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Abstract—Positive feedback and a consensus-building proce-
dure are the key elements of a self-organized decision-making
mechanism that allows a population of agents to collectively
determine which of two actions is the fastest to execute. Such
a mechanism can be seen as a collective learning algorithm
because even though individual agents do not directly compare
the available alternatives, the population is able to select
the action that takes less time to perform, thus potentially
improving the efficiency of the system. However, when a large
population is involved, the time required to reach consensus
on one of the available choices may render impractical such a
decision-making mechanism.

In this paper, we tackle this problem by applying the incre-
mental social learning approach, which consists of a growing
population size coupled with a social learning mechanism.
The obtained experimental results show that by using the
incremental social learning approach, the collective learning
process can be accelerated substantially. The conditions under
which this is true are described.

Keywords-Incremental Social Learning; Self-Organization;
Opinion Dynamics; Swarm Intelligence; Collective Learning.

I. INTRODUCTION

Self-organization plays an important role in the life of

social insects and other animals [1], [2]. Self-organization

also plays an important role in the control of artificial swarm

intelligence systems [3], [4]. One of the main reasons is that

self-organization places no requirements on the intelligence

level of the agents that form a “swarm”. Nevertheless,

even without intelligent agents, a swarm can still tackle

classes of problems that are thought to require some level

of intelligence to solve [5].

A class of problems that swarms are able to solve is the

selection of the best choice from a set of available alterna-

tives. For example, ant colonies are able to select the shortest

path from their nest to a food source [6], or choose the best

nest site from a set of available candidates [7]. Artificial

swarms face similar choice problems. For instance, in ant

colony optimization algorithms [8], good solutions to hard

optimization problems are selected from a vast candidate

solutions set, or in swarm robotics [9], a robot swarm needs

to select collective actions that optimize its performance. In

this paper, we focus our attention on this last class of choice

problems. In particular, we study the simplest case, which

is when a swarm of robots faces a binary choice problem.

The choices are actions to execute while performing a task.

For example, in an object transportation task, robots may

need to choose between pulling or pushing objects. Each

alternative action has a different average execution time

associated with it. In our example, pulling may be faster

than pushing because pushing may make a robot crash into

obstacles due to a loss of visibility. In tasks with a time

execution limit, it is desirable that the robot swarm chooses

the action that is the fastest to execute.

In [10], we proposed a collective decision-making mecha-

nism based on opinion dynamics models that allows a swarm

of robots to choose the fastest of two alternative actions. This

mechanism involves some characteristic elements of self-

organizing systems [1], such as positive feedback, repeated

interactions among robots, and amplification of fluctuations

of the initial preferences of the robots. Additionally, this

collective decision-making mechanism can be seen as a

collective learning algorithm because robots do not directly

compare the available alternatives, and thus do not learn

individually which action is the fastest. Nevertheless, the

swarm does select the fastest action. However, as the size of

the swarm increases, so does the time needed for reaching

consensus. For some applications, this phenomenon could

effectively render the proposed approach impractical.

In this paper, we tackle the problem of slow conver-

gence of the collective decision-making mechanism pro-

posed in [10] when large swarms are involved. To this

end, we apply the incremental social learning (ISL) frame-

work [11], which consists of a growing population size

and a social learning mechanism. The two components of

the framework have the following functions: (i) starting

from a small population, adding agents allows the system

to converge faster than when a large population is used

from the beginning of the learning process, and (ii) the

social learning mechanism is used to transfer knowledge

from experienced agents to naive ones in order to save

exploration time. Our simulation results show that, by using

the ISL framework, the collective learning process can be

accelerated substantially, especially when a relatively small

fraction of the swarm concurrently tries all the available

choices. These performance improvements may allow one

day the deployment of the system on real robots.

The rest of the paper is structured as follows. In Section II,
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we describe the decentralized decision-making mechanism

that is the focus of this paper. The incremental social

learning framework is described in Section III. In Section IV,

we describe the methodology used to evaluate our proposal.

Results are presented and discussed in Section V. A brief

summary of related work is presented in Section VI. We

present our conclusions and propose future work in Sec-

tion VII.

II. A DECENTRALIZED DECISION-MAKING MECHANISM

BASED ON AN OPINION DYNAMICS MODEL

We have recently proposed to use an opinion dynam-

ics model as the core of a decentralized decision-making

mechanism for swarms of robots [10]. Opinion dynamics

is a branch of statistical physics that studies the processes

of agreement in large populations of agents [12]. Opinion

dynamics models are used to study large-scale social, eco-

nomic, and natural phenomena that involve many interacting

agents [12].

In this section, we describe the opinion dynamics model

that we used, and how it becomes a decentralized decision-

making mechanism when the opinions of the agents repre-

sent actions that take time to perform. The description that

follows is a summary of what is presented and discussed

in [10].

A. Opinion Dynamics Model and Aggregation Rules

Krapivsky and Redner [13] proposed a model that oper-

ates on a population of N agents, each of which can be

in one of two possible states, called opinions. The system

evolves as follows: A group (that we call team) is formed by

sampling, randomly and without replacement, three agents

from the population. The individual opinions of the team

members are then aggregated by the majority rule (see

Figure 1 (a)). The opinion of the majority becomes the

opinion of all the team members. The team members are

then put back in the population and a new team is formed.

The process is repeated until all the agents in the population

have the same opinion, that is, when a consensus has been

reached.

In our work, we used Krapivsky and Redner’s model using

the majority and the expert rules as opinion aggregation rules

(also called decision rules). With the expert rule, agents

assume the opinion of a single agent, called expert (see

Figure 1 (b)). The criterion that we used to choose the agent

that plays the role of the expert is the overall experience, that

is, the number of times an agent has performed an action

(regardless of which action). The rationale is that an agent

with a greater experience is more likely to have executed

more often the fastest-to-execute action, thus it is reasonable

to adopt his opinion. When there is no expert in a team, the

majority rule is applied.

(a) Majority rule (b) Expert rule

Figure 1: Example application of the majority and the expert

rules on a group of three agents with different opinions

(represented by different color shades). Figure (a) shows

the outcome of the majority rule: team members adopt the

opinion of the majority. Figure (b) shows the outcome of

the expert rule: team members adopt the opinion of the local

expert, which is indicated by a frame around it.

B. Opinions as Actions

When the opinions of the agents represent actions that

they can perform, the opinion dynamics model described

above can be used as the basis of a decentralized decision-

making mechanism.

In swarm robotics, a robot’s opinion could be interpreted

as one or more actions. Examples of an opinion representing

a single action are whether to turn left or right at some

point in an environment, or whether to connect or not with

another robot. Examples of an opinion representing more

than one action could be whether to follow the rules for

moving with other robots in a formation, or whether to

follow the rules for assembling one shape or another for

a specific task. Two inherent properties of swarm robotics

systems that enable self-organized decision-making are: (i)

actions take time to perform, and (ii) several teams can

execute actions in parallel. To simulate these properties, we

model the time required to execute an action as a random

variable, and parallelism is simulated by creating k teams

instead of just one as in the original model. Actions are

executed immediately after the members of a team adopt

the opinion that results from the application of an opinion

aggregation rule. During execution, robots cannot participate

in the formation of a new team, and thus cannot change

opinion. When a team finishes executing an action, its

members become available again to form another team. The

process continues until the population reaches consensus,

the time allocated for the task is over, or the demand for the

task ceases to exist.

Figure 2 shows an example of the process just described.

In the example, the majority rule is used on a population

of 8 agents with 2 groups of 3 agents each. Note how the

population changes from a heterogeneous opinion state to a

homogeneous one that corresponds to the fastest-to-execute

action.

In [10], we showed that the dynamics of the system
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Figure 2: Example of the dynamics induced by the majority rule on a population of 8 agents with 2 groups of 3 agents

each. Teams choose and execute actions. The opinion represented in black is associated with action A, while the opinion

represented in light color is associated with action B. The two actions have a different execution time (action A is faster

to execute than action B, on average). In the bottom part of the figure, one can see the evolution of the population state

over time. First, in point (a), two teams of 3 agents each are formed at random and the majority rule is applied on each

one of them. Each team then executes the selected action. In point (b), a team finishes. In point (c) a new team is formed

from the set of free agents (busy agents cannot be considered when the selection occurs). The time it takes to form a team

is represented by the distance between points (b) and (c). After the application of the majority rule, the team performs the

agreed action (action A, in this case). In point (d), the other team finishes executing an action and a new team is formed

(point (e)). The decision rule is applied once more to decide which action to perform (action A, again). The opinion dynamics

process continues until the population reaches consensus. This figure is a slight variation of the one published in [10].

makes the population reach consensus on the fastest-to-

execute action. Positive feedback is responsible for this

result: Agents that choose the fast action finish before agents

that choose the slow action. Consequently, the rate at which

agents that choose the fast action spread their opinion is

higher than the rate at which agents that choose the slow

action do.

Reaching consensus on the fastest-to-execute action is

a necessary but not sufficient condition to maximize the

swarm’s performance. The robot swarm should also reach

consensus as fast as possible. Unfortunately, we observed

that with the aforementioned mechanism, the time necessary

for the swarm to reach consensus increases with the size of

the population if the number of teams concurrently executing

actions remains constant. Such a situation would not be rare

in environments that can hold only a certain number of teams

executing a task in parallel (e.g., when the robots must travel

through a corridor).

III. INCREMENTAL SOCIAL LEARNING

When multiple simultaneously adapting agents coexist,

learning is difficult. One of the reasons is interference,
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which occurs when agents adapt their behavior in response

to the observed behavior of other agents, who are in turn

changing their behavior as well. Thus, interference slows

down learning and hinders scalability.

The incremental social learning (ISL) [11] framework

tackles the problem of interference in systems composed of

multiple learning agents. ISL consists of two elements: (i)

an initially small population of agents that grows over time,

and (ii) a social learning mechanism upon agent addition.

A small population of agents learns faster than a large one

because of the reduced interference. Agents are added to the

population according to some predefined criterion. An agent

that is added to the population learns socially from those

that have been in the population for some time. This element

of ISL is attractive because new agents acquire knowledge

from more experienced ones without incurring the costs of

acquiring that knowledge individually. Thus, ISL allows the

new agents to save time that they can use to perform other

tasks. After the inclusion of a new agent, the population

needs to re-adapt to the new conditions, but the agents that

are part of it do not need to learn everything from scratch.

The algorithmic structure of the incremental social learn-

ing framework is outlined in Algorithm 1, where the envi-

ronment and the population of agents are initialized before

the main loop begins. While no agents are to be added to

the current population, the agents that belong to it learn

individually, or through some other mechanism (labeled “de-

fault”) which may include elements of social or centralized

learning. When the agent addition schedule dictates that a

new agent should join the current population, the new agent

first learns socially from a subset of the already experienced

agents. The agent addition schedule controls the rate at

which agents are added to the population. It also creates

time delays that allow the agents in the population to learn

from the interaction with the environment and with other

agents. In Algorithm 1, the environment is updated explicitly

in order to stress the fact that the environment might change

over time (although it does not need to be so). In a real

implementation, the environment can change at any time

and not necessarily at the end of a training round.

The actual implementation of the individual (or default)

and social learning mechanisms is independent of the in-

cremental social learning framework outlined above. Both

generic or application-specific mechanisms may be used. In

this paper, the default learning mechanism is the one de-

scribed in the previous section, whereby robots collectively

learn which action improves the performance of the system.

The social learning mechanism that we used is detailed in

Section IV-D.

IV. EVALUATION

In this section, we describe the methodology used to

evaluate the effectiveness of ISL when used with the

decision-making mechanism described in Section II. We also

Algorithm 1 Incremental social learning

/* Initialization */

t← 0
Initialize environment E

t

Initialize population of agents X
t

/* Main loop */

while Stopping criteria not met do

/* Agents are added according to a schedule */

if Agent addition criterion is not met then

X
t+1 ← ilearn(Xt,Et) /* Individual or default

learning mechanism */

else

Create new agent anew

slearn(anew,Xt) /* Social learning mechanism */

X
t+1 ← X

t ∪ {anew}
end if

E
t+1 ← update(Et) /* Update environment */

t← t + 1
end while

describe the simulation environment used as well as the

experimental setup. In Section IV-D we explain how ISL

was implemented.

A. Methodology

The goals of our evaluation are: (i) to determine whether

ISL improves the performance of the decentralized decision-

making mechanism described in Section II, and if improve-

ment is indeed achieved, (ii) to measure the magnitude of the

improvement and to determine the conditions under which

such an improvement occurs.

As mentioned in Section II, the performance of the system

can be measured as the number of times an action is

performed in a given amount of time. We adopt this measure

of performance in this paper. With it, we put emphasis on

the amount of useful work performed by the system. Given

two system settings, the one that lets agents execute more

actions in the same amount of time is preferred. Additionally,

we also look at the average number of times each agent in

the population executes each of the two available actions.

This measure allows us to observe whether ISL reduces the

time agents spend trying the available alternative actions as

discussed in Section III.

B. Simulation Environment

We used Monte Carlo simulation to carry out our experi-

ments. The execution times of the fast and slow actions were

modeled as two normally distributed random variables with

means µfast and µslow, and standard deviations σfast and σslow,

respectively. We study the system’s behavior as a function

of the action execution time ratio r = µslow/µfast. Different
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action execution time ratios were obtained by varying µslow.

The standard deviations σfast and σslow were kept constant.

Simulation proceeds as follows. Teams are formed at

random, the opinion aggregation rules are applied to each

team, and the resulting opinions are adopted by the involved

agents. The execution times for each team are drawn from a

normal distribution with the appropriate parameters and the

resulting number is rounded to the nearest integer. The time

steps counter runs until a team’s execution time expires. At

that point, a new team is formed and the process is repeated

until the maximum number of time steps is reached.

C. Experimental Setup

We ran simulations with two different maximum

population sizes (N ∈ {100, 1000}). Since a team

is composed of three agents, different numbers

of teams for each population size were used

(k100 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}, and k1000 ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, . . . , 90, 100, 200, 300}). The

initial opinion of each agent was set at random. Three

different execution time ratios were tried (r ∈ {2, 4, 8}).
The means and standard deviations of the action execution

times were set as follows, µfast = 10, µslow ∈ {20, 40, 80},
and σfast = σslow = 2. This value was chosen in order to

allow a clear separation of execution times between the

alternative actions. Each simulation was run for 10,000

time steps. 500 simulations were run for each combination

of parameters.

D. ISL implementation

In our implementation, we start with a population of size

N = 6, which means that we start with k = 2 teams. The

reason for this choice is that the system needs at least two

teams to execute actions concurrently, so that an execution

time difference, if it exists, can be detected. One team

would make the population converge, as demonstrated by

Krapivsky and Redner [13], but the consensus opinion would

be essentially random with our setup. The agent addition

schedule used is the fastest possible, that is, we add an

agent to the population every time step until the maximum

population size is reached. With this schedule, by the time

the first team finishes executing an action, new agents will

be ready to form a different team. If the number of teams

to build is greater than two, a new team is created as soon

as there are enough free agents. Once the maximum number

of teams is reached, no new teams are created even if the

population is still growing.

The second element of ISL is social learning when new

agents are created. In our experiments, when a new agent

is added to the population, its initial opinion is copied from

one random agent chosen from the set of free agents, that

is, the agents that are not engaged in an action execution. If

such agent does not exist, for example, when all agent are

active, the new agent is initialized at random.

V. RESULTS

The results of our simulations are reported in this section.

First, we look at the relative difference of executed actions

after a given number of time steps between the ISL-based

and the constant population size systems. We then look at

the exploration time savings due to the use of ISL.

A. Number of executed actions

The relative difference of the median number of executed

actions between ISL-based and constant population size sys-

tems per number of teams using the majority and expert rules

are shown in Figures 3 and 4, respectively. The normalizing

factor used is the expected number of executed actions if the

fastest-to-execute action was chosen from the beginning of

the simulation. This number is estimated as k·T/µfast, where

k is the number of teams simultaneously exploring the space

of alternatives, T is the maximum number of time steps

(in our case T = 10000), and µfast is the mean execution

time of the fastest-to-execute action. A positive difference

indicates that the difference is in favor of ISL-based systems.

If a constant population size system produces more action

executions than its ISL-based counterpart, the difference is

negative.

We analyze the results along the following influencing

factors:

• Action execution time ratio. A general trend is that the

greater the action execution time ratio, the stronger is

the effect of ISL on the performance of the system. This

phenomenon may be due to the small population size

with which the system begins. Contrary to what would

happen with a constant population size system where

many teams would choose to execute the slowest action,

with ISL only one team (on average) would execute

the slow action at the beginning. If the action execution

time ratio is large, that team will not have many chances

to influence other agents once it finishes. The result is

an accelerated convergence towards a consensus on the

fastest-to-execute action.

• No. of active teams. The effects of ISL diminish

as the number of active teams increases. In fact, the

differences due to changes in the value of the action

execution time ratio disappear when many teams are

active in the environment. Clearly, with large popula-

tions and many active teams, a small population cannot

execute as many actions as a large number of teams

working in parallel even if many of them execute the

slowest action.

• Maximum population size. The effects of ISL increase

as the size of the population increases. The reason is

that small populations converge rapidly as a result of

the rapid amplification of fluctuations in the opinions

of the population due to team formations. For example,

if N = 10, a single team can alter the opinion of 1/10
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(d) Majority rule: N =1,000 after 5,000 time steps
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Figure 3: The relative difference of the median number of executed actions between ISL-based and constant population size

systems per number of teams. The normalizing factor used is the expected number of executed actions if the fastest-to-execute

action was chosen from the beginning. These results were obtained using the majority rule as the opinion aggregation rule.

of the population, while if N = 1000 a team can only

alter the opinion of 1/1000 of the population.

• Available time. The accelerated convergence that re-

sults from the application of ISL proves more useful

if time constraints exist. This is true even with not-

so-large populations and a relatively large number of

active teams.

• Aggregation rule. The main trends described above do
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(f) Expert rule: N =1000 after 10,000 time steps

Figure 4: The relative difference of the median number of executed actions between ISL-based and constant population size

systems per number of teams. The normalizing factor used is the expected number of executed actions if the fastest-to-

execute action was chosen from the beginning. These results were obtained using the expert rule as the opinion aggregation

rule.

not change when the opinion aggregation rule changes.

This may be due to a reduced likelihood of finding

experts in teams.

B. Exploration time

It is usually assumed that social learning allows agents

that practice it to save time that otherwise they would spend
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learning things by themselves [14]. In this way, agents can

spend more time performing the actions that seem more

rewarding.

To see whether ISL allows agents to save the time

otherwise needed to try the different available actions (that

is, to learn individually), we proceeded as follows. During

each simulation run we counted the number of times each

agent executed each available action. The sum of these

“experiences” at the end of the simulation was then divided

by the maximum population size. The resulting quantities

were the average individual experience on each action. The

difference between these quantities served as a measure of

the balance between exploration and exploitation.

To have a direct comparison between ISL-based systems

and constant population size systems, we computed the ratio

of the median average individual experiences for each action

and for each execution time ratio. The results are shown in

Figure 5.

ISL reduces the time spent by agents exploring the space

of alternatives. The actual reduction depends on a number of

factors including the maximum population size, the number

of active teams in the environment, the action execution time

ratio, and the opinion aggregation rule used. In some cases,

the reduction is substantial. For example, with a constant

population size of 1000 agents using the expert rule and

10 active teams, agents execute 100 times more the slowest

action than agents in an ISL-based system. However, as the

number of active teams increases the advantage of using ISL

is reduced.

VI. RELATED WORK

We have shown that ISL can enhance the performance

of a system in which agents search collectively for the best

action in a set of alternatives. This is a task that the system

presented in this paper shares with optimization algorithms.

The difference, of course, is in the nature of the search

space. Thus, it is reasonable to apply ISL for enhancing the

performance of population-based optimization algorithms.

In fact, ISL has been applied to a family of swarm-based

optimization algorithms, namely, the particle swarm opti-

mization algorithm [15], [16], [17], and encouraging results

have been obtained [18], [19].

Regarding the decentralized decision-making mechanism

described in Section II, related work is the one based on

the simulation of the pheromone-laying and pheromone-

following behavior of some ant species [6]. For example,

in ant colony optimization algorithms [8], pheromones are

numbers associated with components of solutions to a com-

binatorial optimization problem. In robotics, pheromones

have been simulated with chemical substances [20], with

images projected on the ground [21], [22], with RFID

tags [23], with message-relay devices or beacons [24], [25],

[26], and with other techniques [27].

Recently, Parker and Zhang tackled the problem of se-

lecting the best of a set of alternatives with robots [28].

In their work, robots need to know whether there is a

sufficient number of robots in favor of one alternative before

committing to it. This is done through a quorum test that

depends on a parameter that the designer needs to set

before deployment. This is a critical issue because the first

alternative that is identified as dominant through the quorum

test will be the alternative chosen by the swarm. In our work,

the collective decision is the result of self-organization.

The work of Wessnitzer and Melhuish [29] is also related

to ours. In both works the majority rule is used for breaking

the symmetry of the decision problem (although they use

it in a completely different setting). However, we go a step

further by considering the effects of implicit time costs in

the robots’ actions.

VII. CONCLUSIONS AND FUTURE WORK

To design intelligent systems composed of many unintel-

ligent agents is one of the main goals of people working

in the swarm intelligence field. The main approach to meet

this goal has been to use self-organization principles, so far

producing many successful systems. However, in addition

to being functional, swarm intelligence systems must be

efficient if they are to be used for solving practical problems.

In this paper, a decentralized decision-making mechanism

based on an opinion dynamics model was used as subject of

study. Such a mechanism allows a large population of agents

to reach consensus on one of two possible choices. If these

choices are actions that take time to execute, the population

reaches consensus on the fastest to execute. However, when

large populations are involved, the time necessary for the

system to converge may make impractical to use it in some

applications. We tackle this problem by applying the in-

cremental social learning (ISL) framework. This framework

consists of a growing population size and a social learning

rule. By starting with a small population and increasing its

size over time, the underlying learning algorithm converges

faster. The social learning rule allows new agents to learn

from more experienced ones, thus saving exploration time.

Our simulation results show that through the application of

ISL, the performance of the decision-making mechanism

can be substantially improved in situations where a small

fraction of the population concurrently tries the different

available alternatives and when time constraints exist. This

result is very positive because in many situations reducing

the number of active agents without sacrificing the amount

of work performed may allow the spared agents to perform

other tasks.

Many possibilities exist for future research. Related to

the decision-making mechanism, strategies for allowing the

system to work on more than two alternatives should be

explored. Also of interest is to know whether the system

could be extended to handle sequences of actions with
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(d) Expert rule: N =1,000 after 10,000 time steps

Figure 5: Exploration vs. exploitation behavior. Each plot shows the ratio between the average individual experience obtained

with ISL and the average individual experience obtained with a constant population size. Figures (a) and (c) show the results

obtained using the majority rule. Figures (b) and (d) show the results obtained using the expert rule. The size of the gap

between the ratios for the fast and slow actions is a measure of the time agents saved exploring the space of alternatives

thanks to ISL. The solid line at ratio 1 represents the same measure but for constant population size systems.

interdependence between them. In the long term, the goal

is to design a self-organized mechanism that works with

multiple, sequential and conditional choices. Regarding ISL,

it is still to be defined what the features of a learning

problem/algorithm should be in order for ISL to speed

up convergence. Lastly, the decentralized decision-making

mechanism, and its combination with ISL should be tested

on a real swarm robotics system.
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Mauro Birattari, and Marco Dorigo acknowledge support

from the F.R.S.-FNRS of Belgium’s French Community.

REFERENCES

[1] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau, Self-Organization in Bio-
logical Systems. Princeton, NJ: Princeton University Press,
2003.

[2] I. D. Couzin and J. Krause, “Self-organization and collective
behavior in vertebrates,” Advances in the Study of Behavior,
vol. 32, pp. 1–75, 2003.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelli-
gence: From Natural to Artificial Systems. New York: Oxford
University Press, 1999.

251



[4] M. Dorigo and M. Birattari, “Swarm intelligence,” Scholar-
pedia, vol. 2, no. 9, p. 1462, 2007, http://www.scholarpedia.
org/article/Swarm intelligence.

[5] G. Beni, “From swarm intelligence to swarm robotics,” in
Swarm Robotics. SAB 2004 International Workshop, E. Şahin
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