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Abstract—Due to the lack of systematic empirical analyses
and comparisons of ideas and methods, a clearly established
state of the art is still missing in the optimization-based design
of robot swarms. In this paper, we propose an experimental
protocol for the comparison of fully-automatic design methods.
This protocol is characterized by two notable elements: a way
to define benchmarks for the evaluation and comparison of
design methods, and a sampling strategy that minimizes the
variance when estimating their expected performance. To define
generally applicable benchmarks, we introduce the notion of
mission generator: a tool to generate missions that mimic those
a design method will eventually have to solve. To minimize the
variance of the performance estimation, we show that, under
some common assumptions, one should adopt the sampling
strategy that maximizes the number of missions considered—a
formal proof is provided as supplementary material. We illustrate
the experimental protocol by comparing the performance of two
off-line fully-automatic design methods that were presented in
previous publications.

Index Terms—Evolutionary robotics, experimental methodol-
ogy, off-line automatic design, optimization-based design, swarm
robotics.

I. INTRODUCTION

AROBOT swarm is a decentralized system in which indi-
vidual robots with local sensing and communication ca-

pabilities cooperate to accomplish a common mission [1], [2].
As a robot swarm cannot be programmed as a whole, obtaining
a desired collective behavior can only be achieved by design-
ing the appropriate behavior of the individual robots, which
is made complex by the numerous robot-robot and robot-
environment interactions that characterize the functioning of a
swarm. Although methodologies exist to guide a designer in
the development of control software for specific missions [3]–
[10], no generally applicable one has been proposed so far.
Therefore, in most cases, designers proceed by trial and error
and the design process is costly, time consuming, and not
repeatable [7], [11].

Optimization-based design is a promising alternative. In this
approach, an optimization algorithm searches for the instance
of control software of the individual robots that maximizes a
mission-dependent measure of the collective performance of
the swarm—or, at least, for an instance that scores sufficiently
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well with respect to the given performance measure. The
archetypal example of optimization-based design method is the
application of evolutionary robotics to swarm robotics: robots
are controlled by neural networks whose parameters and/or
topologies are optimized by an evolutionary algorithm [12],
[13].

Optimization-based design methods are typically catego-
rized as either on-line [14] or off-line [15]. In on-line design,
the design process takes place while the robots operate in
the environment. In off-line design, it happens prior to the
deployment of the robots, typically based on computer simu-
lations. Due to the risk of damaging robots and environment
with sub-optimal control software during the early phases of
the design process, the relative small search space they can
explore, and the limitation of their applications to scenarios
in which the swarm can compute its collective performance,
on-line methods appear to be more appropriate to adjust the
parameters of an existing solution rather than to create one
from the ground up [16]. Designing control software off-line
on the basis of simulations does not suffer from the drawbacks
illustrated above, and therefore appears to be a more effective
and viable approach than on-line design. Unfortunately, off-
line methods are faced with a major problem that is yet to
be solved: the reality gap [17]–[19]. The reality gap is the
intrinsic difference between simulation and reality. Due to the
reality gap, control software developed using off-line methods
often performs poorly in reality, despite giving good results
in simulation [20]. As a consequence, executing automatically
generated control software on physical robots is a mandatory
step in the assessment of an off-line design method.

In addition to the on-line/off-line categorization of
optimization-based design methods, another categorization
that distinguishes between semi-automatic and fully-automatic
design methods has recently been discussed [21]. In semi-
automatic design, the design method is used as a tool by
a human expert who is allowed to adapt the method to the
mission at hand so that the produced solution satisfies the
requirements. In fully-automatic design, the design method
does not undergo any per-mission manual modifications. Due
to the difference in operational functioning between semi-
and fully-automatic design, they address different contexts of
application. Semi-automatic is best suited for complex, one-
of-a-kind missions for the solution of which it is reasonable
to expect that sufficient time and resources can be allotted
to allow human designers to iteratively adjust the functioning
of a design method based on evaluations of control software
produced by this method. The relative high cost of this human-
in-the-loop process is justified by the exceptional nature of the
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missions to be solved. Fully-automatic is best suited when one
must solve multiple missions repeatedly, one after another, in
such a way that the presence of a human expert in the design
loop would be unfeasible due to monetary and time constraints.
In this fully-automatic context, a design method is therefore
expected to be able to design control software for any mission
belonging to a given class of mission without any intervention
of a human designer on a per-mission basis [21].

Many studies have been conducted in optimization-based
design of robot swarms, and a number of promising meth-
ods have been proposed—see for Birattari et al. [21] for
a recent overview and further references. Yet, a solid and
appropriate empirical practice is still missing [15]. In fact,
with very few exceptions, most studies introduce novel ideas
or methods without comparing them with previously published
ones. The lack of a well-established and consistently applied
empirical benchmarking practice hinders the progress of the
optimization-based design of robot swarms. It translates into
the absence of a clear state of the art, which eventually hinders
the practical exploitation of the best ideas proposed so far and
their further development [22].

In this paper, we propose an experimental protocol for
the evaluation and comparison of fully-automatic methods1.
More precisely, we focus on two elements that are crucial in
the definition of such protocol: publicly shared benchmarks
and a sampling strategy that minimizes the variance of the
performance estimation. Benchmarks are decisive tools in
the identification of strengths and weaknesses of a method,
and they promote the consistent application of meaningful,
coherent, and well-defined evaluation criteria. Conceptually,
a benchmark for the evaluation of fully-automatic design
methods is a (possibly infinite) class of missions: a set of
missions associated with a probability measure that determines
their relative frequency of appearance. A class of missions
might comprise both missions that are of different types (i.e.,
that differ by the nature of their goals), and missions of
the same type that differ by minor variations. These minor
variations can be at the level of the environment in which
the swarm operates (e.g., different density of robots, presence
of a reference point, number of points of interest), or at
the level of the swarm itself (e.g., number of robots, initial
configuration of the swarm). For example, two missions are
of different type if the goal of one is for the robots to
aggregate on a point of interest, and the one of the other
is to gather objects initially scattered in the environment.
For example, two missions of the same type differ in minor
variations if, ceteris paribus, a task is to be accomplished in
an environment in which a reference point such as a light
source is present, and in an environment without a reference
point. Although the difference between the two given missions
might be qualified as minor, it can be sufficiently important
that the two missions benefit from a tailored design. In the
example, a design method is likely to exploit the reference
point to produce control software that enables the robots to

1It should be noted that, although we present the experimental protocol in
the context of swarm robotics—which is our specific domain of expertise—the
reasoning also applies to other contexts where automatic design is performed
(e.g., single robot systems, automatic decision algorithms).

orient themselves in the environment and find the points of
interest faster than in the case where no reference point is
present. An operational definition of a class of missions can be
given in the form of a mission generator: a computer program
that generates missions belonging to the class at hand. In other
terms, running a mission generator is effectively a way to
sample the corresponding class of missions—that is, selecting
one of the missions of the set, according to the associated
probability measure, and independently of the design method
to which it applies. In this paper, we illustrate the concept of
mission generator by presenting one we named MG 1, short for
mission generator 1. We use MG 1 in an illustrative study in
which we compare two previously proposed design methods.

Concerning the second notable element of the protocol we
propose, that is, the sampling strategy, it should be noted
that the performance of a fully-automatic design method is
a stochastic variable that is affected by three sources of
randomness: the mission to be solved, the realization of the
design process, and the execution on the robots of the instance
of control software produced by the design process itself.
Taking for granted that multiple runs are needed to reduce
the variance of the estimation of the expected performance,
the questions that arise are: How many missions should one
consider? How many design processes should one run on each
mission? How many times should one execute each of the
instances of control software produced? The obvious answer
would be: the more the better! Indeed, by increasing indef-
initely the number of missions, number of design processes
performed on each mission, and the number of evaluations of
each instance of control software generated, the variance of the
estimation would converge to zero. However, in practice one
has typically (if not always) to face practical constraints that
limit the number of experiments that can be performed. Indeed,
running experiments with robots is time consuming and could
demand a large amount of resources. In this paper, we argue
that, in order to estimate the expected performance of a fully-
automatic design method under the assumption that a limited
number of executions of the control software on the physical
robots can be performed (and under a few other technical
assumptions to be detailed in the following), the sampling
strategy to be adopted to minimize the variance of the estimate
is the one that maximizes the number of different missions
considered. The sampling strategy therefore implies that one
design process should be run on each mission considered and
that the resulting instance of control software is executed once
on the physical robots. An intuitive explanation of this claim is
given in the body of the paper, and a formal proof is provided
as supplementary material.

It is our contention that the protocol we propose here is cru-
cial for the development of the optimization-based design of
robot swarms into a mature scientific domain: it will contribute
to make clear and objective comparisons between different
methods that will allow to establish an objective state of the
art. Eventually, this will promote the best ideas proposed so far
and the elaboration of new ones. This protocol is to be adopted
when one evaluates design methods in the fully-automatic
context and thus wants to estimate their performance over a
whole class of missions rather than over specific ones [15],
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[21]. The two components of the protocol are fundamentally
complementary: the sampling strategy recommends to evaluate
a design method on the maximal number of missions possible,
and the notion of mission generator allows one to sample as
many missions as desired.

The remainder of the paper is organized as follows: in
Section II, we describe the implementation of the mission
generator MG 1; in Section III, we elaborate on the sampling
strategy that minimizes the variance of the estimated perfor-
mance of a fully-automatic design method; in Section IV, we
present an illustrative experiment; and in Section V, we share
our concluding thoughts. In the illustrative experiment pre-
sented in Section IV, we demonstrate the concepts introduced
by evaluating and comparing two previously proposed fully-
automatic design methods on 30 missions. We evaluate the two
methods using the sampling strategy described in Section III
on the 30 missions generated by the mission generator MG 1
described in Section II.

II. A MISSION GENERATOR

In this section, we present MG 1, a generator of missions
for robot swarms. A mission generator samples missions from
a class of missions according to the associated probability
measure. The class of missions is defined on the basis of
the capabilities of a robotic platform—which are described
by a reference model that formally characterizes the sensors
and actuators of the platform [23]. Indeed, it would not be
reasonable to consider a class of missions containing ground
missions if aquatic robots are expected to perform samples
of this class. The probability measure can be tuned so as
to mimic a realistic frequency of appearance of deployment
conditions. For example, based on previous rescue missions
at sea, it could be determined that 80% were performed when
the sea swell was high, 15% when it was moderate, and 5%
when it was low. These probabilities can be used to define a
generator so that sampled missions reflect the conditions that
the robot swarm will face when deployed, and therefore enable
a realistic estimation of the expected performance of a design
method.

MG 1 samples missions defined on the basis of the ca-
pabilities of an enhanced version of the e-puck robot [24].
This version of the e-puck robot is capable of perceiving a
light source, the presence of nearby obstacles, and the gray-
scale color of the ground directly below its body. It can
also detect the presence and estimate the relative position of
neighboring peers. These capabilities are formally described
by the reference model RM 1.1 [25] reproduced in Table I
for the reader’s convenience. The missions take place in an
enclosed area surrounded by walls—what we call an arena.
The ground of the arena is gray, with some areas being black or
white. Obstacles can be present within the arena, and a unique
source of light is positioned right outside of the arena’s walls.
The light source is either on or off for the whole duration of
the mission. Figure 1 illustrates the possible arenas that can
be generated by MG 1 and provides details about the possible
positions and sizes of the colored areas (i.e., black or white)
and the obstacles.

TABLE I: Reference model RM 1.1 [25] of the version of
the e-puck robot [24] enhanced with additional hardware
modules [26]: the Overo Gumstix, the ground sensor, and the
range-and-bearing module [27]. The original version of the
e-puck can detect obstacles and measure the intensity of the
ambient light. With the additional modules, the e-puck can
detect the gray-level color of the floor situated under its body,
and detect the number n and estimate the relative position of
neighboring peers situated in an approximate range of 0.70 m.
The range-and-bearing vector Vd =

∑n
m=1( 1

1+rm
,∠bm),

where rm and ∠bm are range and bearing of neighbor m,
respectively, points to the aggregate position of the neighbor-
ing peers. If m = 0, then Vd = (1,∠0). The variables are
updated every control cycle—that is, every 100 ms.

sensor/actuator variables
proximity prox i ∈ [0, 1], with i ∈ {0, 1, ..., 7}
light lighti ∈ [0, 1], with i ∈ {0, 1, ..., 7}
ground groundi ∈ {white, gray, black}, with i ∈ {0, 1, 2}
range-and-bearing n ∈ {0, 1, ..., 19}

Vd ∈ ([0.5, 20] , [0, 2π) rad)

wheels vl, vr ∈ [−0.12, 0.12]ms−1

MG 1 can instantiate missions of three types: FORAGING,
HOMING, and AGGREGATION-XOR. To ensure the soundness
of the instances created, we implemented within MG 1 several
mission-specific conditions that guide the configuration of the
arenas. Independently of the type of mission to be accom-
plished, MG 1 selects the number of robots in the swarm,
their initial distribution, and the duration of the mission. We
considered three families of initial random distribution for the
robots: (i) uniform, the robots are deployed anywhere in the
arena; (ii) one-side, the robots are deployed on one half of the
arena, either close or far from the light and independently of
whether the latter is on or not; and (iii) not-on-colored-areas,
the robots are deployed anywhere in the arena, but not on the
black or white areas. Table II summarizes the main parameters
of MG 1; the types of missions and their respective conditions
are described in the following subsections.

We created MG 1 as an open-source library2 for the ARGoS
simulator [28]. It should be noted that the library we share
does not only implement MG 1, but a whole family of mission
generators. Indeed, by modifying the parameters of MG 1,
such as the frequency of appearance of the missions, one
can create a different mission generator that would sample
a different class of missions.

A. FORAGING

The robots must retrieve virtual items from food sources to
nest areas. A robot is deemed to pick up an item when it enters
an area representing a food source, and drop the item when
it then enters an area representing a nest. There can be up to
two nests and up to three food sources. The nests areas can
only be placed on the axis perpendicular to the light source
depicted as the yellow dotted-and-dashed line in Figure 1. The

2Available as a GitHub repository: https://github.com/demiurge-project/
MissionGeneratorMG1
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Fig. 1: Schemes of the possible arenas that can be generated by MG 1, with placeholders for the possible environmental
elements. The triangle arena covers an area of 2.5 m2, the square one an area of 3.76 m2, and the hexagonal one an area of
4.3 m2. The dotted circles and portions of circles represent placeholders for possible black or white areas. The red circles
are placeholders for circular areas of 0.3 m radius, the green ones for circular areas of 0.15 m radius, and the blue ones are
placeholders for portions of circular areas of 0.40 m radius. The white dashed rectangles represent placeholders for possible
obstacles whose height and width are fixed to 0.07 m and 0.026 m, respectively. The length of these obstacles depend on the
shape of the arena: 0.25 m, 0.45 m, and 0.35 m for the triangle, square, and hexagonal one, respectively. The yellow sphere
represents the light source. For missions of type FORAGING, the possible nest areas are restricted to the circles positioned on
the axis of the light source pictured by the yellow dashed-and-dotted line.

food sources can be placed all around the arena. The size
and positions of the areas are selected randomly with equal
probability. MG 1 ensures that the areas representing the nests
and the ones representing the food sources are of different
color (i.e., if the nest is white, the food sources are black,
and vice versa). The objective function to be maximized is
FFORAGING = I , where I is the number of items dropped in the
nest areas after the duration of the mission.

B. HOMING

The robots must aggregate on a black or white area desig-
nated as their home. MG 1 places between one and three areas
in the arena: one for the home, and possibly two others to serve
as distractions. MG 1 ensures that the area designated as the
home is large enough so as to accommodate all the robots,
and that the color of the distraction areas differs from that
of the home area. There are two possible objective functions
for this type of mission: anytime and endtime. The two
objective functions are to be maximized and depend on Nhome,
the number of robots located in the aggregation area. With
anytime the performance is measured by the objective function
F ′

HOME =
∑T/100ms

t=1 Nhome(t), where T is the duration of the
mission (in seconds) and 100 ms is the period at which Nhome

is evaluated. With endtime the performance is measured once,
at the end of the mission, and the objective function is
F ′′

HOME = Nhome.

C. AGGREGATION-XOR

The robots must select and aggregate on a single area among
multiple ones present in the arena. MG 1 configures the arena
to have two or three aggregation areas of the same color, large
enough so that all robots can stand on each of them. If two

aggregation areas are placed, MG 1 can place yet another one
of different color, small or large, that serves as a distraction.
There are two possible objective functions for this type of
mission: anytime and endtime. The two objective functions
are to be maximized and depend on N , the total number of
robots in the swarm; and Ni, the number of robots located in
the aggregation area i, with i ∈ {a, b} or {a, b, c}, depending
on the number of aggregation areas. If MG 1 selects anytime,
the objective function is F ′

XOR =
∑T/100ms

t=1 maxi(Ni(t))/N ,
where T is the duration of the mission (in seconds) and 100 ms
is the period at which maxi(Ni)/N is evaluated. If MG 1 se-
lects endtime, the objective function is F ′′

XOR = maxi(Ni)/N ,
and it is computed at the end of the mission.

III. SAMPLING STRATEGY FOR PERFORMANCE
ESTIMATION

The performance of a fully-automatic design method is a
stochastic variable and therefore estimating its expectation
is a reasonable goal. The expectation should be computed
with respect to all the sources of randomness involved in the
process. The sources of randomness are the following:
The mission: the mission is randomly sampled from a class

of missions according to the associated probability mea-
sure. If the class of missions is sampled multiple times,
the missions to be solved by will (likely) differ one from
the other.

The design process: the design process is stochastic in na-
ture. If it is performed multiple times, it will (likely)
produce different instances of control software.

The execution: the execution of an instance of control soft-
ware on physical robots is a stochastic event—the result-
ing performance is therefore a stochastic quantity. If the
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TABLE II: The parameters, their possible values, and the corresponding probability distributions in MG 1. The swarm can
comprise 15 or 20 robots. There is a total of 5 different objective functions that can be selected by MG 1: one for FORAGING,
and two for both HOMING and AGGREGATION-XOR. For the 5 objective functions to appear with equal probability, MG 1
selects HOMING and AGGREGATION-XOR with double the probability of FORAGING. See Sections II-A to II-C for descriptions
of the types of missions.

Parameter Possible values Probability distribution
mission type {FORAGING, HOMING, AGGREGATION-XOR} {0.2, 0.4, 0.4}
duration {60, 120, 180} uniform
# robots {15, 20} uniform
shape arena {triangle, square, hexagon} uniform
initial distribution {uniform, one-side,not-on-colored -areas} uniform

Mission type: FORAGING

light {on, off } {0.85, 0.15}
# nests {1, 2} {0.95, 0.05}
color nest {black ,white} uniform
# food sources {1, 2, 3} {0.5, 0.4, 0.1}
# obstacles {0, 1, 2, 3} {0.2, 0.4, 0.3, 0.1}

Mission type: HOMING

objective function {anytime, endtime} uniform
light {on, off } {0.30, 0.70}
# colored areas {1, 2, 3} {0.55, 0.30, 0.15}
color home {black ,white} uniform
# obstacles {0, 1, 2, 3} {0.20, 0.40, 0.30, 0.10}

Mission type: AGGREGATION-XOR

objective function {anytime, endtime} uniform
light {on, off } {0.30, 0.70}
# aggregation areas {2, 3} {0.80, 0.20}
color aggregation areas {black ,white} uniform
# distraction areas {0, 1} {0.60, 0.40}
# obstacles {0, 1, 2, 3} {0.2, 0.4, 0.3, 0.1}

same instance of control software is executed multiple
times, the performance observed will (likely) vary.

Let us assume that an upper bound N on the number of
executions is given. This assumption is realistic, as running
experiments with robots is time consuming and could demand
a large amount of resources. It is also realistic to assume
that the number of executions is the real bottleneck in terms
of demanded resources. Indeed, running experiments with
robots is a labor-intensive activity and the expensive and time-
consuming part in the research on the automatic design of
control software for robot swarms. On the other hand, the
design process is fully automatic and multiple instances can
run in parallel on a high-performance computing cluster. We
can assume that the cost (in abstract terms: time and resources)
of running a design process is negligible compared to the
one of running robot experiments. We can also assume that
sampling a mission from a class of instances is inexpensive.
Finally, we assume that, before running a design process on a
given mission, we do not have any prior information on how
well the control software we can generate automatically will
perform, on what will be the variance of the performance, and
on what will be the variances related to the three sources of
randomness.

A sampling strategy for estimating the expected perfor-
mance of a design method on a class of missions, given

that a maximum number N of executions can be performed,
can be formally described by a triple 〈nm, nd, nx〉, with
nm · nd · nx ≤ N . The expected performance is estimated
on the basis of nm missions, nd design processes per mission
(to generate nd instances of control software per mission),
and nx executions of each of them. It has to be noticed that
any triple 〈nm, nd, nx〉 yields an unbiased estimate of the
expected performance. Yet, different triples might differ for
what concerns the variance of the estimate they yield, and it
is thus of interest to understand which triple minimizes such
variance.

In statistics, similar problems were studied since the early
1940s [29] under the name of nested sampling,3 Classical
results are based on the assumption that the sampled variable
can be written as a sum of three mutually independent random
variables—e.g., see [30], [31]. Nested sampling has been used
in numerous and very diverse fields—e.g., food quality control
[32], agriculture [33], blood pH of female mice [34], premium
of insurance contracts [35], estimation of income [36].

The theoretical foundation of this paper is summarized in
Theorem 1, which shows that, given a maximum number
of executions, the best strategy is to maximize the number
of missions to be considered. Note that, unlike the results

3Currently, the term nested sampling is in use in Bayesian statistics and
refers to a completely different and unrelated technique.
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available in the literature [29]–[31], this theorem does not
require that the sampled random variable is expressed as the
sum of three mutually independent random variables.

Theorem 1. Under the assumptions made above, given that
a maximum number N of executions can be performed, the
sampling strategy described by the triple E = 〈nm, nd, nx〉,
with nm = N , nd = 1, and nx = 1, is the one that minimizes
the variance of the estimate.

Proof: The variance of the estimator µ̂ associated with
the sampling strategy E is:

E
[
(µ̂E − µ)2

]
=
σ2
AM

nm
+

σ̄2
AD

nm nd
+

σ̄2
WM

nm nd nx
, (1)

where σ2
AM is the across-mission variance and indicates how

missions differ from one another, σ̄2
AD is the expected across-

design variance and indicates how designs differ from one
another within a same mission (averaged across all possible
missions), and σ̄2

WM is the expected within-mission variance
and indicates how scores differ from one another within a
same mission (averaged across all possible missions). Formal
definitions of these three variances and a formal proof of
Equation 1 are given as supplementary material. Clearly, to
minimize the variance of the estimator, the denominators
need to be chosen so as to be as large as possible. It is
straightforward to conclude that this happens when nm = N ,
nd = nx = 1 under the constraint nm · nd · nx ≤ N .

The same conclusion (i.e., that the triple 〈N, 1, 1〉 is the one
that minimizes the variance) is relevant also in the case one
wishes to compare the expected performance of two design
methods—the reasoning can be generalized to more than two
design methods, as well. When two methods are considered,
the reasoning presented above applies to the estimation of
the expected value of the difference between the performance
of the control software produced by the two methods under
analysis.

It should be noticed that, in the setting described above,
the naive approach that is often adopted and that consists in
running multiple executions of the same instance of control
software hides some catches that could lead to misleading
results. In particular, it could lead to wrong conclusions
when two (or more) design methods are compared. By taking
nx � 1, one runs the risk of undersampling the space of
the missions and oversampling the space of the realizations of
the design processes and/or the one of the executions. Let us
consider the comparison of two design methods, A and B. Let
us make the hypothesis that the expected performance of A
over the given class of mission is better than that of B. Let us
also make the hypothesis that A typically outperforms B on
most of the missions of the class, whereas it is outperformed
on a small subset of missions. If the sampling strategy adopted
undersamples the space of the missions to allow multiple
executions of the same instances of control software, there
exists the risk that the missions on which B outperforms
A are over-represented in the sample. If this happens, as
nx � 1, the risk exists that the observed difference of
performance, which will be wrongly in favor of B, happens to
be statistically significant. By undersampling the space of the

missions and oversampling the one of the realizations of the
design processes and/or of the executions, the confidence level
imposed does not apply anymore to the overall estimation of
the differences over the entire class of instances but rather to
the subset of missions that have been sampled. The above
reasoning could possibly appear clearer if we push things
to the extreme. Let us sample a single mission (nm = 1),
run a single design process (nd = 1), and use all the N
evaluations available to test the single instance of control
software obtained. The confidence level will refer to the
performance difference on the specific mission that has been
sampled—rather than to the whole class, as we intend. If
we happen to sample one of the few missions on which B
performs better than A, we will conclude that B is better
than A and (if N is sufficiently large) that the difference
will be statistically significant. Clearly, this does not extend
to the whole class, and the results obtained will be wrong
even if statistical significance was attained. A similar wrong
conclusion could be reached also if nm = 1, nd = N , and
nx = 1. On the other hand, if nm = N (and consequently
nd = nx = 1), the issue does not arise and the confidence
level applies indeed to the significance of the difference across
the whole class of missions, as it should.

IV. ILLUSTRATIVE EXPERIMENT

In this section, we assess and compare the performance
of two previously proposed fully-automatic design methods
following the sampling strategy described in Section III: we
consider 30 missions generated with MG 1, run each design
method once on each mission, and execute each instance of
control software produced once on the physical robots. We
allocated a design budget of 100 000 simulation executions
for each method on each mission: that is, each design process
cannot exceed 100 000 simulation runs. To evaluate the intrin-
sic robustness of the methods, we also assess each instance of
control software produced in simulation under the same initial
conditions of the execution on the physical robots. Figure 2
shows pictures of the 30 arenas generated by MG 1.

We used EvoStick [23], [37] and Chocolate [38]
to design control software for the 30 missions in a fully-
automatic off-line way. EvoStick is a neuro-evolutionary
robotics method that produces control software in the form of
fully-connected neural networks without hidden layers. The 25
input nodes of these neural networks are fed with the readings
of the sensors, as formally described by the reference model
RM 1.1 described in Table I. The 2 output nodes determine
the velocity of the wheels. The 50 synaptic weights that
connect the input nodes to the output nodes are real numbers
in [−5, 5], and are optimized by a genetic algorithm with
a population size of 100 individuals and 10 evaluations per
generation. The design budget of 100 000 simulation execu-
tions allocated to the genetic algorithm corresponds to 100
generations. Chocolate is a modular method that belongs
to the AutoMoDe framework. It produces control software in
the form of probabilistic finite state machines by selecting,
fine-tuning, and combining pre-defined modules. The modules
are programmed by hand a priori in a mission-agnostic way.
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Fig. 2: Pictures of the initial configurations of the missions generated by MG 1. Each image is labeled with the initial letter
of the mission to be accomplished (that is, F for FORAGING, H for HOMING, and A for AGGREGATION-XOR), the number of
robots in the swarm (that is, 15 or 20), and the status of the light (that is, on or off). Control software, mission descriptions,
source codes, and videos of the experimental runs are available as supplementary material.

They include 6 low-level behaviors to be used as states of
the probabilistic finite state machines, and 6 conditions to be
used as transitions between states. The probabilistic finite state
machines produced can contain up to 4 states and 4 outgoing
transitions per state, and are optimized by the optimization
algorithm irace [39], [40]. It is important to notice that the
modules of Chocolate, although programmed by hand, are
defined once and for all and are not manually modified during
the design process, which rightfully qualify Chocolate as
a fully-automatic design method. We refer the reader to the
original papers for further details on the methods [23], [38].

We chose EvoStick and Chocolate because the two
methods have already been compared in several studies [38],
[41], [42], and we wish to keep the focus of this paper
on the experimental protocol used rather than on the out-
come of a novel comparison of design methods. In these
previous studies, results were always similar: EvoStick
outperforms Chocolate in simulation, but Chocolate
outperforms EvoStick is reality—in both cases, differences
are significant with a confidence level of at least 95%. We
expect to obtain similar results in our illustrative experiments.
The novelty of the comparison we present here lies in the
experimental protocol adopted. In the previously presented
experiments, the experimental protocol considered 2 [41],
[42] and 5 [38] missions selected by the experimenters, on

which each method was executed 10 [41], [42] or 20 [38]
times. These experimental protocols are not wrong, and the
results obtained should not be disregarded. In fact, the adopted
sampling strategy minimizes the variance of the expected
performance for the specific missions considered [43], [44].
However, as discussed in Section III, the results of these
previous experiments strongly depend on the missions chosen,
which, due to specificities that might be unknown to the
experimenters, could favor a given design method over another.
The protocol proposed in this paper aims at evaluating and
comparing the performance of design methods over a whole
class of missions rather than over specific ones, and should
therefore be adopted when one evaluates design methods in
the fully-automatic context [15], [21].

In simulation, EvoStick outperformed Chocolate in
18 out of the 30 considered missions, and the two methods
obtained the same score in 3 missions. In reality, Chocolate
outperformed EvoStick in 29 missions, and was outper-
formed only in one—see Fig. 3. Aggregating the performance
observed on several different missions is not trivial because
the range of performance for different missions might vary
greatly. Therefore, naively averaging the performances could
give misleading results as missions for which the performance
range is large would overshadow those for which it is small.
Some form of normalization is needed to aggregate the perfor-
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Fig. 3: Scatter plot of the performance obtained by Choco-
late and EvoStick for each mission in simulation (gray
points) and in reality (black points). The performance are given
in logarithmic scale. A point on the diagonal indicates that the
two methods performed similarly on a given mission; a point
below the diagonal indicates that Chocolate performed
better than EvoStick, and inversely.

mance observed on different missions. Here, for the purpose
of this illustrative experiment, we address this issue by aggre-
gating the performance observed on the different missions by
reporting an estimation of the expected rank together with a
95% confidence interval—see Fig. 4. By computing the ranks
on a per-mission basis, we put the results observed for the
different missions on an equal footing, irrespectively of their
possibly different ranges. We refer the reader to Francesca
et al. [23] and Ligot & Birattari [45] for discussions on the
conjecture behind the fact that the control software produced
by Chocolate suffer less from the reality gap than the one
produced by EvoStick.

V. CONCLUSION

We presented an experimental protocol for the fully-
automatic design of control software for robot swarms. Elabo-
rating adequate protocols for the assessment of semi-automatic
methods is particularly challenging due to the role played by
the human expert during the design process as well as the spe-
cific nature of the missions to be accomplished, and we leave
this for future work. The protocol we proposed is characterized
by two elements: the use of a random mission generator to
produce test missions and a sampling strategy that minimizes
the variance of the performance estimation. We have showed—
both conceptually and formally—that the sampling strategy

EvoStick

Chocolate

1 2
Rank in simulation

EvoStick

Chocolate

1 2
Rank in reality

Fig. 4: Aggregated performance obtained in simulation and in
reality. The expected rank and 95% confidence interval of the
expected rank are reported. The lower the expected rank, the
better the performance. If two segments do not overlap, the
expected ranks of the corresponding methods are significantly
different with a confidence level of at least 95%.

that minimizes the variance in the estimation of the expected
performance is the one that maximizes the number of missions
considered. The notion of mission generator goes therefore
hand in hand with this sampling strategy as it allows to sample
as many missions as desired.

To the best of our knowledge, the mission generator MG 1
we created is the first generator of missions for swarm
robotics. Because its purpose is to illustrate the concepts
introduced in this paper, MG 1 is relatively limited in the
nature of the missions it generates: it generates missions
belonging to only three types of missions to be solved by
specific robots with specific capabilities. However, MG 1 can
be extended and generalized in many different ways, and
therefore can be the starting point for future generators. In
fact, the core idea of MG 1 is to generate missions of different
types that are characterized by specific objective functions, and
the definition of features of the environment together with rela-
tionships between these features. These elements can be easily
reused to create mission generators dedicated to other robots,
including robots of different nature (e.g., flying robots), under
the condition that reasonable distributions can be devised for
every variable of the missions. It should be also noted that
in MG 1 we consider the number of robot as a parameter of
the mission. As an alternative, the definition of the mission
could impose a constraint on the maximum/minimum number
of robots comprised in the swarm and the selection of the
most appropriate number of robots could be left to the design
process. The idea of defining the size of swarm automatically
within the design process has been already explored by Salman
et al. [46].

To illustrate the protocol, we conducted an experiment in
which we evaluated and compared two previously proposed
automatic design methods on 30 missions generated by MG 1.
In this illustrative study, we allocated the same design budget
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to the two methods for each mission they had to solve. A
thorough assessment of the capabilities of fully-automatic
design methods would require the evaluation of these methods
under different levels of the design budget to understand which
methods performs best under which conditions. Further, in the
illustrative study, we estimated the performance of the methods
under analysis on each mission but we did not compute the
aggregate performance across the missions. The main difficulty
when estimating the performance of a design method on
different missions is that the range of performance might vary
greatly across the missions at hand. Some sort of normalization
prior to the aggregation of the performance is mandatory.
Here, we aggregated the performance observed by reporting
the expected rank, which is an implicit form of normalization.
The drawback of using ranks is that they do not provide an
estimation of the overall performance of each of the design
methods under analysis. As an alternative, one could normalize
the performance on each mission based on the knowledge of
the theoretical maximal and minimal performance, or based
on a reasonable estimate of them (including, for example,
the best and worse performance observed empirically [20]).
However, in the illustrative experiment presented in this paper
these alternatives did not appear to be appropriate as no prior
knowledge was available and only two methods were involved
in the study, providing therefore too little data to perform a
meaningful normalization.

Although a number of issues could be addressed to define
more advanced protocols, the ideas proposed in the paper
are a significant step towards addressing the current lack of
objective comparisons in the optimization-based design of
robot swarms and, consequently, the lack of a clearly identified
state of the art.
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