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Abstract: This article studies the use of task partitioning as a way to reduce interference in a spatially con-
strained harvesting task. Interference is one of the key problems in large cooperating groups. We
present a simple method to allocate individuals of a robotic swarm to a partitioned task, and show
that task partitioning can increase system performance by reducing sources of interference. The
method is experimentally studied, both in an environment with a narrow area and an environ-
ment without this constraint. The results are analyzed and compared to the case in which task
partitioning is not employed.

1 INTRODUCTION

In collective robotics, interference is a critical
problem limiting the growth of a group: the time
each robot spends in non-task-relevant behaviors
such as obstacle avoidance increases when the
density of individuals rises—see e.g., Lerman and
Galstyan (2002). The performance on tasks that
suffer from physical interference can typically be
improved by spatial partitioning; for example, by
keeping each robot in its own “working area”. A
known approach that uses this rationale is the
so called bucket-brigade (Fontán and Matarić,
1996; Shell and Matarić, 2006). In this approach,
robots hand over objects to robots working in
the following area, until the objects reach their
destination. As tasks usually cannot be parti-
tioned arbitrarily, this approach effectively limits
the number of robots that can be employed in the
task. A possible solution to this problem, treat-
ing working areas as non-exclusive, raises other
problems: How should individuals be allocated
to tasks? How can such an allocation help in lim-
iting the amount of interference?

In this paper, we study how task partition-
ing can help in reducing sources of interference.
Additionally, we show a simple way to achieve

self-organized allocation to such a task partition
when using a robotic swarm.

We use the foraging problem, one of the
canonical testbeds for collective robotics, as a
base for our studies. In our experiments, a swarm
of homogeneous robots has to harvest prey ob-
jects from a source area and transport them to a
home area. In this study, we limit ourselves to a
harvesting task that is pre-partitioned by the de-
signer into two subtasks with a sequential inter-
dependency. We study a simple threshold-based
model of self-organized allocation and focus on
two questions: Under which environmental con-
ditions is it advantageous to partition the task?
Can this partition reduce interference between
group members? These questions are studied in
two experiments using a simulated robot swarm.

The paper is organized as follows. We first
review related works in Section 2. In Section 3
we explain the task partitioning and the alloca-
tion method employed in this study. Section 4
gives the methods used in the experiments by de-
scribing the environments, the simulated robots,
and the controller. In Section 5 the results of
the experiments are given and discussed. Sec-
tion 6 draws some conclusions and discusses fu-
ture work.



2 RELATED WORK

Interference has long been acknowledged as be-
ing one of the key issues in multi-robot coopera-
tion (Goldberg and Matarić, 2003). Lerman and
Galstyan (2002) devised a mathematical model
that allows a quantification of the interference
and its effect on group performance. Probably,
the most thorough study was published by Gold-
berg (2001), who identified several types of multi-
robot interactions. Goldberg notes that one of the
most common types of interference is physical in-
terference in a central area, for example the nest.
This kind of interference results from resource
conflicts, in this case physical space, and can be
arbitrated by either making sure that robots stay
in different areas all the time or by employing a
scheduling mechanism to ensure that robots use
the same space only at different times.

A simple method for reducing interference by
using the first arbitration method mentioned is
the so-called bucket-brigade: robots are forced
to stay in exclusive working areas and to pass
objects to the following robot as soon as they
cross the boundaries of their area (Fontán and
Matarić, 1996; Shell and Matarić, 2006). Re-
cently, this has been extended to work with adap-
tive working areas by Lein and Vaughan (2008).
To the best of our knowledge, current works con-
cerned with bucket brigading only studied the in-
fluence of interference due to obstacle avoidance.
Other sources of interference (e.g., object manip-
ulation) were never studied, although they might
have a critical impact on the performance of any
task partitioning approach. To quote Shell and
Matarić (2006): “If the cost of picking up or drop-
ping pucks is significant [. . . ], then bucket brigad-
ing may not be suitable.”

Task allocation for multi-robot systems is a
wide field, which can be divided in intentional and
self-organized task allocation. Intentional task al-
location relies on negotiation and explicit com-
munication to create global allocations, whereas
in self-organized task allocation global allocations
result from local, stochastic decisions. A formal
analysis and taxonomy that covers intentional
task allocation has been proposed by Gerkey and
Matarić (2004). Kalra and Martinoli (2006) re-
cently compared the two best-known approaches
of intentional and self-organized task allocation.

The field of self-organized task allocation is
in its early stages, as most studies tackle simple
problems without task interdependencies. Stud-
ies in self-organized task allocation are mostly

based on threshold-based approaches, taking in-
spiration from division of labor in social in-
sects. Krieger and Billeter (2000) were among
the first to propose threshold-based approaches in
multi-robot task allocation. Labella et al. (2006)
used threshold-based task allocation in a multi-
foraging task. Similarly, Campo and Dorigo
(2007) used a notion of the group’s internal en-
ergy to allocate individuals to a multi-foraging
task. Finally, Liu et al. (2007) studied a multi-
foraging task while focusing on the influence of
the use of different social cues on the overall group
performance.

3 TASK PARTITIONING AND
ALLOCATION

In this work, we study a collective foraging task.
By spatially partitioning the environment, the
global foraging task is automatically partitioned
into two subtasks: 1) harvesting prey objects
from a harvesting area (source) and 2) transport-
ing them to a home area (nest). Robots working
on the first subtask harvest prey objects from the
source and pass them to the robots working on
the second subtask, which store the objects in
the nest. These subtasks have a sequential inter-
dependency in the sense that they have to be per-
formed one after the other in order to complete
the global task once: delivering a prey object to
the home area.

Robots can decide to switch from one subtask
to the other, thus creating a task allocation prob-
lem: individual robots have to be allocated to
subtasks and different allocations yield different
performance. As a prey object has to be passed
directly from one robot to the other, a robot usu-
ally has to wait some time before passing a prey
object to or receiving a prey object from a robot
working on the other subtask. This waiting time
can therefore give an indication of the allocation
quality for the respective subtask: if the wait-
ing time is very long, there might not be enough
robots allocated to the other subtask. Thus, the
robots can use this waiting time to decide whether
to switch subtask or not. Ideally, the waiting time
should be the same for the two subtasks in order
for the system to reach a stable state and deliver
optimal performance.

Our robots exploit a simple threshold-based
model to decide when to switch task: when the
waiting time tw is higher than a threshold Θ, a
robot switches its subtask. The robot’s waiting



time is a function of the average time the robots
working in the other subtask need to complete
their task. The task-completion time of a robot
depends on two factors: 1) round-trip-time (i.e.,
distance to travel) and 2) time lost due to interfer-
ence. Thus, the robot’s threshold Θ is a function
of the round-trip-time and the interference of the
robots in the other subtask. Therefore, the opti-
mal task switching threshold depends on the task
(i.e., time to harvest a prey object) and the en-
vironment (i.e., distance between the source and
the nest). As the parameters of the environment
are not pre-programmed into the robots, deter-
mining the optimal threshold can be a complex
problem. In this work, we limit ourselves to a
simple method for setting this threshold: at the
start of the experiment, each robot draws a ran-
dom threshold that is used as its task switching
threshold throughout the experiment.

In the following, we study the properties of
this simple self-organized task allocation strategy,
compare this strategy to a strategy without task
partitioning, and analyze how it can help to re-
duce interference. We refer to the two strategies
as partitioned and non-partitioned, respectively.

4 METHODS

This section describes the environments in which
the experiments are carried out, the simulated
robots, and the robot’s controller. Additionally,
we describe how we run the experiments and we
introduce some metrics that we use to evaluate
the properties of the system.

4.1 Environments

We study task allocation in two different envi-
ronments. In these two environments, the nest is
marked by a light source that can be perceived
by all robots, thus providing directional informa-
tion. The environment is spatially partitioned in
two parts: the source is located on the left and the
nest is located on the right side of the arena. We
refer to the two sides of the arena as harvest area
and store area, respectively. The exchange zone
is located between these two areas. Robots work-
ing on the left side, called harvesters, gather prey
objects in the source and move them to the ex-
change zone, where they pass them to the robots
working on the other side. These are referred to
as storers: their role is to transport prey objects
to the nest and store them there. The nest, the

Figure 1: Depiction of (a) the narrow-nest environ-
ment used in the first experiment and (b) the wide-
nest environment used in the second experiment. The
gray stripes are the source (left), and the nest (right),
each 0.25 m deep. The black stripe is the exchange
zone, that is 0.5 m deep. The light source is marked
with “L”.

source, and the exchange zone can be detected
through environmental cues (ground color).

At time t = 0, the robots are randomly placed
in the harvest area. The experiments run for
tmax = 18, 000 time steps (a simulated time of
one hour, with a time step length of 200 ms). The
experiments are run in two different arenas (see
Figure 1). The first arena (Figure 1a) is 4.125 m
long with a width of 1.6 m at the source and ex-
change zone, whereas the nest is 0.4 m wide. The
exchange zone is located 3.125 m away from the
source. This arena is characterized by the pres-
ence of an area, critical for the task, in which
high interference between robots can be expected
(the nest). Thus, this arena is referred to as the
narrow-nest environment.

The second arena (Figure 1b) has a rectangu-
lar shape: it is 3.75 m long and 1.6 m wide. Here
as well the exchange zone is located 3.125 m from
the source. The arena shape does not suggest the
presence of any zone where interference can be
higher than in other places. This arena is referred
to as the wide-nest environment.

The area of both arenas is 6 m2, 5 m2 for the
harvest area and 1 m2 for the store area. The
overall area is the same in the two arenas, so that
the same group size results in the same robot den-
sity. Thus, results are comparable across the two
environments.



4.2 Simulation

The experiments are carried out in a custom
simulation environment that models geometries
and functional properties of simple objects and
robots. Our robots’ model is purely kinematic.
Prey objects are simulated as an attribute a robot
can posses and not as physical entities. Although
the experiments are conducted in simulation only,
the simulated robots have a real counterpart:
the swarm-bot robotic platform (Mondada et al.,
2004). The platform consists of a number of mo-
bile autonomous robots called s-bots, which have
been used for several studies, mainly in swarm in-
telligence and collective robotics—see for instance
Groß et al. (2006) and Nouyan et al. (2008). The
simulated s-bots are of round shape, with a diam-
eter of 0.116 m. Each of them is equipped with 16
infrared proximity sensors, used to perceive ob-
stacles up to a distance of 0.15 m. Eight ambient
light sensors can be used to perceive light gradi-
ents up to a distance of 5.0 m. The robots are
equipped with 4 ground sensors used to perceive
nest, source and exchange zone. A 8 LEDs ring
is used to signal when a prey object is carried.
An omnidirectional camera allows the perception
of LEDs in a circle of radius 0.6 m surrounding
the robot. A uniform noise of 10% is added to
all sensor readings at each simulation step. The
robots can move at a maximum speed of 0.1 m/s

by means of a differential drive system.

4.3 Controller

All the robots share the same, hand coded, fi-
nite state machine controller depicted in Figure 2.
The controller consists of two parts, each corre-
sponding to a possible subtask a robot can per-
form. Gray states refer to the harvest subtask,
white states to the store subtask. Since all the
robots start in the harvest area, their controller
is initially set to perform anti-phototaxis. In this
way they will reach the source, where they can
start retrieving prey objects. The behavior of
each robot is a function of the task it is per-
forming. Harvesters not carrying a prey object
move towards the source, where they can find
prey. Harvesters carrying a prey object, move
to the exchange zone and wait for a free storer.
Upon arrival of such a storer, the harvester passes
the prey object to it. Storers carrying a prey
object move towards the nest, where they can
deposit the object. Storers not carrying a prey
object head to the exchange zone and search for

Figure 2: Simplified state diagram of the controller
of the robots. Gray states belong to the harvest task,
white states to the store task. The obstacle avoidance
state has been omitted for clarity, as it is applicable
in all states of the robot. tw is the time spent in the
exchange zone and Θ is the threshold.

a harvester with a prey object. Robots can de-
tect other robots carrying a prey on the basis of
the color of their LED ring. While moving, each
robot avoids obstacles (walls and other robots).

Task switches can occur: a harvester carry-
ing a prey object can decide to become a storer,
and a storer not carrying a prey object can de-
cide to become a harvester. As mentioned be-
fore, robots switch task depending on an internal
threshold Θ, representing the maximum amount
of control cycles they can spend in the transfer
zone waiting to pass (harvesters) or receive (stor-
ers) a prey object. If a robot remains in the trans-
fer zone longer than its threshold without passing
or receiving prey objects (tw > Θ), it switches its
task. The optimal threshold value is not trivial
to determine. In the work presented here, we use
a simple method to set the threshold Θ: at the
beginning of the experiment, each robot draws a
random threshold, sampled uniformly in the in-
terval [0, 1000]. We chose this method because it
is independent of the environment and does not
rely on complex approximation techniques. The
threshold value does not change during the exper-
iment. In case of the non-partitioned strategy, the
threshold is set to Θ = 0, causing the robots to
switch subtask immediately as soon as they reach
the exchange zone.

4.4 Experiments

The goal of the experiments is to investigate
whether task partitioning can reduce interfer-
ence in task-critical zones, and how to allocate
a robotic swarm to partitions. As pointed out
by Lerman and Galstyan (2002), interference is
related to the number of individuals in the sys-



tem. Additionally, the physical interference be-
tween robots is also a function of the environment
the robots act in. The higher the group size, the
higher the density, resulting in a higher amount
of physical interference. Thus, in order to study
interference in our experiments, we increase the
size of the group in each of the two environments
shown in Figure 1, while using both strategies
(non-partitioned and partitioned). We study the
performance of the system when the group size
N ranges in the interval [1, 40]. We run 50 repe-
titions for each value of N and each experimental
settin.

4.5 Metrics

In order to quantify the influence of interference,
we measure the group performance P by the num-
ber of prey objects collected by the swarm at the
end of the experiment (tmax = 1 hour). From the
group performance measure we can derive the in-
dividual efficiency as follows:

Ieff = P/N, (1)

where N is the size of the group. Individual effi-
ciency can help to understand the effect of inter-
ference on the performance.

In order to measure the influence of environ-
mental features on the interference, we define
an interference measure taking inspiration from
Rosenfeld et al. (2005). In their work, interfer-
ence is measured as the time spent performing
actions not strictly related to the task, but rather
lost due to negative interactions with the en-
vironment (e.g., obstacle avoidance maneuvers).
By registering the number of collisions for each
area of the arena, we can draw conclusions about
where physical interferences happen most often.
We measure interference through the state of the
controller: in our case a robot is experiencing in-
terference each time its controller perceives an ob-
stacle.

In case of a partitioned task, there is another
source of inefficiency that adds to interference:
the time lost in the exchange zone. We define
the strategy cost C as the sum of time lost be-
cause of physical interference and time lost in the
exchange zone:

C = Tint + Tpart , (2)

where Tint is the amount of time steps during
which the controller perceives an obstacle, and
Tpart is the total amount of time steps spent in
prey passing maneuvers. By using this metric,

the cost of the non-partitioned strategy is purely
due to interference (Tpart = 0), while in case of
the partitioned strategy, prey passing costs add
to interference costs. In a way, passing a prey
object produces another kind of interference in
the system. The strategy cost captures this effect,
thus allowing for a comparison of strategies.

5 RESULTS AND DISCUSSION

The graphs in Figures 3a and 4 show the
performance P for different group sizes in the
narrow-nest and wide-nest environment respec-
tively. Figure 3b shows the individual efficiency
Ieff of the robots in the narrow-nest environment.
Black curves are the average computed over the
50 repetitions of each setting, gray curves indi-
cate the 95% confidence interval on the expected
value. The performance graph in Figure 3a shows
that the partitioned strategy improves perfor-
mance in the narrow-nest environment. The
graph shows that the non-partitioned strategy
performs better than the partitioned strategy for
small group sizes (up to N = 13 robots). How-
ever, increasing the group size makes the non-
partitioned strategy collapse: the number of gath-
ered prey objects drops dramatically for groups
larger than 13. The individual efficiency graph
(Figure 3b) can explain the behavior of the sys-
tem. The robots employing the partitioned strat-
egy are less efficient, for small group sizes, than
those performing the non-partitioned strategy.
However, the addition of more individuals af-
fects the efficiency of the non-partitioned group
in a more dramatic way. At a certain point,
the drop in efficiency becomes very steep for the
non-partitioned strategy. On the other hand, the
partitioned strategy scales better: individual effi-
ciency drops smoothly. This explains why a group
using the partitioned strategy performs better: it
can benefit from the work of more individuals and
therefore collects more prey objects. These con-
siderations do not hold in the wide-nest environ-
ment. The performance graph in Figure 4 shows
that the non-partitioned strategy performs bet-
ter than the partitioned strategy for group sizes
N < 33. In both the environments, indepen-
dently of the strategy used to accomplish the task,
the system collapses when the area is saturated
by the swarm.

Figure 5 shows the effect on the cost of in-
creasing the number of robots in the narrow-nest
environment. The graph compares the cost C of
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Figure 4: Performance P for increasing number of robots in the wide-nest environment. The black continuous
line refers to the case of no task partitioning, the black dashed line to the case of partitioning. Gray lines indicate
the 95% confidence interval on the expected value.

each of the two strategies for different group sizes.
In case of the partitioned strategy (Figure 5a),
the graph shows each component of the cost (Tint

and Tpart). Clearly, task partitioning has the ef-
fect of reducing the cost due to interference but
has the disadvantage of increasing the cost due to
time lost. The probability of two or more robots
encountering each other increases with the robot
density. Although this determines a higher inter-
ference cost (i.e., Tint), it decreases the cost due
to lower waiting time (i.e., Tpart) in the case of
the partitioned strategy. Partitioning performs
better when the gain from interference reduction
is greater than the loss of performance due to par-

titioning inefficiencies. These considerations hold
in the narrow-nest environment, where the like-
lihood of physical interference in a task-critical
zone is very high. In the wide-nest environment,
interference in the nest is as likely as interference
in the exchange zone. Thus, it is not beneficial to
pay the cost of waiting and the non-partitioned
strategy performs better for any group size.

The mechanism by which partitioning reduces
interference costs can be deduced by compar-
ing the interference graphs in Figure 6. The
graphs show the number of times that physical
interference (as defined in Section 4.5) was regis-
tered in each region of the narrow-nest environ-
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ment. The total area was discretized in squares of
1 cm2. Figure 6 shows the results obtained with
18 robots, in the case of the non-partitioned strat-
egy (Figure 6a) and in the case of the partitioned
strategy (Figure 6b). The graphs show that
the use of the non-partitioned strategy leads to
high interference in the nest, which becomes con-
gested. Partitioning the task reduces the robot
density in the nest, thus spreading the interfer-
ence more uniformly across the arena. In addi-
tion, the overall interference diminishes because
the exchange zone is wider: the robots have more
freedom of movement and collide less often. Al-
though the graphs show only data collected with
18 robots, experiments with different group sizes
produced similar results.

6 CONCLUSIONS AND
FUTURE WORK

Interference can be an issue when working with
swarms of robots. In this work, we used task par-
titioning and allocation to reduce interference be-
tween robots sharing the same physical space. We
manually partitioned the environment and em-
ployed a simple self-organized strategy for allo-
cating individuals to subtasks. Results show that
a partitioning strategy improves performance in a
constrained environment. Additionally, we iden-
tified cases in which partitioning is not advanta-
geous and a non-partitioned strategy should be
used. The proposed strategy is fairly simple and
far from being an optimal solution, nevertheless



we improved the performance of the swarm when
interference was costly.

Future work will concern the identification of
the optimal allocation in the studied environ-
ments as well as the development and study of
a strategy that can find this optimal allocation in
a self-organized and adaptive way. In addition,
the interference metric proposed in Section 4.5
could be used by the robots to decide whether to
partition the task. In this way, we could achieve
even better performance, since partitioning would
be employed only when strictly needed. Finally,
the goal is to validate the system using the real
robots.
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