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Abstract. Task partitioning is a way of organizing work consisting in
the decomposition of a task into smaller sub-tasks that can be tackled
separately. Task partitioning can be beneficial in terms of reduction of
physical interference, increase of efficiency, higher parallelism, and ex-
ploitation of specialization. However, task partitioning also entails costs
in terms of coordination efforts and overheads that can reduce its bene-
fits. It is therefore important to decide when to make use of task parti-
tioning. In this paper we show that such a decision can be formulated as
a multi-armed bandit problem. This is advantageous since the theoret-
ical properties of the multi-armed bandit problem are well understood
and several algorithms have been proposed for tackling it. We carry out
our study in simulation, using a swarm robotics foraging scenario as a
testbed. We test an ad-hoc algorithm and two algorithms proposed in
the literature for multi-armed bandit problems. The results confirm that
the problem of selecting whether to partition a task can be formulated
as a multi-armed bandit problem and tackled with existing algorithms.

1 Introduction

Task partitioning refers to the act of dividing a task into a sequence of sub-
tasks that can be tackled separately [9]. Many social insects, such as ants, bees,
and wasps employ task partitioning for organizing their work. The benefits that
insects draw from task partitioning are many: decrease of physical interference
between individuals, higher exploitation of specialization, higher parallelism and
efficiency in performing tasks [17]. Swarms of robots could benefit from task
partitioning in the same ways. However, task partitioning also entails costs that
are mainly a consequence of the coordination required to link different sub-tasks
one to another. Therefore, task partitioning should be employed only when the
benefits overcome the costs. In the rest of the paper, we will refer to the problem
of selecting whether to employ task partitioning as the task partitioning problem.

In a previous work, we proposed a method that allows the robots to choose
when to employ task partitioning, on the basis of the costs involved [16]. In
this paper, we extend the work by reformulating the task partitioning problem
as a multi-armed bandit problem [3]. The multi-armed bandit problem consists
in repeatedly selecting actions to be performed in order to maximize a reward

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



110 G. Pini et al.

that depends on the actions taken. In terms of the multi-armed bandit, the
task partitioning problem can be reformulated as the problem of choosing be-
tween partitioning the overall task and performing it as an unpartitioned task,
with the goal of minimizing the resulting costs. Each robot tackles the multi-
armed bandit problem independently of the other robots: it selects its actions on
the basis of its individual estimate of the costs. The advantage of formulat-
ing the task partitioning problem as a multi-armed bandit stems from the fact
that the latter is widely studied in statistics. Consequently, its theoretical prop-
erties are well understood and, most importantly, one can select among several
existing algorithms, without the need of implementing ad-hoc solutions every
time. The approach presented in this paper can be used to solve the task parti-
tioning problem in situations in which the robots can measure or estimate the
costs associated to employing task partitioning.

Multi-armed bandit problems are characterized by a tradeoff between ex-
ploitation and exploration. A balance has to be found between “exploring the
environment to find profitable actions” [2] and “taking the empirically best ac-
tion as often as possible” [2]. Also in the task partitioning problem there is such
a tradeoff. Task partitioning should be exploited as much as possible, if the ex-
pected resulting costs are low. However, changes in the environment can affect
costs. Therefore, the option of using task partitioning should be reconsidered in
time, in order to detect such changes.

The rest of the paper is organized as follows. In Section 2 we review the ex-
isting work on task partitioning in swarm robotics. In Section 3 we describe the
specific problem tackled in this work and present the three algorithms that we
consider for tackling the problem. In Section 4 we briefly describe the experimen-
tal setup and the tools used to carry out the research. In Section 5 we present
and comment the results of the experiments. Finally, in Section 6 we summarize
the contribution of the work and we describe directions for future research.

2 Related Work

The biology literature is rich in studies devoted to task partitioning. In partic-
ular, task partitioning has been observed in social insects in the organization of
tasks such as material transportation, nest excavation, and waste removal [17].
Swarm robotics draws inspiration from the world of social insects in the imple-
mentation of robotic systems composed of a large number of relatively simple
cooperating robots [5]. The tasks performed by swarms of robots have often a
counterpart in the world of social insects. As social insects draw benefits from
task partitioning, it is interesting to study the application of task partitioning
to swarms of robots performing similar tasks.

While in biology the body of literature on task partitioning is large, few works
in swarm robotics have been devoted to this topic. In the majority of the works,
the focus is on the use of task partitioning as a means for reducing physical
interference. In [7], a foraging task is partitioned into sub-tasks developing in
separate areas, each one assigned a-priori to a different robot. A similar work is
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presented in [14], with the difference that in this case the areas are not assigned
statically and several robots can share the same working area. In [18], a swarm
of robots has to forage for objects. Objects are progressively moved towards the
nest by different robots, each working in an area of a given radius. The study
shows that the higher the number of robots, the smaller the working area radius
should be. The work as been extended to allow for a dynamical regulation of
the working areas size [10] and to relocate the working areas depending on the
objects distribution in the environment [11]. In [12], a swarm of robots has to
perform foraging in an environment composed of several corridors. The authors
show that task partitioning improves performance when the corridors are too
narrow for two robots traveling in opposite directions to pass at the same time.

In a previous work we studied task partitioning in a foraging task and proposed
a simple method that allows a swarm of robots to tackle the task partitioning
problem [8]. In a follow up research the method has been extended to explicitly
take into account costs linked to task-partitioning [16].

3 Problem Description and Methodology

We study the task partitioning problem: how to choose whether to partition a
given task, or to perform it as a whole, unpartitioned task. When task partition-
ing is employed, the given task is partitioned into a sequence of sub-tasks. In
this paper, we focus on the case in which there are two sub-tasks. The sub-tasks
are linked by an interface of finite capacity. The output of the first sub-task can
be stored at the interface and be subsequently used as the input for the second
sub-task. In this paper we use a swarm robotics foraging scenario as testbed.

Figure 1 provides a schematic representation of the environment and the prob-
lem we study in this work. In the foraging scenario, the robots repeat an object
retrieval task: harvesting an object from the source, and storing it at the nest.
The environment is composed of two areas, one containing the source and the
other containing the nest, separated by a cache. The robots cannot cross the
cache, but they can use it to transfer objects from one area to the other. A
corridor links the two areas and allows the robots to reach one from the other.

In the setup described, using the cache allows the robots to partition the object
retrieval task into two sub-tasks: the first consists in harvesting an object from
the source and drop it in the cache, the second in picking up an object from the
cache and storing it at the nest. Therefore, the cache acts as an interface between
sub-tasks. Conversely, the use of the corridor allows the robots to perform object
retrieval as an unpartitioned task: a robot can directly reach the source from the
nest and the other way around, harvesting and storing objects.

Each robot chooses whether to employ task partitioning in two situations,
represented by a question mark in Fig. 1. First, after taking an object from the
source, a robot decides whether to use the cache to drop the object, or to use
the corridor and store the object at the nest. Second, after storing an object
in the nest, a robot decides whether to pick up an object from the cache, or to
use the corridor and harvest an object from the source.
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Fig. 1. Representation of the studied foraging problem. Foraging consists in harvesting
objects from the source and storing them at the nest. Robots choose between using
task partitioning (i.e., use the cache) or not (i.e., use the corridor) in two cases, marked
with “?” in the figure. After taking an object from the source, a robot chooses between
store it at the nest or drop it at the cache. Upon storing an object in the nest, a
robot chooses between pick up the next at the cache or harvest one from the source.
The dashed arrows represent cost estimates t̂i that the robot associates to each action.

In this work, we show that the task partitioning problem can be formulated
as a multi-armed bandit problem. In the multi-armed bandit problem, the goal
is to maximize a reward. If the dual problem of minimizing costs is tackled,
algorithms and techniques for the bandit problem can be employed for the task
partitioning problem as well. The nature of the costs depends on the specific task
and on the characteristics of the environment. Typically costs are represented
by resources needed to perform the task. Examples are: energy, time required to
complete a task, or materials employed. In the foraging scenario studied in this
paper, the goal is to maximize the number of objects delivered to the nest. This
can be done by maximizing the throughput; we therefore express costs in terms
of time.

Each robot keeps a cost estimate for each of the possible four actions: i)
harvest an object from the source (using the corridor), ii) pick up an object
from the cache, iii) drop an object in the cache, and iv) store an object in the
nest (using the corridor). Each estimate t̂i is computed as:

t̂i ← (1− α) t̂i + α tM , (1)

where α ∈ (0, 1] is a weight factor. tM is the measure of the time taken by the last
action performed by the robot, its meaning depending on the specific estimate
being updated (refer to the dashed arrows in Fig. 1). When estimating the cost
t̂H of harvesting an object from the source, tM measures the time from the
moment an object is stored in the nest till the moment a new object is harvested
from the source. Analogously, when estimating the cost t̂S of storing an object
in the nest, tM denotes the time measured from the moment an object is taken
from the source to the moment it is deposited in the nest. When estimating
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the cost t̂D of dropping objects in the cache, tM measures the time from the
moment an object is taken from the source, to the moment the following one
is taken from the source, after dropping the first in the cache. Analogously, for
the cost t̂P of picking up, tM accounts for the time between two objects being
stored in the nest, with the second one taken from the cache. These estimates
are used by the robots to decide between using the cache or the corridor.

In this work we compare three algorithms, used by the robots to make this de-
cision. The first is an ad-hoc algorithm that we proposed in a previous work [16].
Using the ad-hoc algorithm, after taking an object from the source, a robot has
a probability Pp of dropping it in the cache:

Pp =

⎧
⎪⎨

⎪⎩

[
1 + e−S((t̂H+t̂S)/(t̂P+ t̂D)−1)

]−1

, if t̂H + t̂S > (t̂P + t̂D)
[
1 + e−S(1−(t̂P+ t̂D)/(t̂H+t̂S))

]−1

, if t̂H + t̂S ≤ (t̂P + t̂D)
, (2)

where S is a steepness factor. The higher its value, the higher the degree of
exploitation of the algorithm. Analogously, after delivering an object to the nest,
a robot has the same probability Pp of picking up the following one from the
cache. Thus, the object retrieval task is performed as a partitioned task with
a probability of Pp and performed as an unpartitioned task with a probability
1− Pp.

We compare the ad-hoc algorithm with two other algorithms that have been
previously proposed in the literature to tackle multi-armed bandit problems.
The first of the two, which we will refer to as UCB , is a modified version of
the UCB1 policy presented in [2] that, in turn, is derived from the index-based
policy described in [1]. Using UCB, after taking an object from the source, a
robot drops it in the cache if:

t̂D − γ

√

2 ln(nD + nS)

nD
< t̂S − γ

√

2 ln(nD + nS)

nS
, (3)

otherwise it takes the corridor to store the object in the nest. nD is the number
of times that the robot selected the cache for dropping an object, nS the number
of times the robot used the corridor for storing an object in the nest. γ is a
parameter that allows to tune the degree of exploration of the algorithm: the
higher the value, the higher the exploration. An analogous formula is used to
choose between picking up an object from the cache or harvest it from the
source using the corridor.

The third algorithm studied in this work, is the ε-greedy algorithm, a simple
algorithm widely employed in reinforcement learning [19]. With the ε-greedy
algorithm, the action perceived as the less costly is selected with a probability
1− ε, otherwise a random action is selected. ε defines the degree of exploration
of the algorithm: the higher the value, the higher the exploration.

Notice the difference between the ad-hoc algorithm and the other two. In the
former, no distinction is made between the two decision points: both at the nest
and at the source there is the same probability Pp of employing task partitioning.
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In the UCB and the ε-greedy algorithms, the robots discriminate between the
two cases when making their choice.

For all the algorithms, a give up mechanism allows the robots to abandon
the choice of using the cache. Without this mechanism, deadlocks could occur
in two cases. The first case happens if all the robots are trying to drop objects
in the cache and the cache is full. The second case happens if all the robots are
trying to pick up objects from the cache, and the cache is empty. Giving up is
implemented using a timeout: the robot measures the time it has been trying
to access the cache, and abandons its choice when the time reaches a given
threshold. Details about how the threshold is computed can be found in the
online supplementary material [15]. When a robot gives up, its current waiting
time updates the respective estimate t̂D or t̂P using Equation 1.

4 Experimental Setup

This section briefly describes the experimental tools and the environment in
which we run the experiments presented in the paper. A more detailed descrip-
tion can be found in [16], of which the research presented here is a follow up.

All the experiments presented in this work have been carried out in simulation
using ARGoS [13], a simulator developed within the Swarmanoid1 project [6].
We simulate the e-puck2, a small wheeled robot that has been used in many
studies in swarm robotics. As the e-puck does not have the capability of grasping
objects, we abstract this process by using a device called Task Allocation Module
(TAM) [4]. Each TAM is a small booth in which an e-puck can enter. In the
experiments, we simulate the TAM and its basic functionalities: two RGB LEDs
that can be perceived by the e-pucks and a light barrier that can detect the
presence of a robot within the TAM. In the experiments presented in this article,
we implement the source, the nest, and the cache using TAMs.

The experiments take place in the environment represented in Fig. 2. The
source is located at the top-left, the nest at the top-right, and the cache between
the source and the nest. The nest and the source are implemented using four
TAMs on one side; the cache is implemented with eight TAMs, four on each
side, organized in pairs facing opposite directions3. The corridor links the areas
containing the source and the nest.

We perform the experiments in two environments, called short-corridor and
long-corridor environments. In both environments, the source is 1.5m away from
the nest. The environments differ in terms of the total length of the corridor:
5.0m in the short-corridor and 7.5m in the long-corridor environment. We also
impose a cache processing time Π that the robots have to spend in the cache
when dropping or picking up an object. The length of the corridor and the value
of Π determine whether it is more advantageous to perform the object retrieval

1 http://www.swarmanoid.org
2 http://www.e-puck.org
3 Avideo showing the behavior of the cache can be found in the online supplementaryma-
terial at the following url: http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

http://www.swarmanoid.org
http://www.e-puck.org
http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/
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Fig. 2. Representation of the experi-
mental environment. Nest, source and
cache are implemented using TAMs. The
different ground colors are used by the
robots for localization in the arena. Light
sources, marked with “L”, provide di-
rectional information. The short-corridor
and long-corridor environments differ in
the total length of the corridor.

task as unpartitioned task, or to partition it into two sub-tasks. By changing
the value of Π , we can tune the relation between the performance obtained by
using the cache and the one obtained by using the corridor. Consequently, we
can also define how advantageous it is to employ task partitioning.

5 Experiments and Results

We run all the experiments in both the short-corridor and long-corridor environ-
ments, with swarms of 10 and 20 robots. Every experiment lasts 10 simulated
hours. At the beginning of each experiment, half of the swarm is positioned in
the area containing the source and the other half in the area containing the nest.
The value of α, used for computing the time estimates in Equation 1, has been
set to 0.5. Notice that, in order to reduce the parameter space, we do not tune
the value of α with systematic experiments. We select this value of α since low
values are likely to render the algorithms poor in reacting to changes, while high
values increase sensitivity to noise. The values of the cost estimates are initial-
ized randomly: t̂H and t̂S are uniformly sampled in the interval [40, 80], t̂P and
t̂D in [20, 40].
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Table 1. Selected parameters for the exploiting and exploring versions of the three
algorithms

Algorithm parameter exploiting version exploring version

ad-hoc S 6.0 1.0
UCB γ 100 1000
ε-greedy ε 0.01 0.11

We run two sets of experiments. The goal of the first set of experiments is to
select the parameters for each algorithm. Details about these experiments and
the complete results can be found in the online supplementary material. Follow-
ing these experiments, we selected two parameters settings for each algorithm,
one corresponding to an exploring version and one to an exploiting version of
the algorithm.

In the second set of experiments, the goal is to test whether, by employing
the different algorithms, the robots are able to choose properly when to use task
partitioning and when not to. Additionally, we test if the choice made by the
robot adapts to variations occurring in the environment. In each experiment,
the value of the cache interfacing time Π is initialized to 0, it switches to 160 s
after 2.5 hours, and then it switches back to 0 when the experiment reaches half
of its duration. The robots are expected to choose between the cache and the
corridor and to adapt their choice in time.

Figure 3 reports the results of the experiments, for a swarm composed of 20
robots, in the long-corridor environment. Plots on the same row refer to the
same algorithm (from top to bottom: ad-hoc, UCB, ε-greedy). The plots in the
left column report the results for the exploiting version of the corresponding
algorithm, the ones on the right for the exploring version. Each box reports the
percentage of usage of the cache in the 30 minutes preceding the time reported
on the X axis. The grey horizontal lines report the optimal cache usage, that
changes depending on the value of Π . The grey slanted lines report percentages
of cache usage that lead to a performance of at least 95% of the optimal. Per-
formance is measured as average total number of objects retrieved at the end of
the experiment. To determine the optimal way of using the cache, we performed
experiments in which some of the robots were forced to always use the cache.
For each value of Π and the two swarm sizes, we exhaustively tested all the
possible values of the number of robots forced to use the cache and recorded the
corresponding performance. The performance of the different algorithms is re-
ported in Fig. 4. The optimal performance and the performance of an algorithm
randomly selecting between cache and corridor are also reported for reference.

A comparison between the two versions of each algorithm highlights the trade-
off between exploration and exploitation, typical in multi-armed bandit prob-
lems. When the exploiting versions of the algorithms are employed, the robots
can select when to use the cache and when to use the corridor, but are unable
to detect changes occurring in the environment. This can be seen in the near
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Fig. 3. Percentage of usage of the cache for the ad-hoc (first row), the UCB (second
row), and the ε-greedy (third row) algorithm. In each row, the plot on the left reports
the results for the exploiting version, the one on the right for the exploring version
of the corresponding algorithm. We report the results obtained in the long-corridor
environment, with a swarm composed of 20 robots. The cache interfacing time Π is
initialized to 0. After 2.5 hours of experiment, the value is changed to 160 seconds, and
returns to 0 at half experiment. Vertical dashed lines mark the moments in which the
value of Π changes. Each box reports the percentage of usage (over 25 experimental
runs) of the cache in the 30 minutes preceding the time reported on the X axis. The
grey horizontal line reports the cache usage that maximizes the number of objects
retrieved, which varies with the value of Π . The grey slanted lines report percentages
of cache usage that lead to a number of objects retrieved that is at least 95% of the
maximum.
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Fig. 4. Total number of objects retrieved by a swarm of 20 robots in the long-corridor
environment

optimal behavior in the first half of the experiment, which degrades in the sec-
ond half. Notice that the first change in the value of Π is detected also when
employing the exploiting version of the algorithms. The reason is that initially
the cache is selected often by the robots. Consequently, they can detect changes
in Π independently of the version of the algorithm being employed. Detecting
the opposite transition in the value of Π is harder and it only happens when the
exploring version of the algorithms is employed.

The overall results (see online supplementary material) indicate that, in gen-
eral, the algorithms perform better, more consistently, and with higher reactivity
to changes, when the swarm is larger. This highlights that cooperation is required
in order to render task partitioning effective. When the robots are many, it is
more likely that robots are present on both sides of the cache, which is critical
in order to exploit the cache properly. The length of the corridor seems to have
little effect on the behavior of algorithms.

The results confirm that the task partitioning problem can be formulated as a
multi-armed bandit problem. General algorithms for tackling bandit problems,
such as the UCB and the ε-greedy, can be successfully employed to tackle the task
partitioning problem, with results comparable with those of an ad-hoc algorithm.
In particular the ε-greedy is a suitable candidate, since it is simple and its only
parameter is easy to understand and tune manually.

6 Conclusions

In this paper, we studied the problem of choosing whether to tackle a task as a
whole, or to partition it into a sequence of two sub-tasks. We show that the prob-
lem can be formulated as a multi-armed bandit problem. This is advantageous
since the problem is well studied and understood, and its theoretical properties
are known. Most importantly, several algorithms have been proposed in the lit-
erature for tackling the problem. This allows one to select an algorithm knowing
its strengths and weaknesses and apply it to task partitioning problems without
the need of designing ad-hoc solutions each time. The approach can be applied
to situations in which costs can be measured or estimated by the robots. We
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pointed out that the tradeoff between exploration and exploitation, typical of
multi-armed bandit problems, also arises in the task partitioning problem. This
tradeoff has to be taken into account when choosing an algorithm and its param-
eters. Directions for future work aim at investigating more complex cases with
more than two sub-tasks, as well as cases in which the location of the sub-tasks
interface is not predefined, but must be decided by the robots autonomously.
Additionally, in this work each robot tackles the task partitioning problem in-
dividually. As future work, we also plan to enhance the system with explicit
communication. The robots could exchange information about the environment
and compute cost estimates also on the basis of the information received.
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simple mechanisms for improving performance in multi-robot constrained-space
foraging tasks. In: AGENTS 2001: Proceedings of the Fifth International Confer-
ence on Autonomous Agents, pp. 29–30. ACM Press, New York (2001)

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G.A., Ducatelle, F., Stirling, T., Gutiérrez,
A., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In: Proceedings of the 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), pp. 5027–5034.
IEEE Computer Society Press, Los Alamitos (2011)

14. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Task Partitioning in Swarms of
Robots: Reducing Performance Losses Due to Interference at Shared Resources.
In: Cetto, J.A., Filipe, J., Ferrier, J.-L. (eds.) Informatics in Control Automation
and Robotics. LNEE, vol. 85, pp. 217–228. Springer, Heidelberg (2011)

15. Pini, G., Brutschy, A., Francesca, G., Dorigo, M., Birattari, M.: Multi-armed bandit
formulation of the task partitioning problem in swarm robotics – Online supple-
mentary material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

16. Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., Dorigo, M.: Task par-
titioning in swarms of robots: An adaptive method for strategy selection. Swarm
Intelligence 5(3–4), 283–304 (2011)

17. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes
Sociaux 46(2), 95–108 (1999)
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