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Thomas Stützle, and Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2009-025

October 2009



IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
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Abstract

The probabilistic traveling salesman problem (PTSP) is a
central problem in stochastic routing. Recently, we have shown that
empirical estimation is a promising approach to devise highly effective
iterative improvement algorithms for the PTSP. In Balaprakash et al.
(2009a), we proposed high performing estimation-based metaheuristics
for the PTSP. In this technical report, we compare our estimation-
based iterative improvement algorithm to the progressive approxima-
tion method and the aggregation approach. Moreover, for metaheuris-
tics, we investigate the effectiveness of using initial solutions obtained
via an exact TSP solver and the aggregation approach. Finally, we
compare our estimation-based metaheuristics to simulated annealing
algorithms. The results show that the estimation-based iterative im-
provement algorithm dominate the progressive approximation method.
Using the aggregation approach, the iterative improvement algorithm
reaches local optima faster on instances with very low probability val-
ues. However, the costs of local optima are significantly worse than
that of our iterative improvement algorithm. The adoption of TSP
optimal solutions or the solutions obtained from the aggregation ap-
proach as initial solutions in estimation-based algorithms does not give
a significant benefit.

1 Introduction

The probabilistic traveling salesman problem (PTSP) is similar to
the TSP with the main difference being that each node has a probability of
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requiring a visit. The goal is to find a TSP tour that minimizes the expected
cost of the pruned tour: this pruned tour is obtained only after knowing the
nodes that require being visited and skipping the nodes that do not require
being visited according to some predefined rules.

An instance of the PTSP is defined on a graph G with the following
elements:

• a set V = {1, 2, . . . , n} of nodes;

• a set A = {〈i, j〉 : i, j ∈ V, i 6= j} of edges, where an edge 〈i, j〉 connects
the nodes i and j;

• a set C = {cij : 〈i, j〉 ∈ A} of travel costs, where cij is the cost of
traversing an edge 〈i, j〉; the costs are assumed to be symmetric, that
is, for all pairs of nodes i, j we have cij = cji;

• a set P = {pi : i ∈ V } of probabilities, where pi specifies the probability
that a node i requires being visited. The events that two distinct nodes
i and j require being visited are assumed to be independent.

The probabilistic data of the PTSP can be modeled using a random variable
ω that follows an n-variate Bernoulli distribution. A realization of ω is a
vector of binary values, where a value ‘1’ in position i indicates that node
i requires being visited whereas a value ‘0’ means that it does not require
being visited. A PTSP instance is called homogeneous if all probability
values in the set P are the same; it is called heterogeneous, if for at least
two nodes the values are different.

In Balaprakash et al. (2009a), we presented an experimental study of
three high performing estimation-based metaheuristics, namely, iterated lo-
cal search (ILS-EE), a memetic algorithm (MAGX-EE), and ant colony sys-
tem (ACS-EE). As a control algorithm, we used an estimation-based ran-
dom restart local search (RRLS-EE) algorithm. The four algorithms use
2.5-opt-EEais (Balaprakash et al., 2009b), an effective iterative improve-
ment algorithm for the PTSP, as a subsidiary solution improvement pro-
cedure. For a detailed exposition of the estimation-based metaheuristics,
we refer the reader to Balaprakash et al. (2009a), a technical report on the
estimation-based metaheuristics, which is available at

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-017r001.pdf.

In this technical report, we compare our estimation-based algorithms to
the progressive approximation method, the aggregation approach, and pre-
viously proposed simulated annealing algorithms. All algorithms discussed
in this report are implemented in C and compiled with gcc, version 3.3. The
implementation of ACS-EE is based on ACOTSP (Stützle, 2002). Exper-
iments are carried out on AMD OpteronTM244 processors running at 1.75
GHz with 1 MB L2-Cache and 2 GB RAM under Rocks Cluster GNU/Linux.

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2009-017r001.pdf
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For the instance generation scheme, and the adopted parameters, please
see Balaprakash et al. (2009a). The PTSP instances used for the experi-
ments are obtained by associating a probability value to each node using a
beta distribution as described by Bianchi (2006). In this scheme, the proba-
bility values of each instance are characterized by two parameters: the mean
probability pm and the percentage of maximum variance pv: when an in-
stance is generated with pm and pv, the expected value and the variance of
the random variable ω parameterized by P are pm and (pv/100) ·pm(1−pm),
respectively. For the sake of convenience, we refer to the probability level of
an instance as p = pm(pv%).

We present the empirical results of the comparative study as follows:
In Sections 2 and 3, we benchmark our estimation-based iterative improve-
ment algorithm called 2.5-opt-EEais against the progressive approxima-
tion method (Tang and Miller-Hooks, 2004) and the aggregation approach
(Campbell, 2006). Although these two approaches do not belong to the class
of metaheuristics, they are considered to be viable alternatives to tackle the
PTSP (Campbell and Thomas, 2008). In Section 4, we present the results
of seeding metaheuristics with solutions obtained via the aggregation ap-
proach and the TSP optimal solution. In Section 5, we present the compar-
ison between the estimation-based metaheuristics and simulated annealing
algorithms.

2 Comparison to the progressive approximation

method

First, we focus on the progressive approximation method. This algorithm is
an iterative improvement algorithm that uses an approximated version of the
exact closed-form equation at each iteration. The algorithm is run in an iter-
ative way, in which the approximation is made more precise with an increase
in the number of iterations. This results in very rough cost computations in
the initial iterations but as the search progresses, the cost computation be-
comes more accurate. In order to perform an unbiased comparison, we use
four algorithms 2.5-opt-EEais, 2-opt-EEais, 2.5-opt(PA), 2-opt(PA):
2-opt-EEais is similar to 2.5-opt-EEais except that it adopts the 2-
exchange neighborhood. 2-opt(PA) and 2.5-opt(PA) are obtained from
2-opt-EEais and 2.5-opt-EEais, by replacing the estimation-based eval-
uation procedure with the progressive approximation method, respectively.
This setting allows us to study the effectiveness of the estimation-based eval-
uation procedure without any bias to the adopted neighborhood structure.
The adoption of 2-opt(PA) is ascribed to the fact that the progressive ap-
proximation method is investigated in an iterative improvement algorithm
that adopts the 2-exchange neighborhood (Tang and Miller-Hooks, 2004).
We generated heterogeneous uniform instances with 100 nodes as described
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Figure 1: Experimental results on instance size 100. The plots represent the devel-

opment of the solution cost over time for 2.5-opt-EEais, 2-opt-EEais, 2-opt(PA), and

2.5-opt(PA). The obtained solution costs of the algorithms are normalized by the final

solution cost reached by RRLS-EE, which is run for 100 CPU seconds. The normalization

is performed on an instance-by-instance basis for 30 instances; the normalized solution

cost is then aggregated.

in Tang and Miller-Hooks (2004): The probability pi of a node i requiring
a visit is generated according to a uniform distribution U[lb, ub), with re-
spect to a lower bound lb, with 0 < lb < 1, and an upper bound ub, with
lb ≤ ub ≤ 1. The initial approximation parameter value is set to 2 and it is
increased by 2 for each iteration until the value reaches 75% of n, where n is
the instance size. This parameter setting differs from the original setting of
Tang and Miller-Hooks (2004) because we noted that 2.5-opt(PA) requires
large values to be able to reach high quality local optima.

The computational results are given in Figure 1 and Table 1. From
the plot, we can observe that 2.5-opt-EEais is approximately 1.5 orders
of magnitude faster than 2-opt(PA) and 2.5-opt(PA) to reach local op-
tima. 2.5-opt-EEais obtains an average solution cost which is up to 2.56%
and 1.31% less than that of 2-opt(PA) and 2.5-opt(PA). Also note that
2.5-opt(PA) moves to worse solutions during initial iterations. This is as-
cribed to the fact that the progressive approximation is not effective for
node-insertion moves when the approximation parameter takes small val-
ues. Although 2-opt-EEais is faster than all other algorithms in reaching
local optima, the obtained solution cost is rather poor.
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Table 1: Comparison of the average cost obtained by 2.5-opt-EEais, 2-opt-EEais,

2-opt(PA) and 2.5-opt(PA) on uniform instances with 100 nodes. For a given comparison

A vs. B, the table reports the observed relative difference d between the two algorithms

A and B and the 95% confidence interval CI obtained through the t-test. If the value is

positive, algorithm A obtained an average cost that is larger than the one obtained by

algorithm B. In this case, the value is typeset in italics if it is significantly different from

zero according to the t-test at a confidence level of 95%. If the value is negative, algorithm

A obtained an average cost that is smaller than the one obtained by algorithm B. In this

case, the value is typeset in boldface if it is significantly different from zero according to

the t-test, at a confidence level of 95%.

2.5-opt-EEais
vs.

2-opt-EEais

2.5-opt-EEais
vs.

2-opt(PA)

2.5-opt-EEais
vs.

2.5-opt(PA)

p d CI d CI d CI
U(0.0,0.2] −4.50 [−5.52,−3.47] −1.32 [−2.05,−0.59] −1.31 [−2.03,−0.59]
U(0.0,0.5] −3.86 [−5.22,−2.50] −2.38 [−3.69,−1.08] +0.46 [−0.44, +1.35]
U(0.0,1.0] −2.68 [−3.80,−1.56] −2.56 [−3.92,−1.21] −1.05 [−2.68, +0.57]

3 Comparison to the aggregation approach

Now, we investigate the effectiveness of using the aggregation approach for
the PTSP instances with low node probability values. The main idea of this
approach is to reduce the size of a given instance by grouping the nodes that
are close to each other. We implemented an aggregation-based iterative im-
provement algorithm that comprises the following steps: the nodes of a given
instance are grouped into regions such that the total expected probability in
each region is no more than 0.5; then each region is considered as a node; a
heuristic is used to obtain an initial solution of the aggregated instance and
2.5-opt-EEais is applied on this initial solution; the final full solution is ob-
tained by connecting the nodes within each region using a heuristic. We used
two algorithms 2.5-opt-EEais(Agg-NN) and 2.5-opt-EEais(Agg-SF) for
the comparison. While 2.5-opt-EEais(Agg-NN) adopts the nearest neigh-
bor heuristic to generate an initial solution for 2.5-opt-EEais and for
connecting the nodes within each region, 2.5-opt-EEais(Agg-SF) adopts
the space filling curve heuristic as in Campbell (2006) for the same tasks.
We use homogeneous instances generated from the three TSPLIB instances
dsj1000, ali535, and gr666. These TSP instances are used by Campbell
(2006) to show the effectiveness of the aggregation approach. Since the ag-
gregation approach is proposed for instances with low average probability
values, we consider the following values for pm: {0.050, 0.075, 0.100} (Class
I) and {0.150, 0.175, 0.200} (Class II). Each algorithm is run 10 times on
each instance.

Table 2 shows the observed relative difference in the solution cost be-
tween the algorithms on the gr666 instances. 2.5-opt-EEais obtains an
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Figure 2: Experimental results on the instance gr666. The plots represent the de-

velopment of the solution cost over time for 2.5-opt-EEais, 2.5-opt-EEais(Agg-NN),

and 2.5-opt-EEais(Agg-SF). Note that nearest neighbor and space filling curve heuris-

tic solutions are considered as initial reference solutions for 2.5-opt-EEais(Agg-NN) and

2.5-opt-EEais(Agg-SF), respectively. The obtained solution costs of the algorithms are

normalized by the final solution cost reached by RRLS-EE, which is run for 100 CPU sec-

onds. The normalization is performed on a run-by-run basis for 10 runs; the normalized

solution cost is then aggregated.

average solution cost that is significantly less than that of
2.5-opt-EEais(Agg-NN) and 2.5-opt-EEais(Agg-SF) except for p = 0.175
(00%). The observed differences are up to 6.4% for 2.5-opt-EEais(Agg-NN)
and 5.11% for 2.5-opt-EEais(Agg-SF). However, from the run time devel-
opment plots given in Figure 2, we can observe that 2.5-opt-EEais(Agg-NN)
and 2.5-opt-EEais(Agg-SF) reach local optima in short computation times.
The observed difference in computation time needed to reach local optimum
between the aggregation-based algorithms and 2.5-opt-EEais ranges from
an order of magnitude to a factor of 5. We observed a trend in which the
computation time needed to reach a local optimum decreases with an in-
crease in the value of p and in instance size: While on the ali535 and
gr666 instances, the speed advantage is observed up to p = 0.175(00%), on
the dsj1000 instances, it is observed up to p = 0.075(00%).
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Table 2: Comparison of the average cost obtained by 2.5-opt-EEais,

2.5-opt-EEais(Agg-NN), and 2.5-opt-EEais(Agg-SF), over 10 independent runs

on instance gr666. Typographic conventions are the same as in Table 1.

2.5-opt-EEais
vs.

2.5-opt-EEais(Agg-NN)

2.5-opt-EEais
vs.

2.5-opt-EEais(Agg-SF)

p d [95% CI] d [95% CI]
0.050(00%) −6.48 [−8.07,−4.89] −4.22 [−4.80,−3.64]
0.075(00%) −5.83 [−8.05,−3.62] −3.89 [−4.97,−2.81]
0.100(00%) −4.94 [−5.77,−4.11] −4.97 [−5.98,−3.95]
0.150(00%) −2.93 [−4.90,−0.95] −3.56 [−5.20,−1.92]
0.175(00%) −1.73 [−3.74,+0.28] −1.86 [−3.99,+0.28]
0.200(00%) −5.45 [−7.26,−3.64] −5.11 [−6.86,−3.36]

4 TSP approximation and aggregation approach

in estimation-based algorithms

In this section, we investigate whether the effectiveness of estimation-based
algorithms can be improved by using the aggregation approach or the TSP
optimal solution as initial solution under short computation time. For this
study, we adopt ILS-EE, which is shown to be quite effective for short com-
putation time (Balaprakash et al., 2009a). We compare ILS-EE that uses
the nearest neighbor solution as the initial solution to ILS-EE(Agg-NN),
in which 2.5-opt-EEais(Agg-NN) is used to generate initial solution and
ILS-EE(TSP-OPT) in which the TSP optimal solution is used as initial solu-
tion. We use homogeneous instances generated from the following TSPLIB
instances: lin318, gr666, and dsj1000. The following values are consid-
ered for pm: {0.050, 0.075, 0.100} (Class I) and {0.150, 0.175, 0.200} (Class
II) and {0.300, 0.400, 0.500} (Class III). We apply ILS-EE(Agg-NN) only
on Class I and Class II instances. Each algorithm is run 10 times on each
instance with a stopping criterion of n/10 CPU seconds. The adoption of
n/100 CPU seconds as stopping criterion is not realistic because it is does
not allow ILS-EE to finish at least three iterations, especially on the large
instances with small pm. For the three algorithms, we choose the parameter
values that obtained the lowest average cost across the 10 tuning runs for
100 CPU seconds. The adopted values for ps, ndb, rstitr are 2, 1, 0.084 (Class
I), 1, 1, 0.37 (Class II), and 1, 1, 0.31(Class III), respectively. It should be
noted that for ILS-EE(TSP-OPT), we did not include the computation time
to obtain the TSP optimal solutions. Hence, the results presented here can
be considered a best-case analysis to illustrate what would be the perfor-
mance if we already were aware of the optimal TSP solution. In practice, the
time for the TSP solver would have to be added. However, as we show be-
low, even the best-case analysis suggests that starting from a TSP-optimal
solution does not yield a significant advantage. On INTEL Xeon E5410
processors running at 2.33GHz with 6MB L2 cache and 8GB RAM under
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Figure 3: Experimental results on the instance dsj1000. The plots represent the develop-

ment of the solution cost over time for ILS-EE, ILS-EE(Agg-NN), and ILS-EE(TSP-OPT).

The obtained solution costs of the algorithms are normalized by the final solution cost

reached by ILS-EE. The normalization is performed on a run-by-run basis for 10 runs; the

normalized solution cost is then aggregated.

Rocks Cluster GNU/Linux, the Concorde TSP solver version 03.12.19 (using
Qsopt as the linear programming solver), took 2.11, 17.15, and 276.86 CPU
seconds to find optimum for lin318, gr666, and dsj1000, respectively.

The run time development plots on the dsj1000 instances are shown
in Figure 3. Table 3 reports the average cost differences between the algo-
rithms and the bounds obtained. We could not observe any advantage of
using initial solutions from the aggregation approach and using TSP opti-
mal solutions. In spite of starting from TSP-optimal solution, which is much
better than a nearest neighbor solution for the PTSP as shown in Figure
3, the average solution cost of ILS-EE(TSP-OPT) is comparable to that of
ILS-EE. From the runtime development plot, we can observe that the rate
at which the solution cost develops over time is rather slow. From this we
can infer that the region around TSP optimal solution has a number of im-
proving neighbor solutions but the improvement in cost is rather small. For
instances with very low node probability values, the curves on the develop-
ment of the solution quality over time in Figure 3 for ILS-EE(Agg-NN) are,
for a small computation time interval, slightly below the ones of ILS-EE.
This effect is mainly because 2.5-opt-EEais(Agg-NN), for these probabil-
ity levels, reaches local optima faster than 2.5-opt-EEais. This effect has
already been discussed in Section 3.
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Table 3: Comparison of the average cost obtained by ILS-EE, ILS-EE(Agg-NN), and

ILS-EE(TSP-OPT) over 10 independent runs on instance lin318, gr666, and dsj1000.

Typographic conventions are the same as in Table 1.

ILS-EE
vs.

ILS-EE(Agg-NN)

ILS-EE
vs.

ILS-EE(TSP-OPT)

p d [95% CI] d [95% CI]

n/10 CPU seconds

l
i
n
3
1
8

0.050(00%) +0.00 [−0.02, +0.02] −0.01 [−0.03, +0.02]
0.075(00%) +0.02 [−0.02, +0.05] +0.02 [−0.02, +0.05]
0.100(00%) +0.05 [−0.05, +0.15] +0.03 [−0.07, +0.13]
0.150(00%) −0.05 [−0.42, +0.33] −0.28 [−0.70, +0.13]
0.175(00%) +0.10 [−0.25, +0.45] −0.09 [−0.42, +0.24]
0.200(00%) +0.36 [−0.03, +0.75] +0.25 [−0.07, +0.57]
0.300(00%) − − +0.20 [−0.19, +0.59]
0.400(00%) − − −0.19 [−0.52, +0.15]
0.500(00%) − − −0.09 [−0.31, +0.13]

g
r
6
6
6

0.050(00%) +0.12 [−0.10, +0.33] +0.01 [−0.30, +0.33]
0.075(00%) +0.33 [−0.25, +0.91] +0.08 [−0.52, +0.68]
0.100(00%) +0.04 [−0.13, +0.20] +0.11 [−0.07, +0.28]
0.150(00%) +0.28 [−0.15, +0.71] +0.21 [−0.36, +0.77]
0.175(00%) +0.29 [−0.60, +1.17] +0.06 [−0.61, +0.73]
0.200(00%) −0.36 [−1.04, +0.32] −0.37 [−0.75, +0.01]
0.300(00%) − − +0.07 [−0.59, +0.73]
0.400(00%) − − +0.06 [−0.32, +0.44]
0.500(00%) − − −0.06 [−0.56, +0.43]

d
s
j
1
0
0
0

0.050(00%) +0.38 [−0.54, +1.30] +0.33 [−0.54, +1.19]
0.075(00%) +0.06 [−0.09, +0.20] −0.28 [−0.97, +0.40]
0.100(00%) +0.10 [−0.32, +0.53] −0.44 [−1.30, +0.43]
0.150(00%) +0.03 [−0.49, +0.54] −0.34 [−0.68, +0.01]
0.175(00%) +0 .53 [+0.19, +0.88] +0.27 [−0.08, +0.62]
0.200(00%) +0.26 [−0.13, +0.65] −0.23 [−0.72, +0.26]
0.300(00%) − − −0.43 [−0.94, +0.08]
0.400(00%) − − −0.01 [−0.38, +0.35]
0.500(00%) − − −0.01 [−0.25, +0.23]
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5 Comparison with estimation-based simulated an-

nealing algorithms

Finally, we compare our estimation-based metaheuristics ILS-EE, MAGX-
EE, and ACS-EE to estimation-based simulated annealing algorithms. We
implemented two simulated annealing algorithms built on top of
2.5-opt-EEais. These two algorithms use the Metropolis acceptance crite-
rion (Metropolis et al., 1953) parameterized by a temperature parameter to
decide to move from a current solution to the neighbor solution. In the first
algorithm, the temperature is controlled by the sampling error of the cost
estimation as in the simulated annealing algorithm of Bowler et al. (2003).
We denote this algorithm SA-EE(B). In the second algorithm, the temper-
ature parameter is controlled as in a general purpose stochastic simulated
annealing algorithm of Gutjahr and Pflug (1996) and Gutjahr (2004). The
initial value of the temperature parameter is set to 1000; each iteration com-
prises 2n neighbor selections and accept/reject decisions; the temperature
value is reduced by 5% at each iteration until it reaches 0.0001. Instead of
the adaptive sample size procedure, a sample size schedule is used to de-
termine the number of realizations, which is set to 20 times itr, where itr
is the iteration number. We denote this algorithm SA-EE(G). Note that
SA-EE(G) has not been applied to the PTSP but to tackle a closely related
stochastic routing problem. We use SA-EE(G) to study the effectiveness of
using the sample size schedule. We allow each algorithm to run for 1000
CPU seconds. For ILS-EE, MAGX-EE, and ACS-EE, we choose the param-
eter values that produced the lowest average cost across the 10 tuning runs
for 1000 CPU seconds in Section 4.2 of Balaprakash et al. (2009a). They
are listed in Table 4.

The results on clustered instances with 1000 nodes are given in Table
5. We can see that our estimation-based algorithms completely dominate
SA-EE(B) and SA-EE(G). The average cost of the solutions obtained by
ILS-EE, MAGX-EE, ACS-EE are up to 7.32% lower than that of SA-EE(B)
and SA-EE(G).
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Table 4: Fine tuned parameter values for each algorithm in 1000 CPU seconds. This

table gives the parameters considered for tuning, the range of each parameter given to

Iterative F-Race, and the chosen values for each instance class. For an explanation of the

parameters, see Section 3.2 in Balaprakash et al. (2009a).

algorithm parameters range selected value

Class-I Class-II Class-III

ILS-EE
ps [1, 90] 1 1 1
ndb [1, 50] 1 1 1

rstitr [0, 1] 0.089 0.34 0.69

MAGX-EE

pop size [3, 15] 4 3 8
off frac [0.1, 1.0] 0.24 0.67 0.16

ps [1, 90] 9 2 1
ndb [1, 50] 1 1 1
pn [0.1, 1.0] 0.33 0.11 0.29
pc [0.1, 1.0] 0.92 0.97 0.72

ACS-EE

m [3, 15] 10 8 11
q0 [0.0, 1.0] 1.0 1.0 0.97
β [0.0, 5.0] 0.18 0.00 0.83
ρ [0.001, 1.0] 0.31 0.30 0.61
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Table 5: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE,

SA-EE(B), and SA-EE(G) on clustered instances with 1000 nodes for 1000 CPU seconds.

Typographic conventions are the same as in Table 1.
ILS-EE

vs.
SA-EE(B)

MAGX-EE
vs.

SA-EE(B)

ACS-EE
vs.

SA-EE(B)

p d CI d CI d CI
0.050(00%) −2.73 [−4.55,−0.90] −2.72 [−4.54,−0.89] −2.66 [−4.48,−0.84]
0.050(83%) −0.07 [−0.09,−0.05] −0.07 [−0.09,−0.05] −0.07 [−0.09,−0.05]
0.075(00%) −1.91 [−2.19,−1.63] −1.84 [−2.09,−1.59] −1.77 [−2.06,−1.48]
0.075(83%) −0.14 [−0.22,−0.06] −0.14 [−0.22,−0.07] −0.13 [−0.21,−0.06]
0.100(00%) −2.69 [−3.75,−1.63] −2.62 [−3.71,−1.54] −2.61 [−3.65,−1.57]
0.100(83%) −0.22 [−0.29,−0.15] −0.22 [−0.29,−0.14] −0.21 [−0.27,−0.14]
0.150(00%) −3.61 [−4.11,−3.11] −3.48 [−3.93,−3.03] −3.53 [−4.06,−2.99]
0.150(83%) −1.10 [−1.47,−0.74] −0.83 [−1.22,−0.45] −0.74 [−1.04,−0.45]
0.175(00%) −3.88 [−4.34,−3.41] −3.79 [−4.21,−3.37] −3.62 [−4.09,−3.14]
0.175(83%) −1.53 [−2.20,−0.85] −1.40 [−2.10,−0.71] −1.15 [−2.10,−0.20]
0.200(00%) −4.47 [−5.03,−3.92] −4.29 [−4.84,−3.73] −4.21 [−4.86,−3.56]
0.200(83%) −1.66 [−1.90,−1.42] −1.76 [−2.14,−1.38] −1.55 [−1.94,−1.17]
0.300(00%) −2.98 [−3.50,−2.46] −2.98 [−3.55,−2.42] −2.95 [−3.54,−2.36]
0.300(83%) −3.21 [−3.88,−2.54] −2.89 [−3.56,−2.22] −2.64 [−3.31,−1.96]
0.400(00%) −3.12 [−3.69,−2.56] −2.87 [−3.47,−2.26] −3.05 [−3.62,−2.49]
0.400(83%) −4.39 [−5.46,−3.31] −4.13 [−5.19,−3.07] −4.18 [−5.35,−3.02]
0.500(00%) −4.62 [−5.34,−3.91] −4.40 [−5.13,−3.68] −4.81 [−5.54,−4.08]
0.500(83%) −6.58 [−7.68,−5.48] −6.39 [−7.62,−5.16] −6.44 [−7.72,−5.16]

ILS-EE
vs.

SA-EE(G)

MAGX-EE
vs.

SA-EE(G)

ACS-EE
vs.

SA-EE(G)

p d CI d CI d CI
0.050(00%) −1.18 [−2.27,−0.08] −1.16 [−2.25,−0.07] −1.11 [−2.19,−0.02]
0.050(83%) −1.32 [−2.13,−0.51] −1.32 [−2.13,−0.52] −1.32 [−2.13,−0.51]
0.075(00%) −1.44 [−2.30,−0.57] −1.37 [−2.22,−0.52] −1.30 [−2.18,−0.41]
0.075(83%) −3.21 [−4.99,−1.42] −3.21 [−4.99,−1.42] −3.20 [−4.98,−1.42]
0.100(00%) −2.02 [−2.98,−1.05] −1.95 [−2.93,−0.97] −1.93 [−2.89,−0.97]
0.100(83%) −3.40 [−5.49,−1.32] −3.40 [−5.49,−1.31] −3.39 [−5.47,−1.31]
0.150(00%) −3.41 [−5.23,−1.59] −3.27 [−5.02,−1.53] −3.32 [−5.09,−1.55]
0.150(83%) −2.78 [−4.39,−1.16] −2.51 [−4.17,−0.86] −2.42 [−4.02,−0.83]
0.175(00%) −2.89 [−3.81,−1.98] −2.80 [−3.69,−1.92] −2.63 [−3.58,−1.67]
0.175(83%) −2.68 [−3.76,−1.61] −2.56 [−3.70,−1.42] −2.31 [−3.30,−1.32]
0.200(00%) −3.72 [−5.26,−2.19] −3.54 [−5.06,−2.02] −3.46 [−5.02,−1.90]
0.200(83%) −3.03 [−3.94,−2.12] −3.13 [−4.07,−2.18] −2.92 [−3.98,−1.86]
0.300(00%) −4.25 [−4.92,−3.58] −4.25 [−5.03,−3.48] −4.22 [−5.02,−3.42]
0.300(83%) −4.14 [−5.44,−2.84] −3.83 [−4.88,−2.78] −3.58 [−4.78,−2.37]
0.400(00%) −5.77 [−6.62,−4.92] −5.52 [−6.45,−4.59] −5.70 [−6.57,−4.83]
0.400(83%) −4.54 [−5.52,−3.56] −4.28 [−5.13,−3.44] −4.34 [−5.40,−3.28]
0.500(00%) −7.13 [−9.58,−4.68] −6.92 [−9.38,−4.45] −7.32 [−9.78,−4.86]
0.500(83%) −4.66 [−5.41,−3.90] −4.46 [−5.10,−3.82] −4.52 [−5.28,−3.75]
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6 Summary

Our iterative improvement algorithm 2.5-opt-EEais completely dominates
the progressive approximation method. On instances with low node proba-
bility values, 2.5-opt-EEais that adopts the aggregation approach reachs
local optima faster but the costs of the obtained local optima are worse
than that of 2.5-opt-EEais that do not use the aggregation approach. We
also investigated whether the effectiveness of estimation-based algorithms
can be improved by using optimal tours for the TSP or the tours returned
by the aggregation approach as initial solutions under short computation
time. However, we could not observe a significant improvement in obtained
solution cost with the two approaches. Our estimation-based metaheuris-
tics completely outperform the two estimation-based simulated annealing
algorithms we have implemented.
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