures the pattern of turning moves of the robots trying to avoid an obstacle.
Indeed, the location of this peak gives us an indication of the average number
of turning moves the robots have to take before finding a free corridor to move
ahead. Whilst this phenomenon deserves a further in-depth investigation, this
result is remarkable as it shows that correlation information provides a fine tool
to detect—possibly unforeseen—regularities.
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Fig. 5. Mutual information for the dodecagonal arena case, with 1 robot (left) and the
40 robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

A mutual information analysis of robots’ trajectories may provide an estima-
tion of the reciprocal influence between robots. Mutual information is computed
for all the possible robot pairs and then averaged. The barplots in Fig. 5 show
that the interdependence among robots is highest for the case of 40 robots and
that the interactions are stronger for smaller turning angles. This analysis is in
agreement with the expectations and complements the information gained by
the previous metrics.

For completeness, we conclude this section by mentioning the results returned
by the application of the set-based complexity. SBC is computed by considering
the sequence of swarm states as a set of strings; therefore, it is a measure of
the ensemble of robots, rather than of the robots taken individually. Barplots of
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Fig. 6. Set-based complexity for the dodecagonal arena case, with 1 robot (left) and
the 40 robots (right). Maximum turning angles: � 40◦ � 90◦ � 180◦

this analysis are depicted in Fig. 6. We observe that SBC does not differentiate
considerably as a function of forward steps and maximum turning angle. Con-
versely, it is worth to emphasise that the SBC values double moving from 10 to
40 robots, and also that the impact of forward steps number is stronger in the
case of 10 robots, where the interference among robots is limited. Nevertheless,
as the robots are mainly characterised by random walk, the potential of SBC can
not be expressed completely and we expect that this metric could be particularly
useful in non-stationary cases.

5 Conclusion and Future Work

The results of this exploratory study show that complexity metrics can capture
relevant features, such as patterns, in traces of robot swarm dynamics. We have
chosen the most known complexity measures, mainly from information theory,
and applied them to a simple task for swarm robotics characterised by a station-
ary dynamics. As expected, metrics devised for measuring specific dynamical
traits return similar results and an heterogeneous selection of them is likely to
be the best choice to produce a complexity fingerprint of the system. A mini-
mal fingerprint for a stationary case should be composed of metrics focusing on
(a) randomness (e.g. LZ complexity), (b) patterns (e.g. block entropy and its
derivatives) and (c) interdependence among robots in the swarm (e.g. mutual
information).

We are currently enlarging the set of metrics, by including also statistical
complexity measures based on model construction, and we plan to apply also
local measures [19] and information theoretical measures specifically designed
for capturing dynamical properties of the system [31]. Experiments on further
stationary cases are planned, such as flocking and memoryless foraging with
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random walk. The next step will be to address also non-stationary cases, like
e.g. aggregation, so as to be able to tackle swarm missions in which robots
may be characterised by changes in their dynamical behaviour. As stated in
the introduction, our aim is to devise tools for helping the automatic design of
controllers for robot swarms, so our research agenda include as a further step
the use of complexity measures both as analysis tool and task-agnostic merit
factors.
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de Bruxelles as visiting professor in the “Chaire internationale” programme.
Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scien-
tifique – FNRS. The project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 681872).

References
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