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et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2009-017

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



Estimation-based Metaheuristics for

the Probabilistic Traveling Salesman Problem

Prasanna Balaprakash pbalapra@ulb.ac.be

Mauro Birattari mbiro@ulb.ac.be
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Abstract

The probabilistic traveling salesman problem (PTSP) is a cen-
tral problem in stochastic routing. Recently, we have shown that empirical
estimation is a promising approach to devise highly effective local search
algorithms for the PTSP. In this paper, we customize two metaheuristics,
an iterated local search algorithm and a memetic algorithm, to solve the
PTSP. This customization consists in adopting the estimation approach
to evaluate the solution cost, exploiting a recently developed estimation-
based local search algorithm, and tuning the metaheuristics parameters.
We present an experimental study of the estimation-based metaheuris-
tic algorithms on a number of instance classes. The results show that
the proposed algorithms are highly effective and that they define a new
state-of-the-art for the PTSP.

1 Introduction

Designing effective algorithms for stochastic routing problems is a difficult task.
The difficulty is due to the element of uncertainty in the data, which increases
the complexity of finding an optimal solution in a large search space. Exact
techniques can solve only small instances to optimality. This motivated re-
searchers and practitioners to focus on metaheuristics, an important class of
stochastic local search (SLS) methods (Hoos and Stützle, 2005). Unfortunately,
the literature on metaheuristics for tackling stochastic routing problems is rather
underdeveloped when compared to the deterministic case even if it is receiving
increasing attention.

The probabilistic traveling salesman problem (PTSP) (Jaillet, 1985)
is a central problem in stochastic routing. It is an NP-hard problem that has a
number of practical applications not only in transportation but also in strategic
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planning and scheduling (Bertsimas, 1988). The PTSP is similar to the TSP
with the main difference being that each node has a probability of requiring a
visit. The goal is to find a TSP tour that minimizes the expected cost of the
pruned tour: this pruned tour is obtained only after knowing the nodes that
require being visited and skipping the nodes that do not require being visited
according to some predefined rules.

Based on the way in which the expected cost is determined, the optimization
algorithms for the PTSP can be grouped into two classes: analytical computa-

tion algorithms, which use closed form expressions for computing the expected
cost, and estimation-based algorithms, which use Monte Carlo simulation for es-
timating the expected cost. In this paper, we tackle the PTSP by using effective
estimation-based metaheuristics, a goal which is a natural extension of our two
earlier research efforts. First, we developed 2.5-opt-EEais (Birattari et al.,
2008; Balaprakash et al., 2009a), a new state-of-the-art iterative improvement
algorithm for the PTSP that uses an estimation-based approach to compute
the cost difference between two solutions. Second, we showed that the inte-
gration of two PTSP-specific algorithmic components, 2.5-opt-EEais as local
search and an estimation-based approach to evaluate the solution cost of artifi-
cial ants, into an ant colony optimization (ACO) algorithm (Dorigo and Stützle,
2004) is highly beneficial in terms of computation time and solution qual-
ity (Balaprakash et al., 2009b). Here, we extend our work to metaheuristics
that are known to have high performance on the related traveling salesman

problem (TSP). In particular, we integrate the two PTSP-specific components
into iterated local search (ILS) (Lourenço et al., 2002) and memetic algorithms
(MAs) (Moscato, 1989, 1999). We present an experimental study to compare
the two algorithms to the recently developed estimation-based ACO algorithm
and we show that for various instance classes they can improve upon the ACO
algorithm. As a control algorithm, we consider a random restart local search
(RRLS) algorithm. In fact, the results show that all metaheuristics significantly
outperform RRLS. A further comparison to the so far best performing analyti-
cal computation metaheuristics for the PTSP clearly establishes the estimation-
based algorithms as the new state-of-the-art for the PTSP.

The paper is organized as follows. In Section 2, we describe the PTSP and
its solution approaches. In Section 3, we discuss the proposed estimation-based
metaheuristics. In Section 4, we evaluate their performances. In Section 5, we
conclude the paper.

2 The probabilistic traveling salesman problem

An instance of the PTSP is defined on a graph G with the following elements:

• a set V = {1, 2, . . . , n} of nodes;

• a set A = {〈i, j〉 : i, j ∈ V, i 6= j} of edges, where an edge 〈i, j〉 connects
the nodes i and j;
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Figure 1: The left plot shows an a priori solution for a PTSP instance with 16 nodes. The

order in which the nodes are visited in the a priori solution is: 1, 2, 3,. . ., 15, 16, and 1. Let

us assume that, according to a realization of ω, the nodes 1, 3, 5, 7, 9, 11, 13, and 15 are to

be visited. The right plot shows the a posteriori solution that visits the nodes following the

a priori solution but skipping the nodes 2, 4, 6, 8, 10, 12, 14, and 16.

• a set C = {cij : 〈i, j〉 ∈ A} of travel costs, where cij is the cost of traversing
an edge 〈i, j〉; the costs are assumed to be symmetric, that is, for all pairs
of nodes i, j we have cij = cji;

• a set P = {pi : i ∈ V } of probabilities, where pi specifies the probability
that a node i requires being visited. The events that two distinct nodes i
and j require being visited are assumed to be independent.

The probabilistic data of the PTSP can be modeled using a random variable ω

that follows an n-variate Bernoulli distribution. A realization of ω is a vector
of binary values, where a value ‘1’ in position i indicates that node i requires
being visited whereas a value ‘0’ means that it does not require being visited.
A PTSP instance is called homogeneous if all probability values in the set P
are the same; it is called heterogeneous, if for at least two nodes the values are
different.

The PTSP is usually tackled by a priori optimization (Jaillet, 1985; Bertsimas et al.,
1990), which comprises two stages. First, an a priori solution, a Hamiltonian
tour, is determined before the realization of ω is available. Once the nodes that
require being visited are known, in the second stage the a posteriori solution is
derived from the a priori solution by visiting the nodes in the same order as
in the a priori solution and by excluding the nodes that do not require being
visited. The goal is to find an a priori solution with minimum expected a pos-

teriori solution cost. See Figure 1 for an illustration of a priori and a posteriori

solutions.

The analytical computation approach computes the cost F (x) of an a priori

solution x = (π(1), π(2), . . . , π(n), π(n + 1) = π(1)), where π is a permutation
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of the set V , using the following closed-form expression (Jaillet, 1985):

F (x) =

n∑

i=1

n∑

j=i+1

cπ(i)π(j) pπ(i)pπ(j)

j−1∏

k=i+1

(1 − pπ(k))

+
n∑

j=1

j−1∑

i=1

cπ(j)π(i) pπ(i)pπ(j)

n∏

k=j+1

(1 − pπ(k))
i−1∏

k=1

(1 − pπ(k)). (1)

For the homogeneous PTSP, Equation 1 can be written as

F (x) =

n∑

i=1

n−1∑

j=1

p2(1 − p)
j−1

cπ(i),π(1+((i+j−1) mod n)),

where p is the probability value, which is common to all nodes, and mod is the
modulo operator.

The empirical estimation approach for the PTSP falls into the so-called sam-
ple average approximation (Kleywegt et al., 2002), which consists in estimating
the cost F (x) on the basis of sample costs f(x, ω1), f(x, ω2), . . . , f(x, ωM ) of a

posteriori solutions obtained from M independent realizations ω1, ω2, . . . , ωM

of the random variable ω:

F̂M (x) =
1

M

M∑

r=1

f(x, ωr). (2)

As it can easily be shown, F̂M (x) is an unbiased estimator of F (x). Note that
the number M of realizations is crucial for the effectiveness of this approach—we
will revisit this issue in Section 3.2.

The development of metaheuristics to solve the PTSP has received con-
siderable attention in recent years. This is in part due to the fact that the
state-of-the-art exact technique, a branch and cut algorithm based on integer
two-stage stochastic programming (Laporte et al., 1994), has solved to opti-
mality only instances of size up to 50. Much of the early research in the
development of metaheuristics for the PTSP focused on algorithms that use
analytical computation. Bianchi et al. (2002a,b) proposed pACS, an ant colony
system (ACS) (Dorigo and Gambardella, 1997) that adopts Equation 1 to com-
pute the cost of solutions. Branke and Guntsch (2003, 2004) and Liu (2007,
2008) used a truncated version of Equation 1 in pACS and in a scatter search
algorithm, respectively. Bianchi (2006) and Bianchi and Gambardella (2007)
integrated 1-shift, an analytical computation local search algorithm, into pACS
and showed that the resulting pACS+1-shift algorithm is very effective. Re-
cently, Marinakis and Marinaki (2009) proposed HybMSPSO, a particle swarm
optimization algorithm built on the top of a PTSP-specific greedy randomized
adaptive search procedure (Marinakis et al., 2008). HybMSPSO also adopts
Equation 1 to compute the solution cost. The authors show that HybMSPSO
obtains slightly better solutions than pACS+1-shift. However, there are two
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main problems in this comparative study. Firstly, it is not clear if the observed
differences are significant in a statistical sense. Secondly, the same set of in-
stances is used to fine tune the parameters of HybMSPSO, to select HybMSPSO
as the best from a set of seven algorithms, and to compare HybMSPSO with
pACS and pACS+1-shift: this might possibly induce a bias in favor of HybM-
SPSO. Note that the second problem is known as over-tuning (Birattari et al.,
2006; Birattari, 2009).

Concerning estimation-based algorithms, Gutjahr (2003, 2004) proposed a
general purpose, estimation-based ACO algorithm called S-ACO and a variant
S-ACOa. While in S-ACO, the number of realizations needed for cost estima-
tion is increased linearly in dependence of the iteration number, in S-ACOa, the
number of realizations is determined based on a statistical test. Gutjahr used
the PTSP to calibrate the algorithm parameters. ACO/F-Race (Birattari et al.,
2005) is an improved variant of S-ACOa, in which the number of realiza-
tions for each comparison is determined on-line based on the F-Race procedure
(Birattari et al., 2002; Birattari, 2009). Recently, in Balaprakash et al. (2009b),
we extended ACS with our effective estimation-based iterative improvement
algorithm, 2.5-opt-EEais (Balaprakash et al., 2009a) and an ANOVA-Race
procedure. This procedure is based on a parametric statistical test for multi-
ple comparisons to determine the number of realizations. We showed that the
estimation-based ACS+2.5-opt-EEais is more effective than pACS+1-shift.

Bowler et al. (2003) proposed a proof-of-concept stochastic simulated an-
nealing for the PTSP in which the annealing schedule is controlled by the sam-
pling error of the cost estimation. In Balaprakash et al. (2009a), we imple-
mented a simple iterated local search algorithm that adopts the state-of-the-art
iterative improvement algorithm, 2.5-opt-EEais, as local search. This algo-
rithm is primarily used to show that the advantage of using
2.5-opt-EEais over 1-shift remains once they are included into a metaheuristic.
Therefore, the algorithm is not compared to current state-of-the-art algorithms.
Note that the iterated local search that we discuss in this paper is an improved
variant of the one proposed in Balaprakash et al. (2009a).

To summarize, ACO dominates the literature with pACS+1-shift and estimation-
based ACS being the best available metaheuristics for the analytical computa-
tion approach and the estimation-based approach, respectively. Although the
effectiveness of HybMSPSO is not quite clear, high quality solutions have been
reported. Therefore, we consider it as a state-of-the-art algorithm for the PTSP
and we include it in our analysis.

3 Estimation-based approach

In this section, first we summarize the 2.5-opt-EEais algorithm, which is used
as the underlying local search heuristic for all metaheuristics. Then, we briefly
describe the implemented metaheuristics and we highlight the customizations
performed to tackle the PTSP.
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Figure 2: In this example, the two edges 〈3, 4〉 and 〈9, 10〉 are deleted and replaced with

〈3, 9〉 and 〈4, 10〉 by a 2-exchange move. Assume that minis and u are both set to 40. Since

the number of nodes in the segment [4, . . . , 9] is less than 40% of 20 (that is, eight), importance

sampling is used to bias 40% of 6 (that is, two) nodes between 4 and 9 on each end of the

segment. The nodes biased are 4, 5, 8 and 9.

3.1 The 2.5-opt-EEais algorithm

2.5-opt-EEais (Balaprakash et al., 2009a) is a state-of-the-art iterative im-
provement algorithm for the PTSP. It adopts the 2.5-exchange neighborhood,
which combines the 2-exchange and the node-insertion neighborhoods (Bentley,
1992). The cost differences between neighboring solutions are computed using
delta evaluation based on an estimation approach that includes three variance
reduction techniques, namely method of common random numbers, adaptive
sample size, and importance sampling (Rubinstein, 1981). The algorithm has
three parameters that affect the PTSP-specific importance sampling procedure.
This procedure, which is crucial for tackling instances with very low probability
values, works as follows. In 2-exchange moves, when the number of nodes in
one of the two segments is less than minis% of the instance size, u% nodes of
the shorter segment are biased to probability p′. See Figure 2 for an example,
where the shorter of the two segments is marked by minis%. In node-insertion
moves, the insertion node is biased to probability value p′′. Whenever a node i
is biased, the delta evaluation procedure ignores realizations sampled with the
original probability pi and considers instead realizations sampled with the bi-
ased probability that is larger than pi. The cost difference estimate obtained in
this way is then corrected for the artificial bias using the likelihood ratio. The
effectiveness of this algorithm is also due to the adoption of the following neigh-
borhood reduction techniques: fixed-radius search, candidate lists, and don’t
look bits (Bentley, 1992; Johnson and McGeoch, 1997). For more details, we
refer the reader to Balaprakash et al. (2009a).

3.2 Estimation-based metaheuristics

A straightforward approach to make a metaheuristic estimation-based is to es-
timate the cost of solutions using Equation 2. An important issue in using the
estimation-based approach within a metaheuristic is determining if one solution
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is better than another: since the cost of a solution is estimated, there is an
inherent variance associated with the cost estimate. To reduce the variance of
the cost estimate, we adopt two variance reduction techniques: (i) the method
of common random numbers and (ii) an adaptive sample size procedure.

The method of common random numbers is one of the most widely used
techniques to reduce the variance of an estimator. For the PTSP, this technique
uses a same set of realizations to evaluate the cost of solutions produced at each
iteration of a metaheuristic.

The estimation problem becomes crucial for PTSP instances with low prob-
ability values. This is due to the fact that the estimator of the cost of solutions
has a very high coefficient of variation: with respect to the expected value, the
variance is very high. In this case, the adoption of a large number of realizations
improves the estimation because the variance of the estimator decreases with
O(1/

√
M), where M is the number of realizations. However, for instances with

high probability values, the use of a large number of realizations results in a
waste of computation time. This issue can be addressed by using an adaptive
sample size procedure, which selects the most appropriate number of realiza-
tions for each estimation with respect to the variance. This adaptive sample
size procedure can be realized using Student’s t-test: Given two solutions, the
cost estimate of each solution is computed on a realization-by-realization basis.
As soon as the t-test rejects the null hypothesis that the cost estimates of the
two solutions are equal, the computation is stopped. If no statistical evidence
is gathered, the computation is continued until a maximum number M of real-
izations, where M is a parameter of the procedure. Finally, the solution with
the lower cost estimate is selected as the best. Note that Gutjahr (2004) used
a very similar procedure within S-ACOa.

The aforementioned adaptive sample size procedure can be adopted easily to
compare two solutions in algorithms such as iterated local search (ILS). However,
in memetic algorithms (MAs), a set of solutions needs to be compared at each
iteration. For this purpose, we use ANOVA-Race, which we developed for the
estimation-based ACS. ANOVA-Race is a racing algorithm based on analysis of
variance (ANOVA) (Fisher, 1925), which is implemented as follows: a given set
of solutions is sequentially evaluated on a number of realizations. The ANOVA
test is used to gather a statistical evidence that the cost estimate of a solution
is worse than at least another one. As soon as this evidence is obtained, the
inferior solution is discarded and not considered for further evaluation. The
inferior solution is identified using Tukey’s honestly significant differences test
(Tukey, 1949). The procedure stops when either one single solution remains,
or when any of the surviving candidate solutions is evaluated on a maximum
number M of realizations. If more than one solution survives the race, the
solution with the least cost estimate is selected as the best one.

3.2.1 Random restart local search

RRLS consists in applying a local search algorithm a number of times, start-
ing each time from a new initial solution, which is generated independently of
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the previously found local optima. For the PTSP, we implemented an RRLS
algorithm that at each iteration generates a new starting solution by using the
nearest neighbor heuristic and then applies 2.5-opt-EEais. Once each of the n
possible nearest neighbor solutions has been generated, the algorithm considers
a random solution as the starting point. In order to compare the current lo-
cal optimum to the best-so-far local optimum, the algorithm uses the adaptive
sample size procedure with the t-test. We denote this algorithm as RRLS-EE,
where EE refers to empirical estimation.

3.2.2 Iterated local search

ILS consists in a sequence of runs of a local search algorithm, where the ini-
tial solution of each run is obtained by a perturbation of the incumbent local
optimum. The implementation of ILS for the PTSP is a straightforward exten-
sion of TSP-specific ILS algorithms. It starts from a nearest neighbor solution
and uses 2.5-opt-EEais as the underlying local search algorithm. The pertur-
bation consists of applying ndb random double-bridge moves and changing the
position of ps% of n nodes, where ps and ndb are parameters and n is the size
of the instance. This change of the position is done by picking uniformly at
random ps% of n nodes, removing them from the solution and then re-inserting
them according to the farthest insertion heuristic. The adoption of this hy-
brid perturbation is inspired by the observation that node insertion moves used
in 1-shift are very effective when probability values associated with the nodes
are small (Bianchi et al., 2005; Bianchi and Campbell, 2007; Balaprakash et al.,
2009a; Birattari et al., 2008). Hence, the proposed hybrid scheme is suitable for
a wide range of probability values. The acceptance criterion compares two local
optima using the adaptive sample size procedure with the t-test. The algorithm
is restarted from a new nearest neighbor solution when no improvement is ob-
tained for rstit · n iterations, where rstit ∈ [0, 1] is a parameter. We denote this
algorithm ILS-EE.

3.2.3 Memetic algorithms

MAs are iterative procedures that start with an initial population of solutions,
which is then repeatedly improved by applying a series of genetic operators and
local search. As a starting point, we choose MAGX (Merz and Freisleben, 2001),
one of the most effective memetic algorithms for the TSP. In this algorithm, the
initialization phase consists in generating a number of solutions using a random-
ized variant of the greedy construction heuristics and applying a local search to
each of them. The number of solutions is given by a parameter pop size. At each
iteration, off frac × pop size offsprings are produced, where off frac ∈ (0, 1] is
a parameter. Each offspring is generated from two parent solutions using the
following three step greedy recombination operator: first, all edges that are com-
mon to the parents are copied to the offspring; second, a number (determined
by a parameter pn) of new short edges that are not common to the parents are
added to the offspring; third, a number (determined by a parameter pc) of low
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cost edges from the parents are copied to the offspring. A random double bridge
move is used for mutating the individuals and the candidates for mutation are
chosen at random. Local search is applied on any new solution that is gener-
ated by mutation or recombination. The customization of this algorithm to the
PTSP consists in using the ILS composite perturbation mechanism parameter-
ized by ndb and ps (see Section 3.2.2) as the mutation operator, ANOVA-Race
at each iteration to compare the cost of the solutions, and 2.5-opt-EEais as
the local search. The mutation is performed when all solutions survive the race
at a given iteration. We denote this algorithm MAGX-EE.

3.2.4 Ant colony optimization

As an ACO algorithm for the PTSP, we choose ACS-EE (Balaprakash et al.,
2009b), a recent state-of-the-art ACO algorithm for the PTSP. It is an ex-
tension of the ant colony system (ACS) algorithm (Dorigo and Gambardella,
1997) designed for the TSP. At each iteration, m ants, where m is a parame-
ter, construct solutions in the following way. Initially, each ant is placed at a
randomly selected node; the choice of the ant to move from the current node
i to a next node j depends on q, a random variable uniformly distributed over
[0, 1], and a parameter q0. If q ≤ q0, then the ant chooses the node j that

maximizes the product τijη
β
ij ; otherwise the node j is chosen with probability

pk
ij = τijη

β
ij/

∑
l∈Nk

i

τilη
β
il as the next node. The terms τij and ηij = 1/cij are

the pheromone value and the heuristic value associated with edge 〈i, j〉, respec-
tively; β is a parameter that determines the relative influence of the heuristic
information; Nk

i is the set of feasible nodes to move from node i. ACS up-
dates pheromone in two phases. The first phase takes place when an ant moves
from node i to node j: the pheromone value associated with the edge 〈i, j〉 is
updated to τij = (1 − ϕ) · τij + ϕ · τ0. Typically, ϕ is set to 0.1, and τ0, the
initial value of the pheromone, is set to 1/(n × Cnn), where Cnn is the TSP
cost of a nearest neighbor solution. The second phase takes place at the end
of each iteration: the pheromone value associated with each edge 〈i, j〉 of the
best-so-far solution is updated to τij = (1− ρ) · τij + ρ ·∆τbest

ij , where ρ ∈ (0, 1]

is a parameter and ∆τbest
ij = 1/Cbest. The value of Cbest is set to the cost

of the best-so-far solution. The PTSP-specific customization consists of using
ANOVA-Race to evaluate the cost of solutions produced at each iteration and
adopting 2.5-opt-EEais as the local search, which is applied to all solutions
constructed by the ants prior to the pheromone update.

4 Experimental analysis

In this section, we present the experimental setting and the empirical results.
The goal of the experiments is to assess the performance of the proposed meta-
heuristics and to compare them to the state-of-the-art analytical computation
algorithms for the PTSP.
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4.1 Experimental setup

The PTSP instances used for the experiments are obtained as follows: first we
generated TSP instances with the DIMACS instance generator (Johnson et al.,
2001); from these TSP instances, PTSP instances are obtained by associating a
probability value to each node using a beta distribution as described by Bianchi
(2006). In this scheme, the probability values of each instance are characterized
by two parameters: the mean probability pm and the percentage of maximum
variance pv: when an instance is generated with pm and pv, the expected value
and the variance of the random variable ω parameterized by P are pm and
(pv/100) · pm(1− pm), respectively. For the sake of convenience, we refer to the
probability level of an instance as p = pm(pv%). We considered the values for pm

from 0.050 to 0.200 with increments of 0.025 and from 0.3 to 0.5 with increments
of 0.1; for each value of pm, we considered four values for pv: {0, 16, 50, 83}. We
generated 50 instances for each probability level, each with 1000 nodes arranged
as a number of clusters in a 106 × 106 square.

The generated instances are grouped into three classes according to pm:
{0.050, 0.075, 0.100} (Class I), {0.150, 0.175, 0.200} (Class II), {0.300, 0.400, 0.500}
(Class III). This resulted in 12 levels (3 levels of pm times 4 levels of pv) per
instance class. This grouping is based on our previous study on 2.5-opt-EEais

(Balaprakash et al., 2009a), where we found that on our hardware setting, on
clustered instances of size 1000, 2.5-opt-EEais reaches local optima in approx-
imately 6, 2, and 1 CPU second(s) on the instances grouped under Class I, Class
II, and Class III, respectively.

All algorithms are implemented in C and compiled with gcc, version 3.3. The
implementation of ACS-EE is based on ACOTSP (Stützle, 2002). Experiments
are carried out on AMD OpteronTM244 processors running at 1.75 GHz with 1
MB L2-Cache and 2 GB RAM under Rocks Cluster GNU/Linux.

We use 100 and 1000 CPU seconds as stopping criteria for each algorithm.
This setup allows the algorithms to perform a relatively small and large number
of iterations and it enables us to test the relative performance of the algorithms
under different application scenarios, in particular, short and long computation
time.

In RRLS-EE, ILS-EE, and MAGX-EE, the nearest-neighbor heuristic is used
to generate initial solutions. In ACS-EE, the size of the candidate list for so-
lution construction is set to 40 and it is generated with the quadrant nearest-
neighbor strategy (Penky and Miller, 1994; Johnson and McGeoch, 1997). The
minimum number of realizations used in the adaptive sampling procedure before
applying the t-test/ANOVA-Race is set to five. The null hypothesis is rejected
at a significance level of 0.05. The maximum number M of realizations is set
to one thousand in all algorithms. The critical values of the t-test, ANOVA,
and Tukey tests are pre-computed and stored in a lookup table. Each algo-
rithm uses a same set of realizations for all iterations. In the context of the
PTSP, this strategy is more effective than changing realizations for each iter-
ation (Birattari et al., 2008). However, the realizations are selected randomly
from the given set at each iteration. Equation 1 is used for the post-evaluation
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Table 1: Fine tuned parameter values for 2.5-opt-EEais. This table gives the parameters

considered for tuning, the range of each parameter given to Iterative F-Race, and the chosen

values for each instance class. For an explanation of the parameters, see Section 3.2.

algorithm parameters range selected value

Class-I Class-II Class-III

2.5-opt-EEais

minis [0.0, 50.0] 42.0 46.0 2.40
w [0.0, 20.0] 13.0 16.0 5.80
p′ [0.0, 1.0] 0.003 0.47 0.70
p′′ [0.0, 1.0] 0.92 0.67 0.95

of the best-so-far solutions found by all estimation-based metaheuristics.
Due to space limitations, we present only the results obtained on certain

instance sets. The general trends of the results on other instances are consistent
with the results presented here and the complete results can be inspected in
Balaprakash et al. (2008).

4.2 Parameter tuning

A major PTSP-specific customization of the estimation-based metaheuristics
consists in finding appropriate values for their parameters. For this purpose, we
used a parameter tuning algorithm, Iterative F-Race (Balaprakash et al., 2007).
For each of the three instance classes, we generated 120 instances (12 probability
levels times 10 instances). The parameter tuning is done in two phases: in the
first phase, the parameters of 2.5-opt-EEais are fine tuned on each instance
class. The obtained parameter values are reported Table 1.

In the second phase, we tuned the parameters of the metaheuristics on each
instance class for two stopping criteria: 100 and 1000 CPU seconds. In total,
Iterative F-Race is run 18 times (3 metaheuristics times 3 instance classes times
2 stopping criteria), each with a computational budget of 1000 metaheuristic
runs. Note that RRLS-EE is not included in the tuning because it does not
have any parameters apart from the ones of 2.5-opt-EEais. The tuning with
Iterative F-Race was repeated 10 times. This was done to ensure that the
observed trends in the results are not an artifact of the stochastic nature of
Iterative F-Race, which is itself a stochastic algorithm. Consequently, for each
instance class and stopping criterion combination, we have a set of 10 fine tuned
parameter configurations for each metaheuristic. We report all the obtained
parameter configurations in Balaprakash et al. (2008).

4.3 Comparison between estimation-based metaheuristics

In this section, we compare the cost of the solutions obtained by ILS-EE,
MAGX-EE, ACS-EE, and RRLS-EE in 100 and 1000 CPU seconds. To quan-
tify the effectiveness of each algorithm, we study the expected solution cost of
a metaheuristic, where the expectation is taken with respect to the set of 10
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Figure 3: An exemplary run time development plot on clustered PTSP instances of 1000

nodes for 100 CPU seconds. The plot represents the cost of the solutions obtained by ILS-

EE, MAGX-EE, ACS-EE, and RRLS-EE. The obtained solution costs of the algorithms are

normalized by the final solution cost reached by RRLS-EE. The normalization is done on an

instance-by-instance basis for 50 instances; the normalized solution cost is then aggregated.

parameter configurations and the set of all test instances. In order to group
the results obtained on different instances on each instance class, the cost of
the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE are normalized by
the final solution cost reached by RRLS-EE. The normalization is done on an
instance-by-instance basis for 50 instances for each probability level.

Figure 3 shows an exemplary run time development plot that characterizes
the development of the solution cost of the algorithms over time up to 100
CPU seconds. The observed trends are very similar for all probability levels.
From the plot, we can observe the following general trend: the initial solution is
improved by 30% to 40% in a very short computation time of 10 CPU seconds.
The traces of the algorithms show that this large improvement is achieved in
the very first iteration. The reason for this behavior is that the first run of
2.5-opt-EEais on the initial solution allows each algorithm to obtain a large
improvement. Note that in the case of population-based algorithms, the plots
take into account the improvement incurred by the first local search applied to an
individual of the population. Further improvements in the following iterations
are considerably smaller than that in the first iteration. When going from 100
to 1000 CPU seconds, all four algorithms achieved an average solution cost
that is less than that for 100 CPU seconds—see absolute values reported in
Balaprakash et al. (2008). The improvements for this one order of magnitude
increase in computation time are up to 3%. In particular, MAGX-EE and ACS-
EE highly profit from the longer computation time.
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Figure 4 shows the box plot of the solution cost of the algorithms after 100
and 1000 CPU seconds. The solution cost of RRLS-EE is significantly worse
than that of all other algorithms across most probability levels. An interesting
observation from the plots is that the difference in the solution cost between
RRLS-EE and the other algorithms increases with an increase of the mean
probability value pm. (Recall that pm increases from Class I to Class III).
This shows that for instances with small pm, it is feasible to find high quality
solutions by simply restarting 2.5-opt-EEais with different initial solutions.
However, for instances with large values of pm, besides 2.5-opt-EEais, the use
of sophisticated metaheuristics is crucial to find high quality solutions.

Table 2 reports the observed relative difference between the solution costs
obtained by the algorithms for 100 CPU seconds with a 95% confidence bound
obtained through a t-test. The results show that ILS-EE is more effective than
the other algorithms. The average cost of the solutions obtained by ILS-EE is
up to 0.87% and 1.27% less than that of MAGX-EE and ACS-EE, respectively.
The observed differences are significant according to a t-test except for a few
probability levels, where the observed differences between the algorithms are not
significant or ILS-EE obtains solution costs that are slightly worse than those of
ACS-EE. Considering the relatively short computation time, the effectiveness of
ILS-EE can be explained as follows: since 2.5-opt-EEais is applied on a single
solution at each iteration unlike MAGX-EE and ACS-EE, ILS-EE can do more
iterations and exploit better the best solution found so far.

The results for 1000 CPU seconds are given in Table 3. The results show
that ILS-EE and MAGX-EE are particularly effective on instances of Class I
and Class II. On Class I instances, ILS-EE and MAGX-EE obtain solutions
whose averages are 0.04% less than that of ACS-EE, respectively. On Class II
instances, ILS-EE is more effective than MAGX-EE and ACS-EE: the average
solution cost obtained by ILS-EE is 0.09% and 0.16% less than that of ACS-EE
and MAGX-EE, respectively. However, on Class III instances, ACS-EE achieves
an average solution cost which is between 0.22% and 0.05% less than that of
ILS-EE and MAGX-EE, respectively.
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(a)

(b)

Figure 4: Experimental results on clustered PTSP instances of 1000 nodes. The box plots

represent the cost of the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE. The ob-

tained solution costs of the algorithms are normalized by the final solution cost reached by

RRLS-EE. The normalization is done on an instance-by-instance basis for 50 instances; the

normalized solution cost is then aggregated. The dotted horizontal line denotes therefore the

final cost of RRLS-EE.
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Table 2: Comparison of the average cost obtained by ILS-EE, MAGX-EE, and ACS-EE on

clustered instances with 1000 nodes for 100 CPU seconds. See Footnote 1 for an explanation

of the contents and the typographic conventions adopted in the table.

ILS-EE
vs.

MAGX-EE

ILS-EE
vs.

ACS-EE

MAGX-EE
vs.

ACS-EE

p d CI d CI d CI

C
la

ss
I

0.050(00%) −0.06 [−0.10,−0.03] −0.50 [−0.59,−0.40] −0.43 [−0.53,−0.33]
0.050(16%) −0.07 [−0.11,−0.02] −0.20 [−0.25,−0.15] −0.13 [−0.19,−0.08]
0.050(50%) −0.03 [−0.06, +0.00] −0.02 [−0.05, +0.01] +0.01 [−0.02, +0.04]
0.050(83%) −0.01 [−0.03, +0.01] −0.00 [−0.02, +0.02] +0.01 [−0.02, +0.03]
0.075(00%) −0.09 [−0.12,−0.06] −0.36 [−0.40,−0.33] −0.27 [−0.31,−0.24]
0.075(16%) −0.11 [−0.14,−0.08] −0.32 [−0.35,−0.29] −0.22 [−0.25,−0.18]
0.075(50%) −0.10 [−0.13,−0.07] −0.24 [−0.26,−0.21] −0.14 [−0.17,−0.10]
0.075(83%) −0.03 [−0.05,−0.01] −0.07 [−0.09,−0.05] −0.04 [−0.06,−0.02]
0.100(00%) −0.18 [−0.21,−0.14] −0.64 [−0.68,−0.60] −0.46 [−0.51,−0.42]
0.100(16%) −0.16 [−0.19,−0.13] −0.63 [−0.66,−0.59] −0.47 [−0.51,−0.43]
0.100(50%) −0.16 [−0.19,−0.12] −0.41 [−0.44,−0.37] −0.25 [−0.29,−0.21]
0.100(83%) −0.06 [−0.09,−0.03] −0.28 [−0.32,−0.24] −0.22 [−0.25,−0.19]

overall −0.09 [−0.10,−0.08] −0.31 [−0.32,−0.29] −0.22 [−0.23,−0.21]

C
la

ss
II

0.150(00%) −0.23 [−0.26,−0.20] −0.44 [−0.48,−0.40] −0.21 [−0.26,−0.17]
0.150(16%) −0.45 [−0.48,−0.41] −0.77 [−0.82,−0.72] −0.33 [−0.38,−0.27]
0.150(50%) −1.28 [−1.35,−1.21] −1.84 [−1.92,−1.75] −0.57 [−0.67,−0.46]
0.150(83%) −1.79 [−1.89,−1.69] −2.67 [−2.82,−2.52] −0.90 [−1.07,−0.72]
0.175(00%) −0.19 [−0.23,−0.15] −0.38 [−0.43,−0.33] −0.19 [−0.24,−0.15]
0.175(16%) −0.44 [−0.49,−0.40] −0.74 [−0.79,−0.69] −0.30 [−0.35,−0.24]
0.175(50%) −1.12 [−1.18,−1.06] −1.57 [−1.63,−1.50] −0.45 [−0.53,−0.37]
0.175(83%) −1.59 [−1.67,−1.51] −2.30 [−2.41,−2.19] −0.72 [−0.85,−0.59]
0.200(00%) −0.25 [−0.29,−0.21] −0.32 [−0.36,−0.27] −0.06 [−0.11,−0.02]
0.200(16%) −0.41 [−0.45,−0.36] −0.62 [−0.67,−0.56] −0.21 [−0.26,−0.15]
0.200(50%) −1.04 [−1.09,−0.98] −1.43 [−1.49,−1.37] −0.40 [−0.48,−0.32]
0.200(83%) −1.57 [−1.64,−1.50] −2.14 [−2.21,−2.06] −0.57 [−0.66,−0.48]

overall −0.86 [−0.89,−0.84] −1.27 [−1.30,−1.24] −0.41 [−0.44,−0.38]

C
la

ss
II

I

0.300(00%) −0.17 [−0.23,−0.11] +0.02 [−0.04, +0.07] +0 .19 [+0.14, +0.24]
0.300(16%) −0.17 [−0.23,−0.11] −0.03 [−0.09, +0.03] +0 .13 [+0.08, +0.19]
0.300(50%) −0.43 [−0.51,−0.36] −0.70 [−0.78,−0.63] −0.27 [−0.34,−0.20]
0.300(83%) −0.77 [−0.85,−0.69] −1.36 [−1.45,−1.27] −0.59 [−0.69,−0.50]
0.400(00%) −0.16 [−0.22,−0.10] +0 .16 [+0.09,+0.22] +0 .32 [+0.27, +0.37]
0.400(16%) −0.18 [−0.25,−0.10] +0 .15 [+0.08,+0.23] +0 .33 [+0.28, +0.38]
0.400(50%) −0.29 [−0.36,−0.21] −0.14 [−0.22,−0.07] +0 .15 [+0.09, +0.21]
0.400(83%) −0.48 [−0.56,−0.41] −0.65 [−0.74,−0.57] −0.17 [−0.25,−0.09]
0.500(00%) −0.18 [−0.25,−0.11] +0 .19 [+0.11,+0.26] +0 .37 [+0.32, +0.42]
0.500(16%) −0.20 [−0.28,−0.13] +0 .21 [+0.13,+0.28] +0 .41 [+0.36, +0.46]
0.500(50%) −0.14 [−0.22,−0.06] +0 .23 [+0.15,+0.31] +0 .37 [+0.31, +0.43]
0.500(83%) −0.54 [−0.62,−0.46] −0.28 [−0.36,−0.20] +0 .27 [+0.20, +0.33]

overall −0.31 [−0.33,−0.29] −0.19 [−0.21,−0.16] +0 .12 [+0.10, +0.14]

1 For a given comparison A vs. B, the table reports the observed relative difference d

between the two algorithms A and B and the 95% confidence interval CI obtained through
the t-test. If the value is positive, algorithm A obtained an average cost that is larger than
the one obtained by algorithm B. In this case, the value is typeset in italics if it is significantly
different from zero according to the t-test at a confidence level of 95%. If the value is negative,
algorithm A obtained an average cost that is smaller than the one obtained by algorithm B.
In this case, the value is typeset in boldface if it is significantly different from zero according
to the t-test, at a confidence level of 95%.
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Table 3: Comparison of the average cost obtained by ILS-EE, MAGX-EE, and ACS-EE on

clustered instances with 1000 nodes for 1000 CPU seconds. Typographic conventions are the

same as in Table 2.

ILS-EE
vs.

MAGX-EE

ILS-EE
vs.

ACS-EE

MAGX-EE
vs.

ACS-EE

p d CI d CI d CI

C
la

ss
I

0.050(00%) +0.00 [−0.01, +0.01] −0.06 [−0.06,−0.05] −0.06 [−0.06,−0.05]
0.050(16%) +0 .01 [+0.00, +0.01] −0.02 [−0.03,−0.01] −0.03 [−0.03,−0.02]
0.050(50%) +0 .01 [+0.00, +0.01] −0.00 [−0.01, +0.00] −0.01 [−0.01,−0.01]
0.050(83%) +0 .01 [+0.00, +0.01] +0.00 [−0.00, +0.01] −0.01 [−0.01,−0.00]
0.075(00%) +0 .02 [+0.01, +0.03] −0.07 [−0.08,−0.06] −0.08 [−0.09,−0.08]
0.075(16%) +0.00 [−0.01, +0.01] −0.06 [−0.07,−0.06] −0.06 [−0.07,−0.06]
0.075(50%) +0.00 [−0.00, +0.01] −0.02 [−0.03,−0.02] −0.03 [−0.03,−0.02]
0.075(83%) +0 .01 [+0.00, +0.01] −0.00 [−0.01, +0.00] −0.01 [−0.01,−0.00]
0.100(00%) −0.02 [−0.03,−0.01] −0.08 [−0.10,−0.06] −0.06 [−0.07,−0.04]
0.100(16%) −0.02 [−0.02,−0.01] −0.11 [−0.12,−0.09] −0.09 [−0.10,−0.08]
0.100(50%) −0.01 [−0.01,−0.00] −0.05 [−0.06,−0.05] −0.05 [−0.06,−0.04]
0.100(83%) +0.00 [−0.00, +0.01] −0.02 [−0.02,−0.01] −0.02 [−0.02,−0.02]

overall +0.00 [−0.00, +0.00] −0.04 [−0.04,−0.04] −0.04 [−0.04,−0.04]

C
la

ss
II

0.150(00%) +0 .04 [+0.02, +0.06] +0 .05 [+0.03,+0.07] +0.01 [−0.01, +0.03]
0.150(16%) −0.02 [−0.04, +0.00] −0.06 [−0.08,−0.04] −0.04 [−0.06,−0.02]
0.150(50%) −0.17 [−0.19,−0.15] −0.33 [−0.35,−0.30] −0.16 [−0.18,−0.13]
0.150(83%) −0.22 [−0.25,−0.19] −0.40 [−0.43,−0.38] −0.18 [−0.22,−0.15]
0.175(00%) +0 .05 [+0.02, +0.08] +0 .06 [+0.03,+0.09] +0.01 [−0.02, +0.04]
0.175(16%) −0.04 [−0.07,−0.02] −0.05 [−0.07,−0.02] −0.00 [−0.03, +0.03]
0.175(50%) −0.18 [−0.20,−0.15] −0.22 [−0.24,−0.19] −0.04 [−0.07,−0.01]
0.175(83%) −0.22 [−0.24,−0.19] −0.38 [−0.41,−0.35] −0.16 [−0.19,−0.13]
0.200(00%) +0 .07 [+0.04, +0.10] +0 .06 [+0.03,+0.09] −0.01 [−0.03, +0.02]
0.200(16%) +0.00 [−0.03, +0.03] −0.01 [−0.04, +0.02] −0.01 [−0.03, +0.02]
0.200(50%) −0.17 [−0.19,−0.14] −0.20 [−0.23,−0.18] −0.04 [−0.06,−0.01]
0.200(83%) −0.24 [−0.26,−0.21] −0.41 [−0.44,−0.39] −0.18 [−0.21,−0.15]

overall −0.09 [−0.10,−0.08] −0.16 [−0.17,−0.15] −0.07 [−0.07,−0.06]

C
la

ss
II

I

0.300(00%) +0 .18 [+0.14, +0.23] +0 .28 [+0.23,+0.32] +0 .09 [+0.06, +0.12]
0.300(16%) +0 .14 [+0.10, +0.18] +0 .20 [+0.16,+0.24] +0 .06 [+0.03, +0.09]
0.300(50%) +0.03 [−0.01, +0.07] −0.07 [−0.11,−0.02] −0.10 [−0.13,−0.06]
0.300(83%) −0.09 [−0.13,−0.05] −0.50 [−0.55,−0.45] −0.41 [−0.46,−0.36]
0.400(00%) +0 .22 [+0.17, +0.27] +0 .43 [+0.38,+0.48] +0 .21 [+0.18, +0.24]
0.400(16%) +0 .23 [+0.18, +0.28] +0 .40 [+0.34,+0.45] +0 .17 [+0.13, +0.20]
0.400(50%) +0 .18 [+0.13, +0.22] +0 .23 [+0.18,+0.28] +0 .05 [+0.02, +0.08]
0.400(83%) +0 .10 [+0.05, +0.15] −0.02 [−0.08, +0.03] −0.12 [−0.16,−0.08]
0.500(00%) +0 .29 [+0.24, +0.35] +0 .53 [+0.47,+0.59] +0 .23 [+0.20, +0.27]
0.500(16%) +0 .27 [+0.21, +0.32] +0 .49 [+0.43,+0.55] +0 .22 [+0.19, +0.25]
0.500(50%) +0 .28 [+0.22, +0.33] +0 .47 [+0.41,+0.53] +0 .19 [+0.16, +0.22]
0.500(83%) +0 .14 [+0.09, +0.19] +0 .21 [+0.15,+0.26] +0 .07 [+0.03, +0.10]

overall +0 .16 [+0.15, +0.18] +0 .22 [+0.20,+0.23] +0 .05 [+0.04, +0.07]
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Table 4: Fine tuned parameter values for each algorithm in 1000 CPU seconds. This table

gives the parameters considered for tuning, the range of each parameter given to Iterative

F-Race, and the chosen values for each instance class. For an explanation of the parameters,

see Section 3.2.

algorithm parameters range selected value

Class-I Class-II Class-III

ILS-EE
ps [1, 90] 1 1 1
ndb [1, 50] 1 1 1

rstitr [0, 1] 0.089 0.34 0.69

MAGX-EE

pop size [3, 15] 4 3 8
off frac [0.1, 1.0] 0.24 0.67 0.16

ps [1, 90] 9 2 1
ndb [1, 50] 1 1 1
pn [0.1, 1.0] 0.33 0.11 0.29
pc [0.1, 1.0] 0.92 0.97 0.72

ACS-EE

m [3, 15] 10 8 11
q0 [0.0, 1.0] 1.0 1.0 0.97
β [0.0, 5.0] 0.18 0.00 0.83
ρ [0.001, 1.0] 0.31 0.30 0.61

4.4 Comparison with analytical computation algorithms

Currently, the best performing analytical computation algorithms are pACS+1-
shift (Bianchi and Gambardella, 2007) and HybMSPSO (Marinakis and Marinaki,
2009). In this section, we compare ILS-EE, MAGX-EE and ACS-EE to these
two algorithms.

First, we focus on the comparison with pACS+1-shift. The algorithms are
evaluated on the instances adopted by Bianchi (2006) to show the effectiveness of
pACS+1-shift. These instances are generated from the well-known TSPLIB in-
stances, kroA100, eil101, ch150, d198, lin318, att532, and rat783; probabil-
ities associated with the nodes are generated by the beta distribution using the
same parameters as described for the previous set of experiments. We used the
stopping criterion suggested by Bianchi and Gambardella (2007) and Bianchi
(2006): each algorithm is allowed to run for a computation time of n2/100 CPU
seconds. This stopping criterion allows the algorithms to run for a very long
computation time. Concerning the parameter configuration for pACS+1-shift,
we use the one given in Bianchi and Gambardella (2007) and Bianchi (2006).
For the estimation-based algorithms, we choose the parameter values that pro-
duced the lowest average cost across the 10 tuning runs for 1000 CPU seconds
in Section 4.3. They are listed in Table 4.

A problem in pACS+1-shift is that the underlying local search, 1-shift,
suffers from numerical precision problems for large instances (Birattari et al.,
2008). This problem can been addressed by resorting to computationally ex-
pensive arbitrary precision arithmetics (Fousse et al., 2007). For the given stop-
ping criterion, the usage of the arbitrary precision arithmetics in pACS+1-shift
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Figure 5: Experimental results on the instance rat783. The plots represent the development

of the solution cost over time for MAGX-EE and pACS+1-shift. The obtained solution costs

of the two algorithms are normalized by the final solution cost reached by pACS+1-shift. The

normalization is performed on a run-by-run basis for 10 runs; the normalized solution cost is

then aggregated.

does not even allow the algorithm to complete the first iteration. Therefore,
we compared the solution costs obtained for the probability levels at which the
numerical problems do not occur.

Figure 5 shows exemplary run time development plots on PTSP instances
generated from rat783. Since there is no recognizable visual difference among
the estimation-based algorithms, only MAGX-EE is chosen for the plots. We
can see that MAGX-EE (and also ILS-EE and ACS-EE) obtains high quality
solutions in a very short time. More precisely, the estimation-based algorithms
reached the average solution cost of pACS+1-shift in approximately two to
three orders of magnitude less CPU time. The trend is quite similar for other
instances; the plots are shown in Balaprakash et al. (2008).

Table 5 reports the average difference between the final solution costs ob-
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tained by MAGX-EE and pACS+1-shift on instances generated from rat783,
d198, and kroA100. The results of ILS-EE and ACS-EE are quite similar—see
Balaprakash et al. (2008). On all probability levels for rat783, the estimation-
based algorithms achieve average solution costs that are significantly less than
that of pACS+1-shift. The average improvements are up to 4.90% (MAGX-
EE), 7.35% (MAGX-EE), and 12.39% (ACS-EE) on Class I, II, III instances,
respectively. We can observe a similar trend but smaller improvements for d198
and kroA100 instances. There are a few exceptions at some probability levels.
These results also show a general trend in which the differences between the
average solution costs of the estimation-based algorithms and pACS+1-shift in-
crease with an increase in the instance size and also with an increase in the
probability level (the only exception is on Class II instances of kroA100).

The high performance of the estimation-based algorithms is mainly due to
the adoption of the effective iterative improvement algorithm as local search:
Since, for the given computation time, 2.5-opt-EEais is much faster than 1-
shift, the estimation-based algorithms perform a much larger number of local
searches than pACS+1-shift. The average number of local searches performed
by each algorithm is shown in Table 6.

For the comparison between the estimation-based algorithms and HybM-
SPSO, we adopt the instances used by Marinakis and Marinaki (2009), on which
the authors showed that HybMSPSO is more effective than pACS+1-shift for
high probability values. These are homogeneous PTSP instances generated
from the TSP instances kroA100, eil101, ch150, d198, and rat783 with some
probability values between 0.1 and 0.9. On these instances, we made a direct
comparison of the cost of the solutions obtained by the estimation-based algo-
rithms to the ones of HybMSPSO reported in
Marinakis and Marinaki (2009). Note that we compare the average cost of the
estimation-based algorithms to the reported best solution cost of HybMSPSO.
This might possibly introduce a bias in favor of HybMSPSO. Table 7 high-
lights the results from the comparison on instances kroA100, d198, and rat783.
The trend is similar for all other instances. Absolute values are reported in
Balaprakash et al. (2008).

The results show that the estimation-based algorithms are more effective
than HybMSPSO and that they obtain average solution costs which are sig-
nificantly less than the cost of the best solution obtained by HybMSPSO on
a wide range of instance sizes and probability levels. On the largest instance
rat783, the observed average difference ranges between 0.32% and 10%. On the
instance d198 and kroA100, for most probability levels, the observed differences
are significant and the improvements are up to 1.03% and 2.58%, respectively.
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Table 5: Comparison of the average cost obtained by MAGX-EE and pACS+1-shift on

rat783, d198, and kroA100. The results are obtained over 10 independent runs. For certain

probability levels in large instances, pACS+1-shift suffers from numerical problems, where the

comparison is not meaningful. Those cases are marked as −. Typographic conventions are

the same as in Table 2.
rat783 d198 kroA100

p d CI d CI d CI

C
la

ss
I

0.050(00%) +0.04 [−0.08, +0.16] +0 .07 [+0.05, +0.08] +0 .08 [+0.06,+0.11]
0.050(16%) −7.57 [−9.91,−5.23] −0.16 [−0.23,−0.09] −0.29 [−0.42,−0.16]
0.050(50%) - - −0.62 [−1.09,−0.15] −0.99 [−1.52,−0.46]
0.050(83%) - - −1.84 [−2.87,−0.81] −1.34 [−2.84, +0.17]
0.075(00%) −2.33 [−3.47,−1.19] +0 .06 [+0.05, +0.07] +0 .08 [+0.05,+0.10]
0.075(16%) −6.81 [−9.98,−3.64] −0.02 [−0.03,−0.01] −0.03 [−0.06,−0.01]
0.075(50%) - - −0.27 [−0.41,−0.12] −0.36 [−0.48,−0.24]
0.075(83%) - - −1.92 [−2.65,−1.19] −0.42 [−0.60,−0.24]
0.100(00%) −2.82 [−3.49,−2.14] +0 .08 [+0.07, +0.10] +0 .08 [+0.06,+0.10]
0.100(16%) −9.91 [−12.98,−6.85] +0 .03 [+0.02, +0.04] +0.00 [−0.01, +0.02]
0.100(50%) - - −0.16 [−0.23,−0.09] −0.23 [−0.31,−0.15]
0.100(83%) - - −3.85 [−5.03,−2.66] −0.32 [−0.41,−0.23]

overall −4.90 [−6.06,−3.74] −0.72 [−0.96,−0.47] −0.31 [−0.45,−0.17]

C
la

ss
II

0.150(00%) −4.89 [−6.13,−3.64] +0 .05 [+0.04, +0.07] +0 .03 [+0.02,+0.05]
0.150(16%) −8.82 [−10.17,−7.47] +0 .04 [+0.02, +0.07] +0 .02 [+0.01,+0.03]
0.150(50%) - - −0.06 [−0.08,−0.04] −0.09 [−0.11,−0.06]
0.150(83%) - - −4.85 [−6.11,−3.59] −0.23 [−0.31,−0.15]
0.175(00%) −5.34 [−6.21,−4.46] +0 .05 [+0.03, +0.07] +0 .03 [+0.01,+0.04]
0.175(16%) −8.96 [−10.61,−7.31] +0.02 [−0.02, +0.06] +0 .02 [+0.00,+0.04]
0.175(50%) - - −0.06 [−0.10,−0.01] −0.05 [−0.07,−0.02]
0.175(83%) - - −6.33 [−8.05,−4.62] −0.18 [−0.23,−0.13]
0.200(00%) −5.64 [−6.24,−5.04] +0 .06 [+0.03, +0.09] +0 .02 [+0.01,+0.04]
0.200(16%) −10.46 [−11.92,−8.99] +0.02 [−0.00, +0.04] +0 .02 [+0.01,+0.03]
0.200(50%) - - −1.29 [−3.22, +0.64] −0.04 [−0.07,−0.00]
0.200(83%) - - −6.53 [−8.16,−4.90] −0.52 [−0.89,−0.15]

overall −7.35 [−8.05,−6.65] −1.57 [−2.09,−1.06] −0.08 [−0.12,−0.04]

C
la

ss
II

I

0.300(00%) −9.69 [−10.63,−8.74] +0.04 [−0.00, +0.09] +0 .05 [+0.02,+0.07]
0.300(16%) −12.32 [−13.54,−11.09] −0.08 [−0.19, +0.03] +0 .01 [+0.00,+0.02]
0.300(50%) - - −1.14 [−2.78, +0.50] −0.02 [−0.02,−0.01]
0.300(83%) - - −7.57 [−9.07,−6.07] −1.26 [−2.14,−0.38]
0.400(00%) −10.28 [−11.60,−8.95] −0.23 [−0.43,−0.02] +0.00 [−0.00, +0.01]
0.400(16%) −13.44 [−14.35,−12.52] −0.69 [−1.21,−0.18] +0.01 [−0.00, +0.02]
0.400(50%) - - −4.95 [−7.27,−2.63] −0.36 [−0.82, +0.09]
0.400(83%) - - −8.37 [−9.69,−7.05] −2.40 [−3.78,−1.02]
0.500(00%) −12.09 [−13.19,−11.00] −0.34 [−0.61,−0.07] +0.00 [−0.00, +0.00]
0.500(16%) −15.91 [−16.88,−14.93] −1.23 [−1.75,−0.71] +0.00 [−0.00, +0.01]
0.500(50%) - - −6.18 [−7.72,−4.63] −1.12 [−1.81,−0.42]
0.500(83%) - - −8.64 [−10.42,−6.86] −4.82 [−7.03,−2.61]

overall −12.29 [−12.94,−11.63] −3.28 [−3.97,−2.60] −0.83 [−1.15,−0.50]
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Table 6: The average number of local searches performed by the estimation-
based algorithms and pACS+1-shift over 10 independent runs on instance
rat783.

p ILS-EE MAGX-EE ACS-EE pACS+1-shift
0.050(00%) 576 521 468 14
0.050(16%) 553 573 613 5
0.075(00%) 2302 1903 2323 15
0.075(16%) 929 928 896 5
0.100(00%) 4714 3827 6286 16
0.100(16%) 1505 1530 1457 6
0.150(00%) 7790 7709 13914 24
0.150(16%) 2712 2712 3347 10
0.175(00%) 11191 11353 21458 26
0.175(16%) 4378 4376 6441 10
0.200(00%) 15692 15878 27183 26
0.200(16%) 6310 6435 10232 10
0.300(00%) 24777 23924 34864 25
0.300(16%) 12831 12958 15803 12
0.400(00%) 41546 35626 49138 29
0.400(16%) 27886 26479 33784 15
0.500(00%) 77195 53900 81400 34
0.500(16%) 50423 41128 58192 16

Table 7: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE, and

HybMSPSO on instances kroA100, d198, and rat783. For ILS-EE, MAGX-EE, and ACS-EE

the results are obtained over 10 independent runs. For HybMSPSO, the values are taken

directly from Marinakis and Marinaki (2009). Typographic conventions are the same as in

Table 2.
ILS-EE

vs.
HybMSPSO

MAGX-EE
vs.

HybMSPSO

ACS-EE
vs.

HybMSPSO

p d [95% CI] d [95% CI] d [95% CI]

k
ro

A
1
0
0

0.100(00%) −0.36 [−0.39,−0.32] −0.37 [−0.40,−0.35] −0.43 [+0.00, +0.00]
0.200(00%) −0.07 [−0.10,−0.05] −0.08 [−0.10,−0.07] −0.09 [−0.09,−0.09]
0.300(00%) +0 .06 [+0.03, +0.10] +0.01 [−0.01, +0.04] +0 .01 [+0.00, +0.00]
0.400(00%) −0.92 [−0.99,−0.85] −1.00 [−1.00,−0.99] −1.00 [+0.00, +0.00]
0.500(00%) −0.03 [−0.10, +0.04] −0.08 [−0.08,−0.07] −0.08 [+0.00, +0.00]
0.600(00%) −1.91 [−1.92,−1.90] −1.91 [−1.92,−1.91] −1.92 [+0.00, +0.00]
0.800(00%) −2.57 [−2.58,−2.56] −2.58 [−2.59,−2.57] −2.58 [+0.00, +0.00]
0.900(00%) −0.00 [+0.00, +0.00] −0.00 [+0.00, +0.00] −0.00 [+0.00, +0.00]

d
1
9
8

0.100(00%) −0.82 [−0.85,−0.79] −0.82 [−0.84,−0.81] −0.80 [+0.00, +0.00]
0.200(00%) −0.97 [−1.01,−0.94] −1.03 [−1.06,−1.01] −0.99 [−0.99,−0.99]
0.500(00%) −0.83 [−0.86,−0.79] −0.85 [−0.87,−0.82] −0.88 [+0.00, +0.00]
0.900(00%) −0.02 [−0.05, +0.01] −0.07 [−0.09,−0.04] +0 .00 [+0.00, +0.00]

ra
t7

8
3 0.100(00%) −10.14 [−10.24,−10.05] −10.23 [−10.32,−10.15] −10.10 [+0.00, +0.00]

0.200(00%) −4.60 [−4.77,−4.42] −4.64 [−4.75,−4.54] −4.29 [−4.30,−4.29]
0.500(00%) −3.35 [−3.47,−3.23] −3.51 [−3.61,−3.42] −3.39 [−3.40,−3.39]
0.900(00%) −0.32 [−0.38,−0.26] −0.32 [−0.52,−0.12] −0.38 [+0.00, +0.00]
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Table 8: Comparison of the average cost obtained by ILS-EE, MAGX-EE, ACS-EE, and

Concorde over 10 independent runs on instance kroA100, d198, and rat783. Typographic

conventions are the same as in Table 2.
ILS-EE

vs.
Concorde

MAGX-EE
vs.

Concorde

ACS-EE
vs.

Concorde

p d [95% CI] d [95% CI] d [95% CI]

k
ro

A
1
0
0

0.100(00%) −0.41 [−0.44,−0.38] −0.43 [−0.45,−0.40] −0.48 [+0.00, +0.00]
0.200(00%) −0.41 [−0.43,−0.38] −0.41 [−0.43,−0.40] −0.42 [−0.43,−0.42]
0.300(00%) −0.22 [−0.26,−0.18] −0.27 [−0.30,−0.24] −0.28 [+0.00, +0.00]
0.400(00%) −0.08 [−0.15,−0.01] −0.16 [−0.16,−0.15] −0.16 [+0.00, +0.00]
0.500(00%) −0.05 [−0.12, +0.02] −0.09 [−0.09,−0.09] −0.09 [+0.00, +0.00]
0.600(00%) −0.07 [−0.08,−0.06] −0.07 [−0.08,−0.07] −0.08 [+0.00, +0.00]
0.700(00%) −0.16 [−0.17,−0.14] −0.16 [+0.00, +0.00] −0.16 [+0.00, +0.00]
0.800(00%) −0.03 [−0.04,−0.02] −0.04 [−0.05,−0.03] −0.04 [+0.00, +0.00]
0.900(00%) −0.00 [+0.00, +0.00] −0.00 [+0.00, +0.00] −0.00 [+0.00, +0.00]
1.000(00%) 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00]

d
1
9
8

0.100(00%) −1.08 [−1.11,−1.05] −1.09 [−1.10,−1.07] −1.06 [+0.00, +0.00]
0.200(00%) −1.22 [−1.26,−1.19] −1.28 [−1.31,−1.26] −1.24 [−1.24,−1.24]
0.300(00%) −1.44 [−1.47,−1.40] −1.48 [−1.51,−1.45] −1.51 [−1.52,−1.51]
0.400(00%) −1.25 [−1.28,−1.21] −1.28 [−1.30,−1.25] −1.32 [−1.32,−1.31]
0.500(00%) −0.92 [−0.95,−0.88] −0.94 [−0.96,−0.91] −0.97 [+0.00, +0.00]
0.600(00%) −0.51 [−0.57,−0.44] −0.54 [−0.59,−0.50] −0.57 [+0.00, +0.00]
0.700(00%) −0.41 [−0.45,−0.38] −0.47 [−0.47,−0.47] −0.47 [−0.47,−0.46]
0.800(00%) −0.22 [−0.27,−0.18] −0.27 [−0.27,−0.27] −0.27 [+0.00, +0.00]
0.900(00%) −0.08 [−0.11,−0.05] −0.12 [−0.14,−0.10] −0.05 [+0.00, +0.00]
1.000(00%) +0 .05 [+0.03, +0.07] +0 .03 [+0.01, +0.05] +0 .03 [+0.00, +0.00]

ra
t7

8
3

0.100(00%) −10.18 [−10.27,−10.09] −10.27 [−10.36,−10.19] −10.14 [+0.00, +0.00]
0.200(00%) −8.39 [−8.57,−8.22] −8.44 [−8.54,−8.34] −8.10 [−8.11,−8.10]
0.300(00%) −6.25 [−6.34,−6.15] −6.32 [−6.46,−6.17] −6.69 [−6.70,−6.69]
0.400(00%) −4.72 [−4.85,−4.58] −4.64 [−4.78,−4.49] −4.64 [−4.64,−4.63]
0.500(00%) −3.39 [−3.51,−3.27] −3.56 [−3.65,−3.46] −3.43 [−3.44,−3.43]
0.600(00%) −2.10 [−2.21,−1.99] −2.26 [−2.38,−2.13] −2.25 [+0.00, +0.00]
0.700(00%) −1.17 [−1.32,−1.03] −1.45 [−1.59,−1.32] −1.29 [−1.29,−1.28]
0.800(00%) −0.81 [−0.90,−0.72] −0.82 [−0.93,−0.71] −0.93 [+0.00, +0.00]
0.900(00%) −0.56 [−0.62,−0.50] −0.56 [−0.76,−0.37] −0.62 [+0.00, +0.00]
1.000(00%) +0 .81 [+0.71, +0.91] +0 .76 [+0.61, +0.91] +0 .88 [+0.87, +0.88]

4.5 PTSP-specific algorithms vs. TSP approximation

A very different approach to the PTSP is to completely forget about its stochas-
tic component and to tackle a PTSP instance as if it were a TSP instance.
This approach makes it possible to exploit the state-of-the-art in TSP solv-
ing for generating a priori solutions for the PTSP. In fact, this approach is,
according to the PTSP literature surprisingly effective: Bianchi (2006) and
Bianchi and Gambardella (2007) benchmarked pACS+1-shift against the state-
of-the-art exact TSP solver, Concorde (Applegate et al., 2001) and they estab-
lished a critical mean probability of 0.5, above which the latter is more effective
than the former. Note that Concorde is an exact algorithm that finds the op-
timal solution for a given TSP instance. In this section, we repeat the same
experiments but now using ILS-EE, ACS-EE, and MAGX-EE as the PTSP
solver (using the version that is tuned for 1000 CPU seconds). We use the same
instances and a n2/100 CPU seconds stopping criterion as described by Bianchi
(2006), Bianchi and Gambardella (2007).

The results on PTSP instances derived from the TSP instances kroA100,
d198, and rat783 are shown in Table 8. The estimation-based algorithms ILS-
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EE, ACS-EE, and MAGX-EE obtain solution costs, which are significantly less
than that of Concorde up to probability 0.9. The advantage of the estimation-
based algorithms is quite strong on instances with low probability values and
the observed average difference increases with instance size reaching more than
10% for the largest instance rat783.

5 Conclusions

In this paper, we customized iterated local search and memetic algorithms to
tackle the PTSP. The proposed customization consists in adopting an estimation-
based approach to evaluate the solution cost and the state-of-the-art iterative
improvement algorithm, 2.5-opt-EEais, as local search. We presented an ex-
perimental comparison of the estimation-based algorithms, in which we also in-
cluded a recently developed estimation-based ant colony system. We used short
and long computation times as stopping criteria. First, we performed a rigorous
parameter tuning of all the estimation-based algorithms to avoid any bias due
to the tuning procedure. Using the fine tuned parameter values, we evaluated
the solution cost obtained by the estimation-based algorithms on three instance
classes. For the short computation time, the iterated local search is highly
effective when compared to the previous estimation-based ant colony system.
On the other hand, for long computation time, both the iterated local search
and the memetic algorithm outperform the ant colony system on instances with
low average probability values (up to 0.2). Nevertheless, the ant colony sys-
tem emerges as the best algorithm on instances with average probability values
between 0.3 and 0.5.

The main contribution of the paper is the development of new state-of-the-
art algorithms for the PTSP. The estimation-based algorithms are particularly
effective for large instances. Compared to the best analytical computation al-
gorithms, the proposed algorithms obtain high quality solutions in a very short
computation time. The advantage in speed and solution quality is primarily due
to the adoption of 2.5-opt-EEais as local search. Moreover, in the literature, it
has been shown that the PTSP instances with average probability value greater
than 0.5 can be solved more effectively by an exact TSP algorithm than the
analytical computation PTSP algorithm. Here, we showed that the estimation-
based algorithms can push this probability limit to much larger values up to
0.9. In a nutshell, we showed that the estimation-based approach is an effective
replacement for analytical computation in metaheuristics for the PTSP.
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P. Balaprakash, M. Birattari, T. Stützle, Z. Yuan, and M. Dorigo. Estimation-
based ant colony optimization and local search for the probabilistic traveling
salesman problem. Swarm Intelligence, 3(3), 2009b.

J. L. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA

Journal on Computing, 4(4):387–411, 1992.

D. Bertsimas. Probabilistic Combinatorial Optimization Problems. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1988.

D. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Operations

Research, 38(6):1019–1033, 1990.

L. Bianchi. Ant Colony Optimization and Local Search for the Probabilistic

Traveling Salesman Problem: A Case Study in Stochastic Combinatorial Op-
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