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Abstract. There are two reasons for parallelizing a metaheuristic if one
is interested in performance: (i) given a fixed time to search, the aim
is to increase the quality of the solutions found in that time; (ii) given
a fixed solution quality, the aim is to reduce the time needed to find a
solution not worse than that quality. In this article, we study the im-
pact of communication when we parallelize a high-performing ant colony
optimization (ACO) algorithm for the traveling salesman problem us-
ing message passing libraries. In particular, we examine synchronous
and asynchronous communications on different interconnection topolo-
gies. We find that the simplest way of parallelizing the ACO algorithms,
based on parallel independent runs, is surprisingly effective; we give some
reasons as to why this is the case.

1 Introduction

A system of n parallel processors is generally less efficient than a single n-times-
faster processor, but the parallel system is often cheaper to build, especially if we
consider clusters of PCs or workstations connected through fast local networks
and software environments such as Message Passing Interface (MPI). This makes
at the time of this research clusters one of the most affordable and adopted
parallel architectures for developing parallel algorithms.

The availability of parallel architectures at low cost has widened the interest
for the parallelization of algorithms and metaheuristics [1]. When developing
parallel population-based metaheuristics such as parallel genetic algorithms and
parallel ant colony optimization (ACO) algorithms, it is common to adopt the
“island model” approach [2], in which the exchange of information plays a major
role. Solutions, pheromone matrices, and parameters have been tested (see for
example [3–6]) as the object of such an exchange. In [3] solutions and pheromone
levels are exchanged, producing a rather high volume of communication which
requires a significant part of the computational time. In [6] the communication
of the whole pheromone matrix leads to a decrease in solution quality as well
as worse runtime behavior, while the exchange of best-so-far and elite solutions
produces the best results w.r.t. solution quality. In this paper, we study how
different interconnection topologies affect the overall performance when we want
to increase, given a fixed run time, the quality of the solutions found by a multi-
colony parallel ACO algorithm to solve the traveling salesman problem (TSP).



We use the TSP, an NP-hard problem [7], as a case study, that also has been a
central test bed in the development of the ACO field. For each interconnection
topology, we implement both synchronous and asynchronous communication. In
the first case, the sender waits for the receiver to exchange messages. In the
second case, the sender forwards the message and continues, not waiting for
the receiver. The communication strategy we adopt involves the exchange of
the best-so-far solutions every r iterations, after an initial period of “solitary”
search. The main advantage of using best-so-far solutions over pheromone ma-
trices is that less data has to be exchanged: for the smallest instance that we
consider, each pheromone matrix requires several megabytes of memory space,
while a solution requires only some kilobytes.

For this study, we use MAX−MIN Ant System (MMAS) [8]—currently
one of the best-performing ACO algorithms—as a basis for our parallel imple-
mentation. Our implementation of MMAS is based on the publicly available
ACOTSP code.1

Some research has been done on the parallelization of ACO algorithms, but,
surprisingly enough, only few works used as a basis for the study of the effec-
tiveness of the parallelization a high-performing ACO algorithm. An example is
[9], where the effect of parallel independent runs was studied.

The article is structured as follows. Section 2 describes the details of our im-
plementation of MMAS, and describes the different interconnection topologies
adopted. In Section 3, we report details about the experimental setup, and Sec-
tion 4 contains the results of the computational experiments. Finally, in Section 5
we discuss the limitations of this work and summarize the main conclusions that
can be drawn from the experimental results.

2 Parallel Implementation of MAX−MIN Ant System

ACO is a metaheuristic introduced in 1991 by Dorigo and co-workers [10, 11].
For an overview of the currently available ACO algorithms see [12]. In ACO,
candidate solutions are generated by a set of stochastic procedures called arti-
ficial ants that use a parametrized probabilistic model which is updated using
the previously seen solutions [13].

As said in Section 1, for this research, we use MMAS as a basis for our
parallel implementation. We extended the ACOTSP code by quadrant nearest
neighbor lists. To have a version that is easily parallelizable, we removed the
occasional pheromone re-initializations applied in the MMAS described in [8],
and we use only a best-so-far pheromone update. Our version also uses the 3-opt
local search.

We aim at an unbiased comparison of the performance produced by commu-
nication among multiple colonies on five different interconnection topologies. In
order to obtain a fair and meaningful analysis of the results, we have restricted
the approaches to the use of a constant communication rate among colonies to

1 http://www.aco-metaheuristic.org/aco-code/public-software.html



exchange the best-so-far solutions. A colony injects in his current solution-pool a
received best-so-far solution if and only if it is better than its current best-so-far
solution, otherwise it disregards it. In the following, we briefly and schematically
describe the principles of the communication on each interconnection topology
we considered. For each topology, with the exception of the Parallel independent
runs, we have two versions: a first one, where the communication is synchronous,
and a second one, where the communication is asynchronous. The topologies we
studied are:

Fully-connected. In this parallel model, k colonies communicate with each
other and cooperate to find good solutions. One colony acts as a master and
collects the values of the best-so-far solutions found by the other k − 1 colonies.
The master then broadcasts to all colonies the identifier of the colony that owns
the best solution among all k colonies so that everybody can get a copy of this
solution. We consider a synchronous and an asynchronous implementation of
this model identified by SFC and AFC, respectively, in the following.

Replace-worst. This parallel model is similar to the fully-connected, with the
exception that the master identifies also the colony that owns the worst solution
among the k colonies. Instead of broadcasting the identity of the best colony,
the master sends only one message to the best colony, containing the identity of
the worst colony, and the best colony sends its best-so-far solution only to the
worst colony. We consider a synchronous and an asynchronous implementation
of this model identified by SRW and ARW, respectively, in the following.

Hypercube. In this model, k colonies are connected according to the hypercube
topology (see [14] for a detailed explanation of this topology). Practically, each
colony is located on a vertex i of the hypercube and can communicate only with
the colonies that are located in the vertices that are directly connected to i.
Each colony sends to each of its neighbors its best-so-far solution. We consider
a synchronous and an asynchronous implementation of this model respectively
SH and AH in the following.

Ring. Here, k colonies are connected in such a way that they create a ring. We
have implemented a unidirectional ring, so that colony i sends his best-so-far
solution only to colony [(i+1) mod k], and receives only the best-so-far solution
from colony [(i−1+k) mod k]. We consider a synchronous and an asynchronous
implementation of this model, called SR and AR in the following.

Parallel independent runs. In this model, k copies of the same sequential
MMAS algorithm are simultaneously and independently executed using differ-
ent random seeds. The final result is the best solution among all the k runs. Using
parallel independent runs is appealing as basically no communication overhead



is involved and nearly no additional implementation effort is necessary. In the
following, we identify the implementation of this model with the acronym PIR.

These topologies allow us to consider decreasing communication volumes,
moving from more global communication, as in fully-connected, to more local
communication, as in ring, to basically no communication, as in parallel inde-
pendent runs.

3 Experimental Setup

As said in Section 1, all algorithms are based on the ACOTSP software, which
is coded in C. The parallel algorithms add, w.r.t. the sequential code, the com-
munication capability, using MPI libraries. Experiments were performed on a
homogeneous cluster of 4 computational nodes running GNU/Linux Debian 3.0
as Operating System and LAM/MPI 7.1.1 as communication libraries. Each
computational node contains two AMD OpteronTM 244 CPUs, 2 GB of RAM,
and one 1 Gbit Ethernet network card. The nodes are interconnected through a
48-ports Gbit switch.

The initial computational experiments are performed with k = 8 colonies of
25 ants each that exchange the best-so-far solution every 25 iterations, except
for the first 100 iterations.

We consider 10 instances from TSPLIB [15] with a termination criterion
based on run time, dependent on the size of the instance, as reported in Table 1.
For each of the 10 instances, 10 runs were performed. In order to have a refer-
ence algorithm for comparison, we also test the equivalent sequential MMAS
algorithm. We considered two cases: in the first one (SEQ), it runs for the same
overall wall-clock time as a parallel algorithm (8-times the wall-clock time of a
parallel algorithm), while in the second one (SEQ2), it runs for the same wall-
clock time as one CPU of the parallel algorithm. It is reasonable to request that
a parallel algorithm performs at least not worse than SEQ2 within the compu-
tation time under consideration.

Table 1. Instances with run time in seconds and average number of total iterations in
a run done by the sequential algorithm SEQ2

instance run time SEQ2 average iterations

pr1002 900 11831
u1060 900 10733

pcb1173 900 10189
d1291 1200 11325

nrw1379 1200 8726
fl1577 1500 15938

vm1748 1500 6160
rl1889 1500 6199
d2103 1800 12413
pr2392 1800 8955



The parameters of MMAS are chosen in order to guarantee robust perfor-
mance over all the different sizes of instances; we use the same parameters as
proposed in [8], except for the pheromone re-initializations and the best-so-far
update, as indicated in Section 2.

To compare results across different instances, we normalize them with respect
to the distance from the known optimal value. For a given instance, we denote
as cMH the value of the final solution of algorithm MH, and copt the value of the
optimal solution; the normalized value is then defined as

Normalized Value for MH =
cMH − copt

copt

· 100. (1)

This normalization method provides a measure of performance that is indepen-
dent of the values of the different optimal solutions, allowing us to aggregate
results form different instances.

4 Results

As stated in Section 2, we aim at an unbiased comparison of the performance
produced by communication among multiple colonies on different interconnec-
tion topologies. The hypothesis is that the exchange of the best-so-far solution
among different colonies speeds up the search for high quality solutions, having a
positive impact on the performance of the algorithms. In order to test the effects
of communication, we implement versions of MMAS algorithm that differ only
in the communication behavior. This setup allows us to use statistical techniques
for verifying if differences in solutions quality found by the algorithms are sta-
tistically significant. Figure 1 contains the boxplot of the results2 grouped by
algorithm over all instances after the normalization described in Section 3. The
boxplot indicates that, on average, all the parallel models, except SFC, seem able
to do better than SEQ and SEQ2, but that the best performing approach is PIR.
We check whether the differences in performance among the parallel models with
exchange of information and PIR are statistically significant. The assumptions
for a parametric method are not met, hence we rely on the Wilcoxon rank sum

test [16] with p-values adjusted by Holm’s method [17].
As can be seen from Table 2, the differences in performance of all the parallel

models with information exchange from those of PIR are statistically significant;
this confirms that PIR is the best performing approach under the tested con-
ditions. We also check whether the differences in performance are statistically
significant once we group the algorithms by interconnection topology, using again
the Wilcoxon test with p-values adjusted by Holm’s method and we report the
results in Table 3. Differences in performance among interconnection topologies
are not statistically significant.

Even though the boxplot indicates that parallel algorithms achieve, on aver-
age, better performance than the sequential ones, the impact of communication

2 We refer the reader interested in the raw data to the URL:
http://iridia.ulb.ac.be/supp/IridiaSupp2006-001/
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Fig. 1. Aggregate results over all instances. Boxplot of normalized results

Table 2. p-values for the null hypothesis “The distribution of the % distance from
optimum of solutions for all instances is the same as PIR”. The alternative hypothesis
is that “The median of the PIR distribution is lower”. The significance level with which
we reject the null hypothesis is 0.05

SFC AFC SRW ARW SH AH SR AR

5.4e-4 0.01 0.02 0.02 1.2e-3 0.02 0.02 0.02

Table 3. p-values for the null hypothesis “The distributions of the % distance from
optimum of solutions for all instances are the same”. The significance level with which
we reject the null hypothesis is 0.05

FC RW H

RW 0.55 - -
H 1 1 -
R 0.55 1 1
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(b) d2103

Fig. 2. Run-time distribution over 80 independent trials of the sequential MMAS
algorithm for the instances pr1002 and d2103

on performance seems negative. One reason might be that the run times are
rather high, and MMAS easily converges in those times. PIR can count on
multiple independent search paths to explore the search space, reducing the
effects of the “stagnation” behavior. In fact, the other parallel algorithms accel-
erate the convergence toward a same solution, due to the frequent exchange of
information, as can be verified by the traces of the algorithms’ outputs.

Run time distributions. To examine the possibility of the “stagnation” be-
havior, we analyze the run-time distribution (RTD) of the sequential algorithm.
A qualified run-time distribution measures the distribution of the time a stochas-
tic local search algorithm requires to reach a specific target of solution quality,
for example the optimal solution value. In Figure 2 we give plots of the mea-
sured RTDs for reaching the known optimal solution value for the two instances
pr1002 and d2103. As explained in [18], the exponential distribution that is given
in these plots indicates that this version of MMAS may profit from algorithm
restarts (essentially, restarting after an appropriately chosen cutoff time, one
can force the empirical RTD to follow the exponential distribution due to its
statistical properties) and, hence, this is an indication of stagnation behavior.
This explains to a large extent the good perfomance of parallel independent run
given that PIR can count on multiple independent search paths to explore the
search space, reducing the effects of the stagnation behavior.

Performance for reduced run-times. In order to check if our doubt on the
“stagnation” behavior has some fundament, we re-analyze the results considering
run times that are 1/4, 1/16, and 1/64 of the values reported in Table 1, showing
the resulting boxplots in Figure 3. We observe that the more we reduce the
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(a) Full time
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(b) Reduced time - 1/4
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(c) Reduced time - 1/16

SEQ SEQ2 PIR SFC AFC SRW ARW SH AH SR AR
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(d) Reduced time - 1/64

Fig. 3. Aggregate results over all instances. Boxplots of normalized results restricted
to values in [0,1]. (a) full time is used; (b) run time reduced to 1/4 of full time; (c) run
time reduced to 1/16 of full time; (d) run time reduced to 1/64 of full time
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Fig. 4. Aggregate results over all instances. Boxplot of normalized results

run time, the smaller are the differences between the performance of the SEQ
algorithm and the others, up to the reduced time of 1/64, for which SEQ performs
on average better than all the parallel models (remember that SEQ has a run
time that is 8-times the wall-clock time of a parallel algorithm).

Frequency of communication. As indicated, an apparent problem of our
communication scheme is that communication is too frequent. To better under-
stand the impact that the frequency of communication has on performance, we
change the communication scheme to an exchange every n/4 iterations, except
during the first n/2, where n is the size of the instance. We test this new com-
munication scheme on the parallel models replace-worst (SRW2) and ring (SR2).
Figure 4 shows the boxplots of the results. Once more, we rely on the Wilcoxon
test with Holm’s adjustment to verify whether the differences in performance are
statistically significant. With the adoption of the new communication scheme,
under the same experimental conditions, we are not able to reject the null hy-
pothesis “The distributions of the % distance from optimum of solutions for all
instances is the same as PIR” with a significance level of 0.05, given that the
p-values relative to SRW2 and SR2 are both equal to 0.30. The reduced fre-
quency in communication has indeed a positive impact on the performance of
the two parallel algorithms SRW2 and SR2, even though this is not sufficient to
achieve better performance w.r.t parallel independent runs. We strongly believe
that to achieve better results than PIR we need to develop a more sophisticate



communication scheme, that is dependent not only on the instance-size, but also
on the run time.

5 Conclusions

The main contribution of this paper is the study of the impact of communica-
tion among multiple colonies interconnected with various topologies on the final
solution quality reached. We initially restricted the algorithms to the use of a
constant communication rate among colonies to exchange the best-so-far solu-
tions. For each topology, with the exception of the parallel independent runs,
we have developed two versions: a first one in which the communication is syn-
chronous, and a second one in which the communication is asynchronous. We
have shown that all the parallel models perform on average better than the
equivalent sequential algorithms (SEQ and SEQ2).

As stated in Section 2, to have a version that was easy to parallelize, we
removed from the MMAS implementation the occasional pheromone re-initia-
lization and we used only a best-so-far pheromone update. These modifications
result in a stagnation behavior of the sequential algorithm; this stagnation be-
havior can be avoided to a large extent by parallel independent runs, which
also explains its overall good behavior, biasing the performance in favor of PIR
over all the other parallel models. We believe that better performance than PIR
can be obtained by the parallel models either adding the restarting feature, or
implementing communication schemes that avoid early convergence. This sec-
ond approach could be achieved implementing the acceptance of solutions from
other colonies only when they “differ” less than a certain number of components,
leading to the creation of groups of colonies that search in different areas of the
search space, or by exchanging the solutions with a frequency that depends on
both, instance size and run time.
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