
Tuning Algorithms for Tackling Large Instances:
An Experimental Protocol

Franco Mascia(B), Mauro Birattari, and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{fmascia,mbiro,stuetzle}@ulb.ac.be

Abstract. Tuning stochastic local search algorithms for tackling large
instances is difficult due to the large amount of CPU-time that testing
algorithm configurations requires on such large instances. We define an
experimental protocol that allows tuning an algorithm on small tuning
instances and extrapolating from the obtained configurations a para-
meter setting that is suited for tackling large instances. The key ele-
ment of our experimental protocol is that both the algorithm parameters
that need to be scaled to large instances and the stopping time that is
employed for the tuning instances are treated as free parameters. The
scaling law of parameter values, and the computation time limits on
the small instances are then derived through the minimization of a loss
function. As a proof of concept, we tune an iterated local search algo-
rithm and a robust tabu search algorithm for the quadratic assignment
problem.

Keywords: Automatic algorithm configuration · Scaling of
parameters · Iterated local search · Robust tabu search · Quadratic
assignment problem

1 Introduction

Many applications require the solution of very large problem instances. If such
large instances are to be solved effectively, the algorithms need to operate at
appropriate settings of their parameters. As one intriguing way of deriving
appropriate algorithm parameters, the automatic configuration of algorithms
has shown impressive advances [1]. However, tuning algorithms for very large
instances directly is difficult, a main reason being the high computation times
that even a single algorithm run on very large instances requires. There are two
main reasons for these high computation times. First, the computational cost
of a single search step scales with instance size; second, larger instances usually
require a much larger number of search steps to find good quality solutions. From
a theoretical side, the tuning time would scale linearly with the number of con-
figurations tested or linearly with the computation time given to each instance.
However, even if a limited number of algorithm configurations are tested during
the tuning of the algorithm, the sheer amount of time required to test a single

G. Nicosia and P. Pardalos (Eds.): LION 7, LNCS 7997, pp. 410–422, 2013.
DOI: 10.1007/978-3-642-44973-4 44, c© Springer-Verlag Berlin Heidelberg 2013



Tuning Algorithms for Tackling Large Instances 411

algorithm configuration on a very large instance makes it a problem of practical
relevance also for the tuning.

Here, we define a protocol for tuning a stochastic local search (SLS) algorithm
on small instances that allows us to make predictions on the behaviour of the
tuned SLS algorithm on very large instances. To do so, we optimise the value
of free variables of the experimental setting that allow us to make this kind
of extrapolations. To give a concrete example, in this paper we present a case
study on an iterated local search (ILS) [2,3] algorithm and a robust tabu search
(RoTS) [4] algorithm for the quadratic assignment problem (QAP). In the ILS
case, we intend to study the strength of the perturbation while in the case of
RoTS, we intend to define the appropriate tabu list setting (or better said,
finding an appropriate range for the tabu list length settings). Hence, we need
to identify the scaling law for these two variables in the respective algorithms to
very large instances.

For this we define an experimental protocol where we actually allow two
free variables in our experimental setting: a policy for the cut-off time and a
policy for the actual parameter configuration. The rationale of having also the
cut-off time as a free variable (in addition to the actual parameter setting) is
to find an appropriate cut-off time for training on small instances that allows
us to extrapolate the parameter configuration for a target cut-off time on a
very large instance. As an illustrative example, consider an ILS algorithm that
exposes a single parameter to the tuning, for example, the one that controls
the amount of perturbation of the current solution. This parameter acts on the
balance between intensification and diversification of the algorithm. A reasonable
assumption is that the amount of intensification and diversification determined
by the parameter value depends on the instance size, and more specifically, that
on very large instances the amount of diversification required is smaller due to
the fact that the search space to be explored is already large and the algorithm
will have to spend most of the time intensifying. In such cases a small cut-off time
when tuning on small instances, can lead to algorithm configurations that imply
stronger intensification and that therefore allow for a more realistic prediction
for very large instances.

The structure of the paper is as follows. Section 2 presents the formalisation
of the experimental setting. Section 3 presents a proof of concept with an ILS
algorithm and a RoTS algorithm for the QAP. In Sect. 4 we draw the conclusions.

2 Modelling

In the most general case, we want to define a protocol for tuning an SLS algo-
rithm on a set of small training instances s ∈ S and make predictions on the
behaviour of the tuned algorithm on a very large instance s�. There are two
free variables in our experimental setting. The first one is the maximum cut-off
time on the small instances, which we define as a policy t(s) that depends on
the instance size s. The second one is the parameter setting that we define as
the policy m̂(s; t(s)) that depends on the instance size and the cut-off time t(s).



412 F. Mascia et al.

Our aim is to optimise policies t(s) and m̂(s; t(s)) to predict a good parameter
setting m̂(s�;T �) when executing the algorithm on a very large instance s� with
cut-off time T �, where T � is the maximum time-budget available for solving the
target instance s�.

We cast this problem as a parameter estimation for the minimisation of
a loss function. More in detail, we select a priori a parametric family for the
policies t(s) and m̂(s; t(s)). The value defined by the policies for an instance
size s will be determined by the sets of parameters πt and πm̂. The number and
type of parameters in πt and πm̂ depend on the parametric family chosen for
the respective policies. We further constrain the policies by requiring that the
maximum cut-off time is larger than a specified threshold t(s) > δ and that the
policy defines a specific cut-off time for the target instance t(s�) = T �.

Very small instances should have a smaller impact on the optimisation of the
policies than have small or small-to-medium training instances. The latter are in
fact closer and more similar to the target instance size s�. Therefore, in the most
general case, we also use a weighting policy ω(s) of a specific parametric family
with parameters πω. The only constraint on this policy is that

∑
s∈S ω(s) = 1.

We define the loss function in Eq. 1 as the difference between Cm̂(s; t(s)),
which is the cost obtained when executing the algorithm with the parameter
setting determined by m̂(s; t(s)); and CB(s; t(s)), which is the cost function
obtained when executing the algorithm with the best possible parameter setting
B(s; t(s)) given the same maximum run-time t(s), and try to determine:

arg min
πω,πm̂,πt

∑

s∈S

ω(s) [Cm̂(s; t(s)) − CB(s; t(s))] . (1)

By finding the optimal settings for πω, πm̂, and πt, we effectively find the best
scaling of the examples in S, and the best cut-off time, which allow us to find
the policy that best describes how the parameter setting scales with the sizes in
S. The same policy can be used to extrapolate a parameter setting for a target
instance size s� and a target cut-off time T �.

3 A Proof of Concept

In this paper, we present a proof of concept in which we concretely use the
parameter estimation in Eq. 1 to tune an ILS algorithm and a RoTS algorithm
for the QAP [5].

The QAP models the problem of finding a minimal cost assignment between
a set P of facilities and a set L of locations. Between each pair of facilities there
is a flow defined by a flow function w : P ×P → R, and locations are at distance
d : L×L → R. To simplify the notation, flow and distance functions can be seen
as two real-valued square matrices W and D respectively. The QAP is to find
a bijective function π : P ∈ L that assigns each facility to a location and that
minimises the cost functional:

∑

i,j∈P

wi,jdπ(i),π(j).



Tuning Algorithms for Tackling Large Instances 413

3.1 Iterated Local Search

In our ILS algorithm for the QAP [3], after generating a random initial solution,
a first improvement local search is applied until a local minimum is reached.
Then the algorithm undergoes a series of iterations until the maximum cut-off
time is reached. At each iteration the current solution is perturbed by a random
k-exchange move. After the perturbation, an iterative improvement algorithm is
applied until a local optimum is reached. The new solution obtained is accepted
if and only if it improves over the current solution. A parameter k specifies the
size of the perturbation. It is the only parameter exposed to the tuning, and it
can assume values from 2 up to the instance size.

The Experimental Setting. For each size in S = {40, 50, . . . , 100}, we gen-
erate 10 random instances of Taillard’s structured asymmetric family [6]. We
then measure the average percentage deviation from the best-known solution for
each size s ∈ S, by running the ILS algorithm 10 times on each instance with
100 values of the perturbation parameter and by taking the mean value. The
maximum cut-off time for these experiments is set to a number of CPU-seconds
that is larger than a threshold maxt(s), which allows at least for 1000 iterations
of the ILS algorithm with the perturbation strength set to k = 0.5s.

We fix the scaling policy as ω(s) = s3
∑

s∈S s3 with no parameters πω to be
optimised. The parametric family of the parameter policy is the linear function
m̂(s; t(s)) = c+ms with the parameters πm̂ = (c,m). The cut-off time policy t(s)
is defined as a function t(s) = c0+c1s

α, with the constraint that t(s) > δ ∀s > s′,
where s′ is the smallest s ∈ S. The constant δ is set to 20 ms as the minimum
amount of time that can be prescribed for an experiment. Moreover, since we
pre-computed the cost function for a given maximum cut-off time, we set also
an upper-bound t(s) < 3 maxt(s). Finally, the policy has to pass through the
point (s�, T �), hence one of the parameters can be determined as function of the
others and πt can be restricted to the two parameters (c0, α):

arg min
c,m,c0,α

∑

s∈S

s3
∑

s∈S s3
[Cm̂(s; t(s)) − CB(s; t(s))] . (2)

To minimize the loss in Eq. 2 we implemented, for this case study, an ad hoc
local search procedure that estimates the parameter values within predefined
ranges. The local search starts by generating random solutions until a feasible
one is obtained. This initial random solution is then minimised until a local opti-
mum is reached. The algorithm is repeated until the loss function is equal to zero
or a maximum number of iterations is reached. To minimise the incumbent solu-
tion, the algorithm selects an improving neighbour by systematically selecting a
parameter and increasing or decreasing its value by a step l. For integer-valued
parameters l is always equal to 1. For real-valued parameters the value of l is
set as in a variable neighbourhood search (VNS) [10,11]. Initially, l is set to 1−6,
then as soon as the the local search is stuck in a local minimum, its value l is first
increased to 1−5, then 1−4 and so on until l is equal to 1. As soon as the local



414 F. Mascia et al.

search escapes the local minimum, the value of l is reset to 1−6. With this local
search, we do not want to define an effective procedure for the parameter esti-
mation, the aim here is mainly to have some improvement algorithm for finding
reasonable parameter settings for our policy and to present a proof of concept
of the experimental protocol presented in this paper. In the future, we plan to
replace our ad hoc local search with more performing local search algorithms for
continuous optimization such as CMA- ES [7] or Mtsls1 [8]. The parameters c
and m are evaluated in the range [−0.5, 0.5], and the parameter α in the range
[3, 4, . . . , 7]. The parameter c0 is initialised to maxt(s′), where s′ is the smallest
s ∈ S, and evaluated in the range [0, 3 maxt(s′)].

Results. For each target size s� and target cut-off time T �, we first let the t(s)
policy pass through the point (s�, T �), and then we find the optimal policies by
minimising Eq. 2. We optimise and test our policies for the target sizes s� 150,
200, 300, 400 and 500. For the minimisation of the loss function, we allow our
ad hoc local search algorithm to restart at most 25 times.

To evaluate the policies obtained, we compute two metrics: the loss obtained
by the predicted value and a normalised score inspired by [9]. The loss is the
difference between the cost obtained when running the algorithm with the para-
meter prescribed by the policy and the best parameter for the given size and
cut-off time. The normalised score, is computed as:

Eunif C(s; t(s)) − Cm̂(s; t(s))
Eunif C(s; t(s)) − CB(s; t(s))

,

where Eunif C(s; t(s)) is the expectation of an uniform choice of the parameter
setting. This score is equal to zero when the cost of the parameter prescribed
by the policy is the same as the one expected by an uniform random choice
of the parameter. It is equal to one when the cost of the prescribed parameter
corresponds to the cost attainable by an oracle that selects the best parameter
setting. Negative values of the score indicate that the prescribed parameter is
worse than what could be expected by an uniform random choice.

To calculate the two metrics, we pre-compute on the target instance sizes, the
values of the cost function for 100 possible parameter configurations. Then, to
evaluate the predicted values, we round them to the closest pre-computed ones.

In Fig. 1 we present the results for the largest of the test instances, with
s� = 500 and T � = 6615.44 CPU-seconds. The plot on top shows the cut-
off time policy with exponent α = 4 that passes through the target size and
target cut-off time. The second plot from the top shows the linear policy for the
parameter setting that prescribes a perturbation of size 177, while the optimal
perturbation value for the specified cut-off time is 171. The third plot shows the
loss. The predicted parameter is rounded to the closest precomputed one, which
is 176. The difference in the average deviation from the best known solution
amounts to 0.044977. The last plot at the bottom shows the normalised score
that for the prediction on target size 500 is equal to 0.841609. In Table 1 we
summarise similar results also for 150, 200, 300 and 400.



Tuning Algorithms for Tackling Large Instances 415

Fig. 1. Cut-off time policy, parameter policy for ILS, loss, and prediction quality on
target instance size s� = 500.



416 F. Mascia et al.

Table 1. Summary of the loss and normalised score on the target sizes of the policies
optimised for ILS.

s� T � Loss Normalised score

150 102.85 0.058957 0.880454
200 257.50 0.084706 0.814831
300 1 047.82 0.039883 0.887496
400 2 596.33 0.039318 0.881627
500 6 615.44 0.044977 0.841609

To further evaluate the policies obtained, we also compare them with a
dynamic setting of the parameter as in a VNS algorithm. This comparison is
relevant, as a dynamic variation of the perturbation size as propagated in VNS
would be a reasonable way of addressing the fact that a single best perturbation
size value is unknown for the very large instances. For each target size s� in our
test set, we run both algorithms 10 times on the 10 instances of size s�. Figure 2
shows the average deviation of the two algorithms with respect to the results
that are obtained with the a posteriori best parameter for the given size and cut-
off time. Also in this case, the policies obtained for the parameter setting lead
to results which are much better than what can be expected from a baseline
VNS algorithm. A stratified rank-based permutation test (akin to a stratified
version of the Mann-Whitney U test) rejects at a 0.05 significance level the null
hypothesis of no difference between the average deviations obtained with the
two algorithms.

To test for the importance of optimising also a policy for the cut-off time, we
tested a tuning protocol in which the parameter policy is the only free variable
being optimised. In this case we fixed the cut-off time to a number of CPU-
seconds that allows for 1000 steps of the ILS algorithm on the target instance
size s� with a perturbation size k = 0.5s. As shown in Table 2, on all target
instance there is a clear advantage of leaving the cut-off time policy as a free
variable of the experimental setting.

Table 2. Normalised score on the target sizes for ILS in the case in which the cut-off
time is optimised as a free variable of the experimental setting, and in the case in which
the cut-off time is fixed.

s� T � Cut-off time policy Fixed cut-off time

150 102.85 0.880454 0.742731
200 257.50 0.814831 0.769348
300 1 047.82 0.887496 0.661414
400 2 596.33 0.881627 0.606192
500 6 615.44 0.841609 0.701780



Tuning Algorithms for Tackling Large Instances 417

Fig. 2. Comparison between VNS and the parameter policy for ILS on target instances
s� at time T �.

3.2 Robust Tabu Search

The RoTS algorithm for the QAP [4] is a rather straightforward tabu search
algorithm that is put on top of a best improvement algorithm making use of
the usual 2-exchange neighbourhood for the QAP, where the location of two
facilities are exchanged at each iteration. A move is tabu, if at least the two
facilities involved are assigned to a location they were assigned in the last tl
iterations, where tl is the tabu list length. Diversification is ensured by enforc-
ing specific assignments of facilities to locations if such an assignment was not
considered for a rather large number of local search moves. In addition, an aspi-
ration criterion is used that overrides the tabu status of a move if it leads to a
new best solution. The term robust in RoTS stems from the random variation
of the tabu list length within a small interval; this mechanism was intended to
increase the robustness of the algorithm by making it less dependent on one
fixed setting of tl [4]. Hence, instead of having a fixed tabu list length, at each
iteration the value for the tabu tenure is selected uniformly random in the range
max(2,unif(μ − 0.1, μ + 0.1) · s)). Thus, μ is the expected value of the tabu list
length and it is the only parameter exposed to the tuning. In the original paper,
a setting of μ = 1.0 was proposed.

The Experimental Setting. For instance sizes S = {40, 50, . . . , 100}, we gen-
erate 10 Taillard’s instances with uniformly random flows between facilities and
uniformly random distances between locations [6]. For each parameter setting of
μ ∈ {0.0, 0.1, . . . , 2.5}, and for each instance size, we compute the mean devia-
tion from the best-known solution. The mean is computed over 10 runs of the
RoTS algorithm on each of the 10 instances. The maximum cut-off time for these
experiments is set to a number of CPU-seconds that allow for at least 100 · s
iterations of the RoTS algorithm.



418 F. Mascia et al.

We keep for this problem the same free variables and the same parametric
families we used for the ILS algorithm. The only difference is a further constraint
on the parameter policy m̂(s; t(s)) that is required to prescribe a positive value
for the parameter for all s ∈ S and on the target size s�. Since the problem
is more constrained and harder to minimise, we allow our ad hoc local search
algorithm to restart from at most 5000 random solutions. We optimise and test
the policies on target instance sizes 150, 200, 300, 400 and 500.

Results. As for the ILS algorithm, we evaluate the policies by measuring the
loss on the target instance sizes and by computing the normalised score. In Fig. 3
we present the results on the largest test instance s� = 500. On this instance,
the parameter policy prescribes a parameter setting of 0.040394 while the best
parameter for this instance size and cut-off time is 0.1. The loss amounts to
0.051162 and the normalised score is 0.653224.

Table 3 summarises the results on all test instances. On instance s� = 400
the parameter policy obtains a loss of 0 and a normalised score equal to 1. This
is due to the fact that for evaluating the policies, and hence knowing the best
parameter setting given the size and cut-off time, we pre-computed the cost of
a fixed number of parameter configurations. When computing the cost of the
parameter configuration prescribed by the policy, the value of the parameter
is rounded to the closest value for which the cost has been pre-computed. For
instance, for size s� = 400 the prescribed parameter value is 0.086961. This value
is rounded to 0.1, which corresponds to the best parameter setting.

To further evaluate the policy we evaluate it with a default setting of the
parameter that, in the case of RoTS, would be μ = 1.0. Figure 4 shows the aver-
age deviation obtained with the parameter setting prescribed by the policy and
the default parameter setting. The average deviation is computed with respect
to the solution quality obtained when using the best a posteriori parameter set-
ting given the instance size and the cut-off time. On all instances the policy
obtained for the parameter setting lead to results which are much better than
what we could expect from the default parameter setting. Also in this case, a
stratified rank-based permutation test rejects at a 0.05 significance level the null
hypothesis of no difference between the average deviations obtained with the
two algorithms.

Table 3. Summary of the loss and normalised score on the target sizes of the policies
optimised for RoTS.

s� T � Loss Normalised score

150 120.09 0.038592 0.827993
200 278.84 0.062164 0.697857
300 954.89 0.021499 0.861288
400 2 517.97 0 1
500 5 473.06 0.051162 0.653224



Tuning Algorithms for Tackling Large Instances 419

Fig. 3. Cut-off time policy, parameter policy for RoTS, loss, and prediction quality on
target instance size s� = 500.



420 F. Mascia et al.

Fig. 4. Comparison between the default value µ = 1.0 and the parameter policy for
RoTS on target instances s� at time T �.

To test the importance of optimising also a policy for the cut-off time, we
tested also for this problem a tuning protocol in which we optimise the parameter
policy while keeping the cut-off time fixed. In this case the cut-off time was fixed
to a number of CPU-seconds that allow for 100 · s steps of the RoTS algorithm.
On this problem there was no clear-cut result, in fact on instance sizes 300, 400,
and 500, with a fixed cut-off time policy the score remains the same; on instance
150 the score drops from 0.827993 to 0.354483; and on instance size 200 the score
increases from 0.697857 to 1.

4 Conclusions and Future Work

We presented an experimental protocol in which optimising the value of the free
variables of the experimental setting allows for tuning an SLS algorithm on a
set of small instances and extrapolating the results obtained on the parameter
configuration for tackling very large instances. We cast the problem of optimising
the value of the free variables as a parameter estimation for the minimisation
of a loss function. In the general formulation as well as in the proofs of concept
presented in this paper, we suggested as possible free variables: (i) a policy for
scaling the parameter configuration, (ii) a policy for selecting the cut-off time
when tuning the algorithm on the small instances, and (iii) a policy for weighting
the small instances during the minimisation of the loss function.

We presented a study on an ILS algorithm and a RoTS algorithm with one
parameter for the QAP. On both problems we obtained promising results, with
the extrapolated parameter setting being close to best a posteriori parameter
setting for the instances being tackled. We also showed that results obtained by
our method are much better than default static or dynamic settings of the para-
meters. We believe that our approach may be a viable way of tuning algorithms



Tuning Algorithms for Tackling Large Instances 421

for very large instances if SLS algorithms rely on few key parameters such as the
algorithms tested here.

One key element of our contribution is the optimisation of a policy for the
cut-off time that prescribes how long a configuration should be tested during
the tuning on small instances. We showed experimentally, that at least for the
ILS algorithm, optimising a cut-off time policy allows for better extrapolations
of the parameter setting on large instances.

As future work, we plan to extend the approach to algorithms with (many)
more than one parameter and to extrapolate to much larger instance sizes. In
both cases we also need to define an extended protocol for assessing the per-
formance of our method since pre-computing the cost function may become
prohibitive. Furthermore, an automatic selection of the parametric models, and
a comparisons to other recent approaches for tuning for large instances such
as [12] would be interesting.

Acknowledgments. This work was supported by the META-X project, an Action
de Recherche Concertée funded by the Scientific Research Directorate of the French
Community of Belgium. Franco Mascia, Mauro Birattari, and Thomas Stützle acknowl-
edge support from the Belgian F.R.S.-FNRS. The authors also acknowledge support
from the FRFC project “Méthodes de recherche hybrids pour la résolution de problèmes
complexes”. This research and its results have also received funding from the COMEX
project within the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Office.

References

1. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
2. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search: framework and appli-

cations. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Interna-
tional Series in Operations Research & Management Science, 2nd edn, pp. 363–397.
Springer, New York (2010)

3. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

4. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

5. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of eco-
nomic activities. Econometrica 25, 53–76 (1957)

6. Taillard, E.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Sci. 3(2), 87–105 (1995)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimiza-
tion. In: Proceedings of IEEE Congress on Evolutionary Computation, Piscataway,
NJ, IEEE, pp. 3052–3059 June 2008

9. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuris-
tics design: a machine learning perspective. Theor. Inform. Appl. 40(2), 353–369
(2006)



422 F. Mascia et al.

10. Mladenovic, N., Hansen, P.: Variable neighbourhood search. Comput. Oper. Res.
24(11), 71–86 (1997)

11. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001)

12. Styles, J., Hoos, H.H., Müller, M.: Automatically configuring algorithms for scaling
performance. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp.
205–219. Springer, Heidelberg (2012)


	Tuning Algorithms for Tackling Large Instances: An Experimental Protocol
	1 Introduction
	2 Modelling
	3 A Proof of Concept
	3.1 Iterated Local Search
	3.2 Robust Tabu Search

	4 Conclusions and Future Work
	References


