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Abstract. In nature, there are examples of large groups of animals that
are capable of making optimal collective-level decisions without the need
for global control or information. Understanding the underlying mech-
anisms of such decentralized decision-making processes may help us to
design artificial systems that exhibit some of the desirable properties, like
scalability or fault tolerance, that are usually observed in these natural
systems. In this paper, we show how a simple social influence mechanism,
based on the binary particle swarm optimization algorithm, can make a
whole population of agents achieve consensus on one of two possible
choices in a completely decentralized way. Furthermore, we show that, if
the conditions for achieving consensus are met and each choice is bound
to an action that takes time to perform, the population converges to
the choice associated with the shortest execution time. We illustrate the
applicability of the decision-making mechanism presented in this paper
on an example scenario in swarm robotics.

1 Introduction

When an agent is immersed in a social context, its decisions are influenced by the
observation of others’ decisions and actions [1, 2]. This process makes it possible
for an agent to discover information that, otherwise, it may not have access
to, or that may be too costly to obtain. Social influence is thus at the root of
social learning whereby knowledge is transmitted between agents without using
genetic material [3, 4]. The role of social influence in the individual as well as
in the collective decision-making process has been studied in human societies in
the context of segregation [5], rioting [6], herding in financial markets [7], and
other social phenomena [1]. These studies and those performed on animals, for
example on social insects, have provided insights that have been used for the
design of novel problem-solving techniques [8–12].

In this paper, we study a decentralized decision-making mechanism based
on the binary particle swarm optimization algorithm [13, 14], which is inspired
by behavioral models of bird flocking (Section 2). We first study whether the
mechanism allows a population of agents to achieve consensus on a binary choice
problem in a completely decentralized way (Section 3.1). We then study the



dynamics of the system when the time needed to perform an action is considered
(Section 3.2). We find that when the requirements for reaching consensus are
met, the population reaches it on the action with the shortest execution time.
We exemplify the utilization of the decision-making mechanism studied in this
paper using a swarm robotics scenario where individual robots with limited
sensory capabilities must make a binary choice regarding the route to follow to
reach a goal location (Section 3.3). Despite their individual inability to measure
time or to detect differences between routes, the group of robots, as a whole, is
capable of choosing the fastest route in a fully decentralized way. We summarize
our results and outline some future works in Section 4.

2 A Decentralized Decision-Making Mechanism

Decentralized decision-making occurs when a group-level decision is made in
spite of the fact that individual decisions are based on local information [15].
A flock of birds is a good example of this process as it is capable of choosing a
common direction of movement despite the fact that birds continuously change
their position, speed and direction within the flock [16].

In this paper, we consider a binary decision mechanism based on the bi-
nary particle swarm optimization (PSO) algorithm [13, 14], which in turn is
inspired by behavioral models of bird flocking [17, 18]. The system consists of n
agents, each of which has a certain predisposition for choosing one of two possi-
ble actions, A or B. This predisposition is represented as a continuous variable
pti ∈ [0, 1], i ∈ {1, . . . , n}, which denotes the probability that agent i chooses
action A at time step t. The probability that agent i chooses action B at time
step t is simply 1−pti. Each agent’s pti is updated using two pieces of information:
the agent’s past action and the observation of another agent’s action. An agent’s
own influence leads to the reinforcement of the tendency it already has, whereas
the social influence causes the agent to conform to what another agent does.

Each agent i has three variables associated with it: the probability pti of
choosing action A at time step t, a state variable vti which governs the dynamics
of pti, and a binary variable ati that represents whether action A is taken or not
at time step t. The value of ati is a realization of pti. The system evolves using
the following rules:

vt+1
i = χ

[
vti + c1u1

(
ati − pti

)
+ c2u2

(
atr − pti

)]
, (1)

pt+1
i =

1
1 + e−vt+1 , (2)

at+1
i = 1 with probability pt+1

i , and 0 with probability 1− pt+1
i , (3)

where χ is a parameter called constriction factor [19], c1 and c2 are parame-
ters called acceleration coefficients, u1 and u2 are uniformly distributed pseudo-
random values in the range [0, 1), vt+1

i is clamped such that vt+1
i ∈ [vmin, vmax],

and r is the index of a randomly selected agent. In Eq. 1, the first term that
multiplies χ, that is, vti , acts effectively as a memory term because all updates



Table 1: Parameter settings. The default settings used when exploring the effects of
varying individual parameters are shown in boldface. The value ci = 2 , i ∈ {1, 2} is
chosen so that the expected value of the product uici is equal to 1 , i ∈ {1, 2}. The
values chosen for the constriction factor come from the PSO literature [19].

Parameter(s) Value(s) Parameter(s) Value(s)

n {101, 102,103} agents vmax 4
k {2, 0.5n, 0.75n,n} agents µA 10 time steps
p0

i {0.05, . . . ,0.5, . . . , 0.95} µB {10,20, 40} time steps
χ {0.729, 1.0,1.371} σA and σB {1, 4, 8} time steps

c1 and c2 {0.0,2.0} Simulation duration (T ) 105 time steps
vmin −4 Independent Runs (R) 103

depend on its previous value. The second term makes the value of the agent’s
probability change in such a way that it reinforces its previous action: if the
action ati = 1, pt+1

i will tend to increase; if the action ati = 0, pt+1
i will tend

to decrease. The third term changes the agent’s probability in the same way
as the second term, but according to agent r’s action. Eq. 2 ensures that vt+1

i

is mapped to a value in the range [0, 1] so that pt+1
i can be interpreted as a

probability.
We also consider the case in which agents’ actions represent tasks that take

some time to perform. The execution times associated with actions A and B
are modeled as two normally distributed random variables with means µA and
µB , and standard deviations σA and σB , respectively. Once an agent selects an
action, its internal variables are updated and the corresponding action execution
time distribution is sampled to obtain the number of time steps during which
the agent’s variables remain unchanged. Furthermore, we also consider the situ-
ation in which agents represent embodied robots executing a task in a finite-size
environment. In this case, a certain number of agents can be idle at any given
time. We let k and n− k be the number of active and idle agents respectively.

3 Experiments and Results

Three series of experiments were carried out. First, we explored under which con-
ditions a population of agents following the rules described in Section 2 achieves
consensus. Second, we designed a series of experiments to determine the effects
of action execution times on the dynamics of the system. In both cases, the
effects of using different parameter settings were investigated. Finally, the de-
centralized decision-making mechanism was used on a population of simulated
mobile robots engaged in a navigation task.

We used Monte Carlo simulation to study the convergence properties of the
mechanism described in the previous section using different parameter settings.
In Table 1, we list the values used for each parameter of the system and of the
simulator.
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Fig. 1: Typical behavior of the system without action execution times. (a) Average
action āT at the end of the simulation as a function of the agents’ initial probabilities
p0

i . (b) Average (over 1000 runs) variance of the agent’s actions at
i as a function of the

number of agent updates (n = 103 and T = 103).

3.1 Results Without Action Execution Times

To evaluate whether consensus on one of the two possible choices is achieved,
we performed the following analysis. First, we computed the probability to end
with all agents choosing action A after T time steps (i.e., at the end of the
simulation) as a function of the agents’ initial probabilities p0

i . This probability
was estimated by computing āT =

∑
R

∑n
i=1 a

T
i /nR, which is the average, over

all the R independent runs, of the proportion of agents choosing action A at time
step T (the probability of choosing action B is simply 1− āT ). This measure tells
us which of the two choices is preferred by the agents. Second, we recorded the
variance of the agents’ actions at time step T for each run. We then averaged
it over all runs which gives us a measure of the agents’ average disagreement.
Hence, a small value for this measure corresponds to consensus.

We studied the effects that different values of χ, c1, c2 and n have on the
ability to reach consensus. The typical result is shown in Fig. 1. The results
obtained for all the combination of parameters values shown in Table 1 are
available at [20].

After analyzing the results, we found that the parameter with the strongest
influence on the results is the constriction factor χ. When χ ≤ 1 the group
does not achieve consensus: The average variance is ∼ 0.25 which is the value
that corresponds to a 50% A – 50% B population. When χ < 1, āT is equal to
0.5 regardless of the agents’ initial probabilities. When χ = 1, āT depends on
the initial probabilities in an almost linear way. However, when χ > 1, agents
achieve consensus. Additionally, if p0

i = 0.5, the group chooses action A with



a probability of 0.5. As soon as we increase or decrease the initial bias, the
population converges to ai = 1 when p0

i > 0.5 or to ai = 0 when p0
i < 0.5.

To summarize, consensus is achieved with χ > 1. This is due to the fact
that this setting amplifies the value of vti → vmin if p0

i < 0.5 or vti → vmax if
p0
i > 0.5. When p0

i = 0.5, vti converges to either limit. From a PSO perspective,
this result is not surprising. Indeed, Clerc and Kennedy [19] showed that the
constriction factor has a critical effect on the stability of the particle swarm. For
the experiments shown in the next section we keep χ = 1.3717.

3.2 Results With Action Execution Times

Fig. 2 shows the effects of varying different parameter values on the behavior
of āT when the execution time ratio µratio = µB

µA
> 11, which is the case when

action A is, on average, faster than action B.
Fig. 2a shows the effect of changing the value of µratio. The results show

that when µratio is high, the population chooses action A even if the initial
probability p0

i is small. This means that when the execution time ratio is high,
only a minority of the population with a preference for the action with the
shortest execution time is necessary to eventually make the whole population
choose that action. This happens because the agents that choose the fastest
action finish before the others and hence, have higher chances to be observed
and to influence the choice of other agents. In turn, these influenced agents
will have a higher probability of choosing the fastest action and so on. Social
influence thus creates a positive feedback process whereby the best choice (in this
case, the action with shortest execution time) is propagated in the population.
In Fig. 2b, the effect of varying the population size n is shown. Consensus is
not achieved when n = 10 as the agents’ action variance is not small enough2.
However, with n = 100 and n = 1000, the population does achieve consensus.
This result may be due to the insufficient number of simultaneous interactions
with the environment (that is, the maximum value of k) that a small population
can have. Fig. 2c shows the effect of using different settings for c1 and c2. The
population can only detect the difference in execution time when agents make
use of socially acquired information, that is, when c2 6= 0. Fig. 2d shows the
effect of changing the number of agents executing simultaneously an action. The
best result is obtained when all the population is active.

Finally, changing the standard deviation of the execution times associated
with the agents’ actions does not seem to have a significant impact on the re-
sults [20].

3.3 Decentralized Decision-Making in a Swarm of Robots

As an example of an application scenario, we simulated a group of robots that
are required to go from one point to another in the fastest possible way (see
1 We remind the reader that µA and µB are the means of the distributions from which

execution times are sampled.
2 At [20], the interested reader can find the complete set of results.
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Fig. 2: Typical behavior of the system with action execution times. All figures show āT

as a function of the agents’ initial probabilities p0
i . (a) Effect of varying µratio. (b)

Effect of varying the number of agents n. (c) Effect of varying c1 and c2. (d) Effect of
varying the number of simultaneously active agents k. The values of the parameters
that are not varied are shown in boldface in Table 1.

Fig. 3). Each robot in the group (composed of 20 robots) must choose between
going straight to the goal and traverse a muddy area which slows it down, or
going around the muddy area through a free, but longer, passage. The best choice
can only be determined by trial and error because the robots are not equipped
with means to measure time or detect terrain differences. In the example, a
maximum of k = 15 robots can run in parallel. Initially, each robot chooses a path
completely at random (p0

i = 0.5). To simulate the “observation” of an agent’s
action, robots communicate their choice with others through an RFID tag that
is placed on the ground. Action IDs are read and overwritten each time a robot
passes over it. As expected, all robots eventually choose the fastest path even
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Fig. 3: (a) Example scenario: Robots need to go from one point to another in the fastest
possible way. Each robot can choose between taking the shortest path, which traverses
a muddy area, or a longer, but free of mud, path. (b) Development over time of the
probability that the group of robots chooses the free path.

though there is no direct intentional communication nor centralized decision-
making mechanism. A video showing the system in action can be downloaded
from [20].

4 Conclusions

In this paper, we studied a decentralized decision-making mechanism in which
agents consider their own history and the actions of others to bias their own
choice. We found that when agents are subject to social influence, the population
can achieve consensus on one of two alternative choices. If agents’ actions are
linked to tasks that need time to be performed, the decentralized decision-making
mechanism described in this paper allows the population to choose the fastest
action, even if the individual agents cannot detect any difference between the
alternatives. Furthermore, the population can better identify the action with the
shortest execution time when the number of agents and the ratio between the
alternatives’ execution time grow. The mechanism and examples presented in
this paper show that social behavior can lead to collective cooperative behavior.

Future work includes the investigation of simpler mechanisms, multi-choice
problems, continuous ranges of decisions and dynamic environments.
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