
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

SLS-DS 2007:

Doctoral Symposium on Engineering

Stochastic Local Search Algorithms

Enda Ridge, Thomas Stützle,
Mauro Birattari, and Holger H. Hoos

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2007-014

September 2007

SLS-DS 2007

Doctoral Symposium on Engineering

Stochastic Local Search Algorithms

Edited by:

Enda Ridge, The University of York, York, UK
Thomas Stützle, Université Libre de Bruxelles, Brussels, Belgium
Mauro Birattari, Université Libre de Bruxelles, Brussels, Belgium
Holger H. Hoos, University of British Columbia, Vancouver, Canada

7 September 2007, Brussels, Belgium

IRIDIA – Technical Report Series

ISSN 1781-3794
Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2007-014

Copyright c© 2007 by IRIDIA–Université Libre de Bruxelles

All rights reserved.

This publication is a collection of contributions presented at SLS-DS 2007, Doctoral Sym-

posium on Engineering Stochastic Local Search Algorithms. The information provided
by each contribution is the sole responsibility of the respective authors and does not nec-
essarily reflect the opinion of the members of IRIDIA. The authors take full responsibility
for any copyright breaches that may result from publication of their contribution in the
IRIDIA – Technical Report Series. IRIDIA is not responsible for any use that might be
made of data appearing in this publication.

Preface

The inaugural Doctoral Symposium on Engineering Stochastic Local Search Al-
gorithms (SLS-DS) was held at the Université Libre de Bruxelles, Belgium on 7 Septem-
ber 2007 jointly with the SLS 2007 Workshop. SLS-DS is a forum for doctoral students
to present their work and obtain guidance from fellow researchers as well as to provide
contact with other students at a similar stage in their careers. The symposium exposes
students to helpful criticism before their thesis defence, and fosters discussions related
to future career perspectives. The symposium consists of a series of short presentations
followed by a poster session.

The papers in these proceedings were selected based on relevance, quality and clarity
of presentation. They provide a useful guide to emerging research and new trends in the
stochastic local search field. The topics covered include:

• Methodological developments for the implementation of SLS algorithms.

• Experimental studies of SLS algorithms (behaviour of SLS algorithms, comparison
of SLS algorithms, ...), problem characteristics and their impact on algorithm per-
formance.

• Case studies in the development of well designed SLS algorithms.

• Aspects that become relevant when moving from “classical” NP-hard problems to
those including multiple objectives, stochastic information or dynamically changing
data.

We would like to thank the people involved in the local organisation of the Engineering
Stochastic Local Search Algorithms workshop for their time and effort assisting the running
of the doctoral symposium.

Enda Ridge
Thomas Stützle
Mauro Birattari
Holger H. Hoos

Program Co-Chairs
SLS-DS 2007

iii

iv

Contents

Preface iii

Contents v

1 Effective Stochastic Local Search Algorithms for the Genomic Median
Problem
Renaud Lenne, Christine Solnon, Thomas Stützle, Eric Tannier and Mauro Birat-
tari 1

2 Composing Particle Swarm Optimization Algorithms
Marco A. Montes de Oca, Thomas Stützle, Mauro Birattari and Marco Dorigo 6

3 A Study of Stochastic Local Search Algorithms for the Quadratic As-
signment Problem
Mohamed Saifullah Bin Hussin, Thomas Stützle and Mauro Birattari 11

4 Sampling Strategies and Local Search for Stochastic Combinatorial Op-
timization
Prasanna Balaprakash, Mauro Birattari, Thomas Stützle and Marco Dorigo 16

5 Two Phase Stochastic Local Search Algorithms for the Biobjective Trav-
eling Salesman Problem
Thibaut Lust and Jacques Teghem 21

6 Parametric Models of Search Progression
Johan Oppen and David L. Woodruff 26

7 Communication Policies for a Parallel Multi-colony ACO Algorithm with
Identical Colonies
Max Manfrin, Mauro Birattari, Thomas Stützle and Marco Dorigo 31

8 On the Potential of Automatic Algorithm Configuration
Frank Hutter 36

9 Development of Algorithms for Knowledge Discovery. Swarm Intelli-
gence and Rough Set Theory as Tools
Yudel Gomez, Rafael Bello and Ann Nowe 41

v

10 Novel Genetic Algorithm Crossover Approaches for Time-Series Prob-
lems
Paul M. Godley, Julie Cowie and David E. Cairns 47

11 Parametrized Random Greedy Algorithms for the Heterogeneous VRP
with Time Windows
Zhi Yuan and Armin Fügenschuh 52

12 A Study of Ant Colony Optimization Algorithms for a Biobjective Per-
mutation Flowshop Problem
Trung Truc Huynh, Thomas Stützle, Mauro Birattari, and Yves De Smet 58

vi

Effective Stochastic Local Search Algorithms for the

Genomic Median Problem

Renaud Lenne1,3, Christine Solnon2, Thomas Stützle3,
Eric Tannier4 and Mauro Birattari3

1Université Lyon 1, Lyon, France
2LIRIS, Université Lyon 1, Lyon, France

3IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
4INRIA Rhône-Alpes, LBBE, Université Lyon 1, Lyon, France

Abstract

The Genomic Median Problem is an optimization problem inspired
by a biological issue: it aims at finding the genome organization of
the common ancestor to multiple living species. It is formulated as
the search for a genome that minimizes some distance measure among
given genomes. Several attempts have been made at solving the prob-
lem. These range from simple heuristic methods to a stochastic local
search (SLS) algorithm that is inspired by a well-known local search
algorithm for the satisfiability problem in propositionnal logic, called
WalkSAT. The objective of this study is to implement improved al-
gorithmic techniques, particularly ones based on tabu search, in the
quest for better quality solutions for large instances of the problem.
We have engineered a new high-performing SLS algorithm, extensively
tested the developed algorithm and found a new best solution for a
real-world case.

1 Introduction

The objective of the Genomic Median Problem (GMP) is to find the probable
organization of the genome of the common ancestor of two species, given a
third more distant one as a comparison. The study and the solutions to this
problem can lead to discover properties of common ancestors of existing
species and help making better classifications.

The GMP is an optimization problem that can be formulated as follows.
Given three genomes and a distance function that measures in some way
the number of rearrangements needed to move from one genome to another
one, find a fourth genome that minimizes the sum of the distances between
this new one and the three given ones.

There have been various attempts at solving the problem algorithmically
ranging from rather simple heuristics [8, 2] to more complex local search

1

algorithms [3, 6]. These existing algorithms produce solutions that are often
of good quality but that are not necessarily optimal and for larger instances
there may be significant gaps to optimal solutions. In addition, compared
to the currently available local search techniques, the approaches are rather
simple and therefore one can conjecture that there is room for improving
their performance.

Motivated by these observations, we developed a new high performing
stochastic local search (SLS) algorithm for the GMP. The goal of this new
SLS algorithm is to improve upon the performance of the current state-of-
the-art algorithms in terms of the run-time required to reach specific bounds
on the solution quality and ideally to find also better quality solutions, thus,
providing new state-of-the-art solutions that may be of biological relevance.

2 Model and methods

A genome is an unordered set of chromosomes; a chromosome is an ordered
list of markers, where each marker is modelled by a different signed integer.
The three genomes of a GMP instance share the same set of n markers.
Hence, each genome is modelled by a signed permutation of the same n
integers grouped by chromosomes. The number of chromosomes is not fixed
a priori and it may vary from one genome to another.

Various methods for solving the GMP have been proposed. These either
work on a simplified problem that considers only one chromosome and that
involves finding the median of a signed permutation, like GRAPPA [8] or AmGRP
[2]; or use rather simplistic search methods like MGR-MEDIAN [3], which uses
a greedy constructive algorithm. The best performance results so far have
been reported for MedRByLS [6], a local search algorithm that is inspired by
WalkSAT, a well-known local search algorithm for the satisfiability problem
in propositionnal logic.

We base our algorithm on the same data structures and neighborhood
as used in MedRByLS:

• The distance between two genomes is approximated by the BreakPoint
Graph distance described in [5, 7, 1], and later extended to multi-
chromosomal genomes in [6]. This distance is defined with respect to
the number of cycles and paths in an edge bicolored graph obtained
from the two genomes by linking adjacent markers. This distance is
computed in linear time with respect to the number of markers.

• A move consists in the change of two edges with the same colour
by inverting one of their nodes. From the biological point of view,
such a move corresponds to a transformation in one genome, while
the distance between two genomes is the minimum number of such
transformations needed to transform one genome into the other.

2

We have first re-implemented MedRByLS, thus allowing a direct comparison
of our new algorithms to the original MedRByLS using a same implemen-
tation of the data structures. For this comparison, we verified that our
re-implementation matches the performance of the original version.

As a next step, we enhanced the local search by a simple tabu search
scheme. For the search diversification of the resulting tabu search algorithm,
we integrated it into the iterated local search framework by adding appro-
priate perturbations and acceptance criteria. This resulted in an algorithm
that we called MedITaS (for Median solver by Iterated Tabu Search). More
into details, it consists of the following main algorithmic components.

1. A simple Tabu Search (TS) algorithm that forbids the reversal of the
last t moves (where t is the tabu tenure), that is, the last changed
nodes. We considered a first-improvement strategy for the choice of
the move to perform because the neighbourhood is very large so that
a best-improvement strategy (that implies a full scan of the neighbor-
hood) would be too time-consuming.

2. An Iterated Local Search (ILS) algorithm that perturbates the solution
when the search is stuck in plateau-moves or in a basin of attraction
(that is, when too many already visited solutions are recalculated).
The perturbation uses a rearrangement of k edges and then TS is re-
run starting from the perturbed solution. Finally, an acceptance crite-
rion decides whether either the solution before the perturbation or the
one after is kept for the next iteration of ILS. The implemented accep-
tance criterion accepts a new solution if it is better than the previous
one; otherwise, the previous solution has a user-defined probability of
being kept (in our test, we used the default value of 0.2).

3. A reactive version of TS (that reactively adapts the tabu list length)
and a reactive version of ILS (that reactively tunes the perturbation
strength) have been implemented. This was done since initial experi-
ments showed that both ILS and TS were very sensitive to parameter
settings and that the optimal parameter settings were very different
from one instance to one other.

3 Results

In order to evaluate our algorithms, we ran multiple comparisons. All runs
were made on a same Dual-Core AMD Opteron2216 HE (2 processors at
2.4GHz) with 4GB of RAM; only one core is used for each execution since
our algorithm is implemented as a fully sequential one.

The first set of data contains 22 randomly generated instances of different
difficulties (with respect to the definition of the phase transition by [6]) but
with the same size (500 markers). The set has 11 levels of hardness and

3

2 instances per level. On this set we run our MedITaS algorithm and our
implementation of the basic local search algorithm MedRByLS from [6] for 20
independent trials on each instance and 40 seconds per trial. The comparison
of the best solution qualities reached by both algorithms on each instances
is given in Figure 1. From this figure, we can see that MedITaS always
gives solution qualities that are at least as good as MedRByLS and that the
gap between the two algorithms tends to increase as the instances become
harder.

Figure 1: Solution Value Compar-
ison

Figure 2: Frequency Comparison

In another experiment we used a real-world instance: the human-mouse-
rat comparison, which was also used in [6]. This instance is made of 424
markers and the best median found so far had a value of 346. We ran each
algorithm 35 times for a computation time limit of 60 seconds. From these
runs, we generated Figure 2, which represents the histogram of the frequency
of finding certain solution qualities with the two main algorithms (MedITaS
and MedRByLS). It is clear from this graph that MedITaS finds solutions that
are at least as good as those found by MedRByLS and always of a very good
quality (of 347 or better); MedRByLS sometimes fails to find good solutions:
on some runs it returned a solution of value 351). We should also notice that
MedRByLS has a quite low probability (less than 20%) of finding a solution
of 347 or better. Also, our algorithm found a new best solution for this
instance with an evaluation function value of 345.

4 Discussion

Our implementation of the Iterated Tabu Search gave very promising re-
sults. First, we have seen that MedITaS always gives at least as good or bet-
ter results, in the same computation time, than the former best algorithm
(MedRByLS). We also found a new best solution for the human-mouse-rat
common ancestor.

4

The developped algorithmic techniques perform significantly better than
previously developped ones from a solution quality point of view. But from
a biological point of view, the distance used here (as the one used in all
preceding attempts at solving the problem) does not seem to reflect the
biological reality of the evolution process (as it is explained in [4]). Thus, a
research on a more appropriate distance measure has to be envisaged.

Also, we noted in our experiments that there were a lot of medians
with exactly the same value. It could be a good idea to do some compari-
son between them trying to extract some valuable information on the most
probable characteristics of the real ancestor.

Acknowledgements. The authors would like to thank to Yannet Inte-
rian for her kind help in any questions regarding the implementation of her
algorithm. Thomas Stützle acknowledges support from the Belgian FNRS
of which he is a Research Associate.

References

[1] V. Bafna and P. Pevzner. Genome rearrangements and sorting by rever-
sal. SIAM Journal on Computing, 25:272–289, 1996.

[2] M. Bernt, D. Merkle, and M. Middendorf. Using median sets for infer-
ring phylogenetic trees. Bioinformatics - Oxford Univ Press, Volume 23,
Number 2:e129–e135, 2007.

[3] G. Bourque and P. Pevzner. Genome-scale evolution: Reconstructing
gene orders in the ancestral species. Genome Res., 12(1):26–36, 2002.

[4] N. Eriksen. Reversal and transposition medians. Theoretical Computer
Science, 374(1-3), 2007.

[5] S. Hannenhalli and P. A. Pevzner. Polynomial algorithm for genomic
distance problem. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS’95), 1995.

[6] Y. Interian and R. Durrett. Computing genomic midpoints, 2007. Sub-
mitted.

[7] J. D. Kececioglu and D. Sankoff. Exact and approximation algorithms
for sorting by reversals, with application to genome rearrangement. Al-
gorithmica, 13(1/2):180–210, 1995.

[8] B. Moret, S. Wyman, D. Bader, T. Warnow, and M. Yan. A new im-
plementation and detailed study of breakpoint analysis, 2001. Proc. 6th
Pacific Symp. on Biocomputing (PSB 2001), Hawaii, World Scientific
Pub.

5

Composing Particle Swarm Optimization

Algorithms

Marco A. Montes de Oca, Thomas Stützle,
Mauro Birattari and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Abstract
Particle Swarm Optimization (PSO) is primarily used for solving

continuous optimization problems. Over the years and as a result of
the interest on PSO, many different variants of the original algorithm
have been proposed and, more often than not, it is claimed that the
new variant is superior in some way. It follows that if two variants
differ only by some algorithmic components, then their difference in
performance can be ascribed to differences in these components. A
question then arises: Can we compose a high-performing PSO variant
using components present in other variants? In this paper, we present
an attempt to answer this question. The performance of the resulting
composite variant suggests that the answer is positive. We believe
that algorithm composition can help in devising effective optimization
algorithms.

1 Introduction

Searching on the web for Particle Swam Optimization (PSO) algorithms1,
yields thousands of papers about it. In this body of literature there are
hundreds of variations of the original algorithm. Anyone entering the field
would soon realize that there is little agreement as to what is the state-
of-the-art PSO algorithm. This is so because, in most cases, the newly
introduced variant is reported to be superior to some reference algorithm in
some way.

The differences between PSO variants range from added constants [1] to
evolved particle-movement rules for specific problems [7]. In cases in which
algorithms can be structurally decomposed into compatible algorithmic com-
ponents (i.e., that perform the same function), differences in performance
can be ascribed to differences in these components.

If some components are found to provide good performance on a class
of problems, could a composite algorithm (that uses these components) ex-
hibit better performance than the variants from which these components

1Try “Particle Swarm Optimization” in Google Scholar, for example.

6

were taken? We address this question by comparing some PSO variants on
a set of common benchmark problems and then by building a composite
PSO algorithm. This algorithm is, in turn, compared to the variants from
which the components were taken. Our results suggest that the strengths of
different variants can be combined into a single one. Algorithm composition
is an interesting approach to devise effective optimization algorithms.

2 Comparing PSO Variants

A swarm is composed by a population of particles P = {p1, . . . , pn}. At
time step t, a particle pi has an associated position vector x t

i , a velocity
vector v t

i , and a memory vector pb t
i (called personal best) which stores the

best position the particle has found until time step t. A particle pi has a
neighborhood Ni ⊆ P of particles. Some commonly used neighborhoods are
the whole swarm (fully connected topology), four neighbors (square topol-
ogy), and two neighbors (ring topology). The best position in a particle’s
neighborhood is denoted by lb t

i and is called local best.
PSO algorithms iterate updating the particles’ velocities and positions

until a stopping criterion is met. The original velocity- and position-update
rules are: v t+1

i = v t
i + ϕ1U

t
1(pb t

i − x t
i) + ϕ2U

t
2(lb t

i − x t
i) and x t+1

i =
x t

i +v t+1
i where ϕ1 and ϕ2 are two parameters called the cognitive and social

acceleration coefficients respectively, U t
1 and U t

2 are two diagonal matrices
with random in-diagonal elements uniformly distributed (generated at every
iteration) in the interval [0, 1).

In this work, we use a high level decomposition of PSO algorithms. This
decomposition is shown in Algorithm 1. The algorithmic variants that we
included in our study are representatives of the most common approaches
taken to date for updating various parameters that influence performance
(second to last step in the algorithmic decomposition) and for updating a
particle’s velocity (last step).

Algorithm 1 Basic structure of a PSO algorithm

Set parameters and initialize particles
while termination condition is not met do

Evaluate particles’ position and update their memory
Update dynamic/adaptive components, if any
Update particles’ velocity and position

end while

The variants that we studied are the constriction factor PSO [1], three
variants of the time-varying inertia weight PSO [9, 2, 10], FIPS [4], HP-
SOTVAC [8], and AHPSO [3]. The experimental setup and the results of
a comparison of their relative performance on a common set of benchmark
problems can be found in [5, 6].

7

The results of our experimental study suggest that stagnation tendencies
(with respect to solution quality) of PSO algorithms can be alleviated by
using large populations and/or low connected topologies. Some PSO algo-
rithms use time-varying parameters and scheduling them in different ways
affect their performance. Slow inertia weight schedules favor exploration
in the decreasing inertia weight PSO while fast ones favor fast convergence
rates. A variant that dynamically changes the population topology over time
(AHPSO) outperforms other variants (when using low connected topologies)
during the first iterations.

3 Variant Composition: Results and Discussion

After the analysis of the comparison results, a new PSO algorithm inte-
grating three algorithmic components was designed. The components are
(i) a dynamic topology – as in AHPSO, (ii) a mechanism for updating a
particle’s velocity that provides fast convergence – as in FIPS, and (iii) a
decreasing inertia weight. This Frankenstein’s PSO was compared with the
variants from which its main components were taken. See Table 1 for the
results. They were obtained using the best configuration (from a set of com-
monly used configurations) for each algorithm. For all tested run-lengths
(except for that of 104 function evaluations) the best ranked algorithm is
the composite PSO. This result suggests that indeed it is possible to get
good performance by just combining existing algorithmic components into
composite variants. Perhaps more importantly, this result highlights the
importance of understanding the effects of different algorithmic components
and their interactions on the algorithms’ performance. We want to pursue
this research direction in the future.

8

T
ab

le
1:

B
es

t
ov

er
al

l
co

nfi
gu

ra
ti

on
s

of
di

ffe
re

nt
P

SO
va

ri
an

ts
fo

r
di

ffe
re

nt
te

rm
in

at
io

n
cr

it
er

ia
.

E
ac

h
gr

ou
p

is
so

rt
ed

by
th

e
av

er
ag

e
st

an
da

rd
iz

ed
so

lu
ti

on
qu

al
it

y
(i

.e
.,

th
e

nu
m

be
r

of
st

an
da

rd
de

vi
at

io
ns

a
gi

ve
n

sc
or

e
is

fr
om

th
e

gr
ou

p’
s

m
ea

n)
in

as
ce

nd
in

g
or

de
r,

so
th

e
be

st
ov

er
al

l
co

nfi
gu

ra
ti

on
is

lis
te

d
fir

st
.

F
E

S
A

lg
o
ri

th
m

A
ck

le
y

G
ri

ew
a
n
k

R
a
st

ri
g
in

S
a
lo

m
o
n

S
ch

w
ef

el
S
te

p
R

o
se

n
b
ro

ck
S
p
h
er

e
A

v
er

a
g
e

1
0
3

F
ra

n
k
en

st
ei

n
’s

P
S
O

-2
.0

2
4

-0
.9

5
5

-0
.9

7
5

-0
.5

1
7

1
.3

7
8

-1
.3

1
5

-0
.3

0
2

-1
.1

0
8

-0
.7

2
7

In
cr

ea
si

n
g
-I

W
-0

.0
1
3

-0
.3

9
3

-0
.9

5
0

-0
.3

2
3

-1
.2

2
9

-0
.6

4
5

-0
.3

6
7

-0
.3

7
1

-0
.5

3
6

D
ec

re
a
si

n
g
-I

W
-0

.0
0
2

-0
.3

8
6

-1
.0

6
7

-0
.3

1
6

-1
.1

9
9

-0
.3

5
9

-0
.4

7
4

-0
.4

2
5

-0
.5

2
8

F
IP

S
-0

.7
6
5

-0
.4

3
0

-0
.0

8
0

-0
.4

5
7

1
.4

3
2

-0
.9

3
2

0
.2

0
6

-0
.5

3
8

-0
.1

9
5

C
a
n
o
n
ic

a
l

0
.4

7
6

-0
.1

5
6

0
.2

8
7

-0
.2

7
6

-0
.2

1
3

0
.4

0
6

-0
.4

9
1

-0
.0

5
7

-0
.0

0
3

S
to

ch
a
st

ic
-I

W
0
.6

5
6

0
.1

2
4

0
.6

5
2

-0
.2

3
7

-0
.0

4
6

0
.6

9
3

-0
.4

8
8

0
.3

0
4

0
.2

0
7

A
H

P
S
O

0
.4

7
6

-0
.1

5
6

0
.2

8
7

2
.4

6
4

-0
.2

1
3

0
.4

0
6

-0
.4

9
1

-0
.0

5
7

0
.3

4
0

H
P

S
O

T
V
A

C
1
.1

9
8

2
.3

5
3

1
.8

4
7

-0
.3

3
8

0
.0

9
0

1
.7

4
5

2
.4

0
6

2
.2

5
1

1
.4

4
4

1
0
4

In
cr

ea
si

n
g
-I

W
-0

.1
2
9

-0
.5

6
4

-0
.5

9
3

-0
.3

4
9

-0
.7

9
7

-0
.5

3
9

-0
.3

4
8

-0
.3

5
9

-0
.4

6
0

C
a
n
o
n
ic

a
l

-0
.2

1
2

-0
.6

1
6

-0
.5

9
1

-0
.3

7
3

-0
.4

5
9

-0
.5

3
9

-0
.3

7
6

-0
.3

5
9

-0
.4

4
1

D
ec

re
a
si

n
g
-I

W
-0

.0
6
5

-0
.5

1
8

-0
.9

6
2

-0
.3

4
1

-0
.7

5
4

-0
.0

8
5

-0
.3

7
0

-0
.3

5
8

-0
.4

3
1

F
ra

n
k
en

st
ei

n
’s

P
S
O

-1
.0

6
1

-0
.7

6
1

0
.0

5
6

-0
.3

8
6

1
.3

3
2

-0
.9

9
3

-0
.4

1
4

-0
.3

6
1

-0
.3

2
4

S
to

ch
a
st

ic
-I

W
-0

.1
3
1

0
.4

4
3

-0
.5

1
2

-0
.3

6
1

-0
.5

4
1

-0
.0

8
5

-0
.2

9
0

-0
.3

5
9

-0
.2

3
0

F
IP

S
-1

.0
5
6

-0
.7

1
8

1
.5

6
7

-0
.3

7
8

1
.7

6
0

-0
.5

3
9

-0
.3

6
4

-0
.3

6
1

-0
.0

1
1

A
H

P
S
O

0
.5

6
9

0
.6

5
6

-0
.5

1
2

2
.4

7
4

-0
.6

4
1

0
.5

9
6

-0
.3

1
2

-0
.3

1
6

0
.3

1
4

H
P

S
O

T
V
A

C
2
.0

8
6

2
.0

7
7

1
.5

4
6

-0
.2

8
7

0
.1

0
1

2
.1

8
5

2
.4

7
3

2
.4

7
5

1
.5

8
2

1
0
5

F
ra

n
k
en

st
ei

n
’s

P
S
O

-0
.3

5
4

-0
.8

8
3

-1
.1

9
2

-0
.3

5
9

-1
.5

4
8

-0
.4

8
7

0
.7

8
2

-0
.3

5
4

-0
.5

4
9

D
ec

re
a
si

n
g
-I

W
-0

.3
5
4

0
.6

3
1

-0
.7

0
9

-0
.3

5
5

-0
.3

1
1

-0
.7

8
7

-0
.9

8
3

-0
.3

5
4

-0
.4

0
2

In
cr

ea
si

n
g
-I

W
-0

.3
5
4

0
.6

3
1

0
.1

0
8

-0
.3

5
5

-0
.2

7
1

-0
.7

8
7

-0
.4

4
1

-0
.3

5
4

-0
.2

2
8

C
a
n
o
n
ic

a
l

-0
.3

5
4

-0
.8

8
3

0
.3

1
3

-0
.3

5
9

0
.7

2
9

-0
.4

8
7

0
.2

1
6

-0
.3

5
4

-0
.1

4
7

S
to

ch
a
st

ic
-I

W
-0

.3
5
4

0
.6

3
1

1
.1

3
0

-0
.3

5
9

0
.6

4
9

-0
.7

8
7

-1
.0

1
3

-0
.3

5
4

-0
.0

5
7

F
IP

S
-0

.3
5
4

-0
.8

8
3

1
.0

6
0

-0
.3

5
5

1
.3

7
2

0
.7

1
2

1
.0

0
8

-0
.3

5
4

0
.2

7
6

A
H

P
S
O

-0
.3

5
4

1
.6

3
9

0
.7

2
1

2
.4

7
5

0
.5

2
9

0
.7

1
2

-1
.0

1
9

-0
.3

5
4

0
.5

4
4

H
P

S
O

T
V
A

C
2
.4

7
5

-0
.8

8
3

-1
.4

3
1

-0
.3

3
4

-1
.1

4
9

1
.9

1
1

1
.4

4
9

2
.4

7
5

0
.5

6
4

1
0
6

F
ra

n
k
en

st
ei

n
’s

P
S
O

-0
.3

5
4

-0
.3

5
4

-0
.7

8
7

-0
.3

5
8

-1
.2

5
7

-0
.6

6
1

-0
.0

5
8

-0
.5

0
4

-0
.5

4
2

In
cr

ea
si

n
g
-I

W
-0

.3
5
4

-0
.3

5
4

0
.0

0
2

-0
.3

5
4

0
.0

1
9

-0
.6

6
1

0
.0

3
9

-0
.5

0
4

-0
.2

7
1

D
ec

re
a
si

n
g
-I

W
-0

.3
5
4

-0
.3

5
4

0
.4

7
2

-0
.3

5
4

0
.3

6
7

-0
.6

6
1

-0
.7

7
8

-0
.5

0
4

-0
.2

7
1

F
IP

S
-0

.3
5
4

-0
.3

5
4

-0
.5

4
6

-0
.3

5
4

-1
.3

4
9

0
.6

6
1

0
.6

8
5

-0
.5

0
4

-0
.2

6
4

S
to

ch
a
st

ic
-I

W
-0

.3
5
4

-0
.3

5
4

0
.4

1
5

-0
.3

5
8

0
.7

0
5

-0
.6

6
1

-0
.5

2
9

-0
.5

0
4

-0
.2

0
5

C
a
n
o
n
ic

a
l

-0
.3

5
4

-0
.3

5
4

0
.8

1
5

-0
.3

5
8

1
.0

7
2

-0
.6

6
1

-0
.7

1
7

-0
.5

0
4

-0
.1

3
2

H
P

S
O

T
V
A

C
2
.4

7
5

-0
.3

5
4

-1
.7

6
0

-0
.3

4
1

-0
.7

0
5

0
.6

6
1

2
.1

2
9

2
.1

8
4

0
.5

3
6

A
H

P
S
O

-0
.3

5
4

2
.4

7
5

1
.3

8
8

2
.4

7
5

1
.1

4
9

1
.9

8
4

-0
.7

7
1

0
.8

4
0

1
.1

4
8

9

References

[1] M. Clerc and J. Kennedy. The particle swarm–explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions
on Evolutionary Computation, 6(1):58–73, 2002.

[2] R. Eberhart and Y. Shi. Tracking and optimizing dynamic systems
with particle swarms. In Proceedings of the 2001 IEEE Congress on
Evolutionary Computation, pages 94–100, Piscataway, NJ, USA, 2001.
IEEE Press.

[3] S. Janson and M. Middendorf. A hierarchical particle swarm optimizer
and its adaptive variant. IEEE Transactions on Systems, Man and
Cybernetics–Part B, 35(6):1272–1282, 2005.

[4] R. Mendes, J. Kennedy, and J. Neves. The fully informed particle
swarm: Simpler, maybe better. IEEE Transactions on Evolutionary
Computation, 8(3):204–210, 2004.

[5] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo. Franken-
stein’s PSO: An Engineered Composite Particle Swarm Optimization
Algorithm. Technical Report TR/IRIDIA/2007-006, IRIDIA, CoDE,
Université Libre de Bruxelles, Brussels, Belgium, 2007.

[6] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo. Franken-
stein’s PSO: Complete data, 2007. Supplementary information page at
http://iridia.ulb.ac.be/supp/IridiaSupp2007-002/.

[7] R. Poli, C. D. Chio, and W. B. Langdon. Exploring extended particle
swarms: A genetic programming approach. In Proceedings of the 2005
conference on Genetic and Evolutionary Computation, pages 169–176,
New York, NY, USA, 2005. ACM Press.

[8] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson. Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration co-
efficients. IEEE Transactions on Evolutionary Computation, 8(3):240–
255, 2004.

[9] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Pro-
ceedings of the IEEE International Conference on Evolutionary Com-
putation, pages 69–73, Piscataway, NJ, USA, 1998. IEEE Press.

[10] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian. Empirical study of
particle swarm optimizer with an increasing inertia weight. In Proceed-
ings of the 2003 IEEE Congress on Evolutionary Computation, pages
221–226, Piscataway, NJ, USA, 2003. IEEE Press.

10

A Study of Stochastic Local Search Algorithms for

the Quadratic Assignment Problem

Mohamed Saifullah Bin Hussin, Thomas Stützle and Mauro Birattari,
IRIDIA, CoDE, Université Libre de Bruxelles, Belgium

Abstract

In this article we present preliminary results on the comparison of
stochastic local search algorithms for the Quadratic Assignment Prob-
lem. Our experimental comparison is based on re-implementations or
adaptations of some high performing stochastic local search algorithms
and it is done using default configurations and configurations tuned by
F-race, a tool for the automatic tuning of parameters of stochastic
algorithms.

1 Introduction

The Quadratic Assignment Problem (QAP) is an NP-hard combinatorial
optimisation problem. A QAP instance is defined by n items and n locations
and two n × n matrices A and B, where aij is the distance from location i
to location j, and brs is the flow between item r and item s. The objective
of the QAP is to find an assignment of items to locations, such that each
item is assigned to exactly one location, no location is assigned more than
one item, and the sum of all products of the pairs of distances × flows is
minimised.

The largest instance from QAPLIB, a widely used benchmark resource
for research on the QAP, that has been solved by an exact algorithm is
the ste36a instance with n = 36; its solution took about 186 hours on a
Pentium III 800 MHz CPU. The ste36a instance, however, can be solved
by state-of-the-art stochastic local search (SLS) algorithms in a few seconds
on similar speed computers. Hence, given their clear advantage over exact
algorithms, it is clear that there has been an enormous interest in SLS
algorithms for the QAP. However, due to different experimental protocols,
from the QAP literature the best performing algorithms for the various
QAP instance classes cannot be fully reliably determined. Therefore, one
main goal of our research is to investigate the relative performance of SLS
algorithms for various instance classes of the QAP. In this extended abstract,
we present some preliminary results of our research efforts where we compare
SLS algorithms based on several of the most prominent SLS methods. For

11

each of these methods we use for our experiments one version with default
parameter settings and one with the parameters tuned by F-race [2, 1].

2 SLS Methods

Each of the SLS methods we implemented is based on a local search that
uses the 2-exchange neighbourhood, where two solutions are neighboured if
they differ in the assignment of exactly two items.

Simulated Annealing (SA) is an SLS method that is inspired from the
physical annealing process. We adopt the SA variant proposed by Connolly
[3] in addition to implementing a rather basic SA variant using a standard
cooling schedule. In the tuning both, Conolly’s and the ’usual’ SA variants
were considered together.

Tabu Search (TS) uses the search history to escape from local minima
and to implement an explorative search strategy. We reimplemented a TS
variant of Taillard [7], the robust Tabu Search (RTS) algorithm. We tuned
three parameters: the number of iterations before the secondary aspiration
criterion that implements a search diversification is applied, and the interval
from which the tabu tenure is chosen periodically at random; this interval
is defined by a starting tabu list size, and the interval length.

Iterated Local Search (ILS) is a simple, yet effective metaheuristic that
was derived from the idea of iteratively building a sequence of local min-
ima to efficiently sample local optima. We implemented various possible
operators for an ILS for the QAP. For the perturbation fixed perturbation
size schemes and schemes from Variable Neighbourhood Search were con-
sidered; the possibilities for the local search range from first-improvement,
best-improvement algorithms to short tabu search runs. For the acceptance
criterion, we considered five different possibilities ranging from very greedy
to very permisive ones. (Note that various of the ILS variants tested in [5]
are not included in this present study.)

Ant Colony Optimisation (ACO) is a metaheuristic that is inspired
by the pheromone trail laying and following behaviour of real ant colonies
when foraging. We adopt the MAX −MIN Ant System, (MMAS), an
improvement over the Ant System by Stützle and Hoos [6]. We tune three
parameters for MMAS; the local search option to be used (essentially
the same options as available for the ILS), the number of ants, and the
pheromone evaporation factor.

12

Memetic Algorithms (MAs) are a population-based search technique
that can be seen as a skilled combination of evolutionary algorithms with
problem-specific operators, most notably local search. Here, we use a re-
implementation of a MA by Merz and Freisleben [4]. We tune five param-
eters which are the local search option to be used (the same options as for
the ACO algorithm have been considered), the population size, the mutation
factor, the child factor, and the mutation strength.

3 Experimental setup and results

We have generated a new set of benchmark instances for the QAP. These
instances are composed of all combinations of three different possibilities for
the distance matrix—random distance matrices (R), Manhattan distances
from a grid (G), and Euclidean distances (S)—and two possibilities for the
flow matrix—random flows (R) and structured flows (S). This results in six
instance classes: GR, GS, RR, RS, SR, and SS. We use the F-race pro-
cedure using a sampling-based approach for the definition of the algorithm
configurations to be considered to tune each of the above mentioned five SLS
methods on each instance class [1]. On each instance, all of which are of size
n = 80, the SLS algorithms have available 27 seconds on an AMD Opteron
244 1.75 GHz processor with 1 MB L2-Cache and 2GB RAM, running un-
der the Rocks Cluster GNU/Linux. (The time corresponds roughly to a run
of RTS of 1000 · n iterations. For each instance class, 200 instances were
available for tuning. After the F-Race has finished, 100 fresh instances from
each instance class are run independently using default and tuned parameter
settings for comparing the performance of the SLS algorithms.

We measure the performance of the different SLS algorithms running
once each algorithm on each test instance. We then compute the average
value of the returned solutions on each instance class when using different
SLS algorithms. Here, we only present results at a high-level comparing the
performance of the algorithms on the various instance classes. In Tables 1
and Table 2, we give the computational results for the default parameter
settings and the winning parameter settings, respectively. In particular, for
each algorithm and instance class (this is done independently for default and
tuned parameter settings), we compute the average solution value. In the
tables is given the percentage excess of each algorithm over the algorithm
that obtained the lowest average solution quality. (Note that when com-
paring for each SLS algorithm and instance class pair the default and the
tuned parameter settings, except for two such pairs, always a statistically
significant difference in average solution quality was observed; that is, the
tuned versions are in almost all cases statistically better than the defaults.
In part, these differences were quite substantial.)

Considering default configurations, MMAS and RTS showed the best

13

Table 1: Distance from the best solution by using default parameter settings
Instance Class MMAS ILS MA RTS SA

GR 0.00 0.44 0.09 0.03 0.14
GS 0.31 2.90 0.79 0.00 1.03
RR 0.41 0.94 0.62 0.00 0.84
RS 2.84 6.11 4.45 0.00 5.56
SR 0.00 0.47 0.09 0.65 0.11
SS 0.00 1.75 0.14 1.62 0.26

Table 2: Distance from the best solution by using winning parameter settings
Instance Class MMAS ILS MA RTS SA

GR 0.01 0.07 0.00 0.01 0.16
GS 0.10 0.33 0.17 0.00 1.16
RR 0.10 0.14 0.05 0.00 0.65
RS 0.27 0.79 0.14 0.00 4.73
SR 0.04 0.16 0.00 0.17 0.18
SS 0.16 0.49 0.00 0.38 0.29

performance in most of the cases. MMAS achieves the best results for
instance classes GR, SR, and SS, while RTS achieves the best results for
instance classes GS, RR, and RS. In general, however, the dependence of
the performance of RTS on the instance class seems to be higher than for
MMAS. While MMAS is either the best or second best algorithm, RTS,
performs very poorly for the instance classes SR and SS. ILS seems to be
the lowest performing algorithm among the chosen ones. On most instance
classes, except in case of instance class SR, it is the last ranked algorithm.

Considering the tuned versions, MA achieves the best performance for
instance class GR, SR, and SS, while RTS achieves the best results for in-
stance classes GS, RR, and RS. In almost all cases, SA achieves the worst
performance compared to other SLS algorithms. The exception is for in-
stance class SS where ILS is worst. Overall, MA achieves the best results
compared to other SLS algorithms.

4 Conclusions

The best performing algorithms for the various instance classes were found
to be the tuned version of either RTS or MA. Among the default settings,
among the best ranked ones was theMMAS, which indicates that it offers
rather robust performance across a wide set of different types of instances.
When considering the ranking of the different algorithm variants, appar-
ently the MA was profiting most from the tuning in the sense that for most

14

instance classes it could improve its relative ranking when compared to the
other algorithms. Finally, the performance of RTS was rather dependent on
the instance class. While for several ones it was among the top two ranked
algorithms, on two instance classes it was among the two worst ones.

References

[1] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Improvement
strategies for the F-race algorithm: Sampling design and iterative refine-
ment. In 4th International Workshop on Hybrid Metaheuristics, Proceed-
ings, HM 2007, LNCS. Springer Verlag, Berlin, 2007.

[2] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algo-
rithm for configuring metaheuristics. In W. B. Langdon et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002), pages 11–18, 2002.

[3] D. T. Connolly. An improved annealing scheme for the QAP. European
Journal of Operations Research, 46(1):93–100, 1990.

[4] P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms and
greedy operators for graph bi-partitioning. Evolutionary Computation,
8(1):61–91, 2000.

[5] T. Stützle. Iterated local search for the quadratic assignment problem.
European Journal of Operations Research, 174(1):1519–1539, 2006.

[6] T. Stützle and H. H. Hoos. MAX–MIN Ant System. Future Genera-
tion Computer Systems, 16(8):889–914, 2000.

[7] É. D. Taillard. Robust taboo search for the quadratic assignment prob-
lem. Parallel Computing, 17(4–5):443–455, 1991.

15

Sampling Strategies and Local Search for

Stochastic Combinatorial Optimization

Prasanna Balaprakash, Mauro Birattari,
Thomas Stützle and Marco Dorigo

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Abstract

In recent years, much attention has been devoted to the develop-
ment of metaheuristics and local search algorithms for tackling stochas-
tic combinatorial optimization problems. In this paper, we propose an
effective local search algorithm that makes use of empirical estima-
tion techniques for a class of stochastic combinatorial optimization
problems. We illustrate our approach and assess its performance on
the probabilistic traveling salesman problem. Experimental
results show that our approach is very competitive.

1 Introduction

The probabilistic traveling salesman problem (PTSP) [4] is a parad-
igmatic example of a stochastic combinatorial optimization problem. It is
similar to the TSP with the difference that each node has a probability of
requiring a visit. The a priori optimization [1] approach for the PTSP con-
sists in finding an a priori solution that visits all the nodes such that the
expected cost of a posteriori solutions is minimized: The a priori solution
must be found prior to knowing which nodes are to be visited; the associated
a posteriori solution is computed after knowing which nodes need to be vis-
ited and it is obtained by skipping the nodes that do not require to be visited
and visiting others in the order in which they appear in the a priori solution.
This paper focuses on an iterative improvement algorithm, that is, an algo-
rithm that starts from some initial solution and then iteratively moves to
an improving neighboring one until a local optimum is found. Essential for
designing and implementing an effective iterative improvement algorithm
is that the cost differences among neighboring solutions are computed ef-
ficiently. Currently, the state-of-the-art iterative improvement algorithms
for the PTSP, namely, 2-p-opt and 1-shift use for this task closed-form
expressions based on heavy mathematical derivations [2]. Recently, we in-
troduced a new algorithm called 2.5-opt-ACs that also uses closed-form
expressions and moreover adopts the classical TSP speedup techniques [3].

16

We showed that this algorithm is more effective than 2-p-opt and 1-shift
with respect to both solution quality and computation time [3]. In this pa-
per, we propose an effective iterative improvement algorithm that makes use
of empirical estimation and variance reduction techniques.

2 Estimation-based iterative improvement
algorithm for the PTSP

The PTSP is a stochastic combinatorial optimization problem that can be
described as: Minimize F (x) = E

[
f(x,Ω)

]
, subject to x ∈ S, where x is an

a priori solution, S is the set of feasible solutions, the operator E denotes
the mathematical expectation, and f(x,Ω) is the cost of the a posteriori so-
lution that depends on a random variable Ω, which is an n-variate Bernoulli
distribution; a realization ω of Ω prescribes which nodes need being visited.
An unbiased estimator of F (x) of a PTSP solution x can be computed on
the basis of a sample of costs of a posteriori solutions obtained from M
independent realizations of the random variable Ω.

In iterative improvement algorithms for the PTSP, we need to compare
two neighboring solutions x and x′ to select the one of lower cost. For
x′, an unbiased estimator of F (x′) can be estimated analogously to F (x)
by using a different set of M ′ independent realizations of Ω. However, in
order to increase the accuracy of this estimator, the well-known variance-
reduction technique “common random numbers” can be adopted. In the
context of PTSP, this technique consists in using the same set of realiza-
tions of Ω for estimating the costs F (x′) and F (x). Consequently, we have
M ′ = M and the estimator F̂M (x′) − F̂M (x) of the cost difference is given
by: F̂M (x′) − F̂M (x) = 1

M

∑M
r=1

(
f(x′, ωr) − f(x, ωr)

)
. We implemented

iterative improvement algorithms that use this way of estimating cost dif-
ferences exploiting a neighborhood structure that uses the node-insertion
neighborhood on top of the 2-exchange neighborhood structure, that is, the
well-known 2.5-exchange neighborhood. To make the computation of the cost
differences as efficient as possible, given two neighboring a priori solutions
and a realization ω, the algorithm needs to identify the edges that are not
common to the two a posteriori solutions. This is realized as follows: for
every edge 〈i, j〉 that is deleted from x, one needs to find the corresponding
edge 〈i∗, j∗〉 that is deleted in the a posteriori solution of x. We call this
edge the a posteriori edge and it is obtained as follows: If node i requires
visit, then i∗ = i, otherwise, i∗ is the first predecessor of i in x such that
ω[i∗] = 1, that is, the first predecessor for which the realization is one, in-
dicating it requires visit. If node j requires visit, then j∗ = j, otherwise, j∗

is the first successor of j such that ω[j∗] = 1. Recall that in a 2-exchange
move, the edges 〈a, b〉 and 〈c, d〉 are deleted from x and replaced by 〈a, c〉 and
〈b, d〉. For a given realization ω and the corresponding a posteriori edges,

17

〈a∗, b∗〉, 〈c∗, d∗〉, the cost difference between the two a posteriori solutions
is given by ca∗,c∗ + cb∗,d∗ − ca∗,b∗ − cc∗,d∗ , where ci,j is the cost of edge 〈i, j〉.
The procedure described can be directly extended to node-insertion moves.
Furthermore, the proposed algorithm adopts neighborhood reduction tech-
niques such as fixed-radius search, candidate lists and don’t look bits. This
algorithm is called 2.5-opt-EEs. For further reference, see [3].

Intuitively, the variance of the cost difference estimator depends on the
probability associated with each node. The smaller the probability values,
the higher the variance. In this case, the usage of a large number of real-
izations reduces the variance of the estimator. Nevertheless, using a large
number of realizations for high probability values is simply a waste of time.
In order to address this issue, we adopt an adaptive sampling procedure
that saves computational time by selecting the most appropriate number
of realizations with respect to the variance of the cost difference estima-
tor. This procedure is realized using Student’s t-test in the following way:
Given two neighboring a priori solutions, the cost difference between their
corresponding a posteriori solutions is sequentially computed on a number
of realizations. As soon as the t-test rejects the null hypothesis that the
cost difference estimator is equal to zero, the computation is stopped. If no
statistical evidence is gathered, then the computation is continued until a
maximum number of realizations—a parameter—has been considered. The
sign of the estimator is determines the solution of lower cost.

In order to reduce the high variance of the cost difference estimator
for low probability values, we use the variance reduction technique “impor-
tance sampling”. Given two neighboring a priori solutions, this technique,
instead of using realizations from the given distribution Ω, considers realiza-
tions from another distribution Ω∗—the so-called biased distribution—that
forces the nodes involved in the cost difference computation to occur more
frequently. The resulting cost difference between two a posteriori solutions
for each realization is corrected for the adoption of the biased distribution
and the correction is given by the likelihood ratio of the original distribution
with respect to the biased distribution. We denote the proposed algorithm
2.5-opt-EEais.

Here we report some example results obtained on clustered homogeneous
PTSP instances of 1000 nodes, which are arranged in a 106×106 square and
where each node has a same probability p of appearing in a realization. We
considered a probability range in [0.050, 0.200] with a step size of 0.025; 100
instances were generated for each probability level. For the hardware setting
and implementation specific details, we refer the reader to [3]. Each iterative
improvement algorithm is run until it reaches a local optimum. In order
to compare the cost of the a priori solutions reached by each algorithms,
we used the closed-form expression that computes the exact cost [4]. The
results, measured across the 100 instances, are shown in Table 1.

Regarding the time required to reach local optima, irrespective of the

18

Table 1: Mean and standard deviation (s.d.) of final solution cost and
computation time in seconds.

Algorithm Solution Cost Computation Time

mean s.d. mean s.d.

p = 0.050
2.5-opt-EEais 3995478 366491 13.47 2.29
2.5-opt-EEs 4012670 377854 41.95 6.41
2.5-opt-ACs 3993213 372801 780.85 115.84

p = 0.075
2.5-opt-EEais 4576135 403363 6.90 0.98
2.5-opt-EEs 4579572 381368 22.39 3.35
2.5-opt-ACs 4579831 399972 581.56 77.68

p = 0.100
2.5-opt-EEais 5073047 414194 4.52 0.53
2.5-opt-EEs 5078611 400207 14.57 1.94
2.5-opt-ACs 5088197 400986 454.79 64.91

p = 0.125
2.5-opt-EEais 5524534 424238 3.39 0.40
2.5-opt-EEs 5537658 427805 10.81 1.33
2.5-opt-ACs 5555043 411029 367.22 45.81

p = 0.150
2.5-opt-EEais 5952696 432452 2.71 0.25
2.5-opt-EEs 5963539 439965 8.51 1.00
2.5-opt-ACs 5978640 431100 309.45 41.62

p = 0.175
2.5-opt-EEais 6349469 444421 2.23 0.21
2.5-opt-EEs 6357512 443292 7.09 0.81
2.5-opt-ACs 6380038 446660 258.70 36.76

p = 0.200
2.5-opt-EEais 6707241 476088 1.92 0.18
2.5-opt-EEs 6715865 470162 6.01 0.64
2.5-opt-ACs 6690302 454250 226.89 27.66

value of p, 2.5-opt-EEais is approximately 1.5 to 2 orders of magnitude
faster than 2.5-opt-ACs and it is faster than 2.5-opt-EEs by a factor of
3. The average cost of local optima obtained by 2.5-opt-EEais is compa-
rable to one of 2.5-opt-EEs and 2.5-opt-ACs: the paired Wilcoxon test
(α=0.05) does not reject the null hypothesis that the algorithms produce
equivalent results.

3 Conclusion and Future Work

The main novelty of our approach consists of using the empirical estimation
techniques and variance reduction techniques in the delta evaluation pro-
cedure. The proposed approach is conceptually simple, easy to implement,
scalable to large instance sizes and can be applied to problems in which the
cost difference cannot be expressed in a closed-form. We will devote our
further research to assess the behavior of the proposed approach when used
as an embedded heuristic in metaheuristics such as iterated local search, ant
colony optimization and genetic algorithms. From the application perspec-
tive, the estimation-based iterative improvement algorithms will be applied

19

to more complex problems such as stochastic vehicle routing, stochastic
scheduling, and TSP with time windows and stochastic service time.

References

[1] D. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Operations
Research, 38(6):1019–1033, 1990.

[2] L. Bianchi. Ant Colony Optimization and Local Search for the Probabilis-
tic Traveling Salesman Problem: A Case Study in Stochastic Combina-
torial Optimization. PhD thesis, Université Libre de Bruxelles, Brussels,
Belgium, 2006.

[3] M. Birattari, P. Balaprakash, T. Stützle, and M. Dorigo. Estimation-
based local search for stochastic combinatorial optimization. Technical
Report TR/IRIDIA/2007-003, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium, 2007. Submitted for journal publication.

[4] P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1985.

20

Two Phase Stochastic Local Search Algorithms for

the Biobjective Traveling Salesman Problem

Thibaut Lust and Jacques Teghem
Laboratory of Mathematics & Operational Research

Polytechnic Faculty of Mons, Belgium

Abstract

In this work, we present two phase stochastic local search algo-
rithms with the aim of finding a good approximation of the efficient
solution set of the biobjective traveling salesman problem. In the first
phase of the algorithms, a search for a good approximation of the sup-
ported efficient solution set is undertaken. After this first phase, the
second phase is launched to generate non-supported efficient solutions.
Three methods are presented and experimented for the second phase:
Pareto local search, a memetic algorithm with a data perturbation
technique and a path-relinking operator.

1 The mTSP

Given a set {v1, v2, · · · , vN} of cities and K costs ck(vi, vj) (with k =
1, . . . ,K) between each pair of distinct cities {vi, vj} (with i 6= j), the
multiobjective traveling salesman problem (mTSP) consists of finding a so-
lution, i.e. an order π of the cities, so as to minimize the following costs
(k = 1, . . . ,K):

“ min ”zk(π) =
N−1∑
i=1

ck(vπ(i), vπ(i+1)) + ck(vπ(N), vπ(1))

These K quantities zk correspond to the values taken by the various
objectives, for a tour realized by a traveling salesman who visits each city
exactly once and then returns to the starting city. We are interested here
only in the symmetric biobjective traveling salesman problem (bTSP), i.e.
ck(vi, vj) = ck(vj , vi) for 1 ≤ i, j ≤ N and K = 2.

Due to the contradictory features of the objectives, it does not exist a
solution simultaneously minimizing each objective (and for this reason the
notation “min” is used), but a set of solutions called efficient solutions. A
solution π∗ is efficient for the mTSP if there is no other solution π such that:
zk(π) ≤ zk(π∗), k = 1, . . . ,K with at least one strict inequality.

21

In this paper, only a minimal complete set will be sought, i.e. no equiv-
alent efficient solution (two solutions π1 and π2 are equivalent if zk(π1) =
zk(π2), k = 1, . . . ,K) will be retained, and each solution found will corre-
spond to a distinct non-dominated point in the objective space. We call this
minimal complete set Pareto set.

2 Solution methods

Given the difficulty of the bTSP, we only try to find a good approximation
of the Pareto set. Three different stochastic local search algorithms are
experimented that are all based on the same two phases [8]:

1. Phase 1: Find a good approximation of the supported efficient solution
set (solutions whose objective vectors lies in the border of the convex-
hull of the Pareto set). These solutions can be obtain by resolution of
single-objective problems obtained by applying a linear aggregation of
the objectives:

∑K
i=1 λkzk(π) where λ is a weight set, i.e. a vector of

dimension K, with 0 ≤ λk ≤ 1 for k = 1, . . . ,K and
∑K

k=1 λk = 1.

2. Phase 2: Find the non-supported efficient solutions (solutions not ly-
ing in the border of the convex-hull) located between the supported
efficient solutions.

2.1 Approximation of the supported efficient solution set

We employ the method of Aneja and Nair [1], initially proposed for the
resolution of a bicriteria transportation problem, that consists in generating
all the weight sets which make it possible to obtain a minimal complete set of
extremal supported efficient solutions (solutions whose objective vectors are
located on the vertex set of the convex-hull) of a biobjective problem (non-
extremal supported efficient solutions and equivalent solutions can however
be generated). For each weight set generated, a linear aggregation of the
objectives is carried out and the single-objective problem obtained is solved
by an exact method. In this work, we do not use an exact method to solve the
single-objective problem but the Lin-Kernighan (LK) heuristic implemented
by Helsgaun [3]. This heuristic gives for the instances of 100 cities studied
in this work very good solutions, close to the optimal solutions.

So, we have adapted the method of Aneja and Nair to take into account
the fact that the LK heuristic is not exact, what implies that the solutions
obtained are not necessarily efficient, nor supported efficient but that makes
it possible to obtain a set of solutions very close to the minimal complete
set of extremal supported efficient solutions, with a minimum number of
resolution of single-objective problems resulting from linear aggregation.

22

2.2 Search for non-supported efficient solutions

Once a good approximation of the supported efficient solution set has been
found, three methods are experimented with the aim of finding potentially
non-supported efficient solutions. These three methods all use an archive
containing the potentially efficient solutions found, which is updated as soon
as a new potentially efficient solution is discovered, by adding the new solu-
tion in the archive and by removing the solutions of the archive which could
be found dominated following the addition of the new solution. After the
phase 1, the archive contains, for all the methods, an approximation of the
supported efficient solution set.

2.2.1 Pareto local search

This method has been developed by Paquete et al. [6] and is based on the
notion of Pareto local optimum set which is a generalization, in the multi-
objective case, of the concept of local optimum. In this method, the neigh-
borhood of each solution of the archive is explored, and each non-dominated
neighbor is added to the archive. The algorithm stops when it is any more
possible to find new non-dominated neighbors starting from a solution of the
archive, that is to say, a Pareto local optimum set is found, which respect
to the neighborhood used. In this work, we use the well-known 2-exchange
neighborhood, also used by Paquete et al. However, they start their method
from a randomly generated solution, whereas we use all the solutions of the
archive generated in phase 1 as initial solutions. We call this method PLS2.

2.2.2 Memetic algorithm

We use MEMOX [5], scheme of resolution of multiobjective problems, based
on a memetic algorithm. After the phase 1, a local search is applied from
an offspring solution, generated by a crossover between a solution of the
archive of minimal density and an another solution of the archive close,
in the objective space, of the first solution. A dynamic hypergrid is used
to compute the density of a potentially efficient solution. We use the LK
heuristic as local search, by employing a linear aggregation of the objectives
with a weight set fixed according to the first parent, i.e. the potentially
efficient solution of minimal density. But, as the LK heuristic is very robust
(very little influenced by the starting solution), few new solutions will be
found by the local search based on a linear aggregation, since a search for
the supported efficient solutions has already been applied during the phase
1. We thus use the Data Perturbation (DP) technique, originally proposed by
Codenotti et al. for the single-objective TSP [2]. Instead of modifying the
starting solution (as carried out, for example, in the Iterated Local Search
method), DP suggests to modify input data. In this way, by application of the
LK heuristic starting from the offspring with perturbed data, new solutions,

23

essentially potentially non-supported efficient, could be found since the data
used for the linear aggregation are perturbed.

2.2.3 Path-relinking

Before applying the path-relinking (PR), the solutions of the archive gen-
erated in phase 1 are sorted according to the increasing order of the value
taken by the first objective. Then, a path in the decision space between two
consecutive solutions of the archive, called starting and guiding solutions, is
created, with the goal of providing new solutions that reduce the distance
with respect to the guiding solution, on the basis of the starting solution.
A distance between two solutions is measured by the number of uncom-
mon arcs in both solutions. The 2-exchange movement is used to create the
path, and only movements that reduce the distance are considered. Among
such movements, the one that generates the nearest solution in the objec-
tive space to the line which connects the starting and the guiding solution is
selected. Every new non-dominated solution found during the path building
process is added to the archive.

3 Results

First experimentations show that compared to the state-of-the-art algo-
rithms (MOGLS [4], PLS [6], PD-TPLS [7]) the results obtained by these three
methods on instances of 100 cities of the bTSP are of better qualities. Using
PLS2 is very efficient and allows to obtain very good approximations in a
reasonable time. The use of an initial archive of good quality (generated
in phase 1) is clearly better than using as first archive only one randomly
generated solution as done by Paquete et al. in [6]. Applying PR as phase
2 gives good results in little time, but of lower quality than using PLS2.
Moreover, if we try to improve the results of PR by applying a Pareto lo-
cal search on the archive obtained, the results are not better than PLS2.
The disadvantages of PR and PLS2 are that their performance is limited,
and more computational time will not give significant better results, being
given that these two methods are limited by the quality of the 2-exchange
neighborhood. On the other hand, although the MEMOX scheme with the LK
heuristic as local search with perturbed data converges more slowly than the
other methods, this method allows to obtain better results if the resolution
time is increased, since thanks to the data perturbations, new solutions are
constantly found what increases the quality of the solution set obtained.

24

4 Conclusion

Work still needs to be done to take advantage of each of the three methods
used for the search of non-supported solutions, essentially by allowing per-
turbations in the PLS method to avoid being stuck in a Pareto local optimal
set. The perturbations can be, for example, realized by the data perturba-
tion technique, the path-relinking operator or by allowing to have dominated
solutions in the archive.

References

[1] Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Man-
agement Science, 25:73–78, 1979.

[2] B. Codenotti, G. Manzini, L. Margara, and G. Resta. Perturbation: An
efficient technique for the solution of very large instance of the euclidean
tsp. INFORMS Journal on Computing, 8:125–133, 1996.

[3] K. Helsgaun. An effective implementation of the lin-kernighan traveling
salesman heuristic. European Journal of Operational Research, 126:106–
130, 2000.

[4] A. Jaszkiewicz. Genetic Local Search for Multiple Objective Combinato-
rial Optimization. European Journal of Operational Research, 137(1):50–
71, 2002.

[5] T. Lust and J. Teghem. MEMOX: A Memetic Algorithm Scheme for
Multiobjective Optimization. In Proceedings of the 7th International
Conference devoted to Multi-Objective Programming and Goal Program-
ming, Tours, June 2006.

[6] L. Paquete, M. Chiarandini, and T. Stützle. Pareto Local Optimum
Sets in the Biobjective Traveling Salesman Problem: An Experimental
Study. Metaheuristics for Multiobjective Optimisation, pages 177–199,
Berlin, 2004. Springer. Lecture Notes in Economics and Mathematical
Systems Vol. 535.

[7] L. Paquete and T. Stützle. A Two-Phase Local Search for the Biob-
jective Traveling Salesman Problem. Evolutionary Multi-Criterion Opti-
mization. Second International Conference, EMO 2003, pages 479–493,
Faro, Portugal, April 2003. Springer. Lecture Notes in Computer Science
Vol. 2632.

[8] E.L. Ulungu and J. Teghem. The two phases method: An efficient pro-
cedure to solve biobjective combinatorial optimization problems. Foun-
dation of Computing and Decision Science, 20:149–156, 1995.

25

Parametric Models of Search Progression

Johan Oppen1 and David L. Woodruff2

1Molde University College, Molde, Norway
2Graduate School of Management, University of California, Davis, USA

Abstract

This paper describes ongoing research and discusses parametric
models for how stochastic local search algorithms progress over time.
Preliminary computational results are reported.

1 Introduction

Algorithms that search for good solutions to optimization problems present
a trace of best-found objective values over time. The progression of objective
function values for best solutions found is reasonably modeled as stochastic
because the algorithms are often stochastic, and even when they are not, the
progression of the search varies with each instance in unpredictable ways.
An example of the progression is illustrated in Figure 1, which shows the
results of tabu search applied to an optimization problem.

This is in contrast to non-parametric models that estimate the probabil-
ity that the search will achieve a value better than some given threshold in a
given amount of time [1]. Both types of models have value, but parametric
models offer the promise of greater predictive power, so in this research we
explore them.

2 Models

The canonical optimization problem is to find

min
x
f(x) : x ∈ Q

where x is a vector and x ∈ Q summarizes constraints whose form depends
on the problem at hand. There are many algorithms for such problems
and essentially all of them “visit” or evaluate the objective function value
f(·) for a sequence of vectors x(k), k = 0, 1, . . . ,K. We are interested in
the subsequence of length N of best so far vectors, i.e., those for which
f(x(k′)) < f(x(k)), k′ = 1, . . . , k − 1.

26

We are interested (not exclusively) in local search algorithms that are
based on the notion of a neighborhood that is implied by moves that trans-
form one solution vector into another. We refer to the set of neighbors of
x as N (x). For example, suppose that Q includes a requirement that all
elements in x must be binary; a possible move mechanism is to flip one of
the elements in x; i.e. xi takes the value 1 − xi. Local search algorithms
proceed in general iterations from x(k) to a member of N (x(k)) where the
selection mechanism is a defining aspect of the algorithm.

In order to produce models of search behavior that have some compar-
ative power across computers, implementations, algorithms, instances and
perhaps problems, methods of scaling computational effort and objective
function values are needed. For computational effort, we advocate using
the average CPU time required to explore one solution’s neighborhood. In
Section 3 we report on results obtained in a variety of settings using the
smallest realistic neighborhood. A common mechanism for scaling the ob-
jective function is to use percent deviation from the best known solution
for the instance [1]. Although it will not work in all settings, we find it
works well for many problems. The scaled time sequence is ti and the scaled
objective value sequence is zi, i = 1, . . . , N . We refer to the resulting (ti, zi)
pairs as data points in two dimensional space.

A key aspect of our models is the division of the time trace into two parts:
the initial rapid improvement and the discovery phase. In some instances
one of these parts might be missing; however, we have found that both are
present for many algorithms, problems and instances. We divide the N data
points into two contiguous clusters: cluster one is (ti, zi), i = 1, . . . , N1 and
cluster two is (ti, zi), i = N1 + 1, . . . , N . As we will see in Section 3, a very
effective clustering can be obtained by finding the division that results in the
minimum mean squared error for a two-segment, piecewise linear regression.

For a particular division of the points into two sets, we compute a least
squares regression line for each set:

z = α1 + β1t and z = α2 + β2t,

which results in a mean squared error for the first group of

1
N1

N1∑
i=1

(α1 + β1ti − zi)2

with a similar expression for the second group. The division of points into
two groups that results in the lowest total mean squared error is adopted.
All values of N1 can typically be tested very quickly so this particular opti-
mization problem can reasonably be solved by enumeration.

Once we have the two sets of points, we are in a position to fit a model
for the two parts of the time trace. Although in our research we are looking
at other models, it turns out that the least squares regression lines are quite
effective and we explore that here.

27

3 Computational Results

To test our model, we have run a Tabu Search (TS) and a Simulated Anneal-
ing (SA) algorithm on three different instances of the Livestock Collection
Problem (LCP). Both the variant of TS used and the LCP, which is a rich
Vehicle Routing Problem, are described in [3]. Our SA implementation is
based on [2].

We will refer to the sequence of (ti, zi), i = 1, . . . , N generated by the
execution of a particular algorithm on a particular instance of the LCP as
a run. When we have a model for the algorithm running on an instance, we
test the validity of the model by using a measure known as the Root Mean
Squared Forecast Error (RMSFE),

RMSFE ≡

√∑N
i=1 (ẑi − zi)2

N

Specifically, for each (problem instance, algorithm) pair, we generate
ten runs. Each of the ten subsets of nine runs are used to fit a model as
desribed in Section 2 and RMSFE is computed to find how well the tenth
run was predicted. For comparison, we also compute the RMSFE value for
the tenth run based on a non-parameterized benchmark procedure from [1].
This procedure uses the median solution quality from the nine runs as the
predicted value ẑi. For each point (ti, zi), i = 1, . . . , N from the run we
are trying to predict, we find the corresponding solution quality obtained
by each of the other runs at that time. Most of the time, the runs we are
looking at did not find a new best exactly at time ti. If ti is earlier than
the first feasible solution was found or later than the last improvement, we
use the first or last point from the run, respectively. If improvements were
found both before and after time ti, we interpolate. Table 1 summarizes the
results from these comparisons. As expected, the non-parametric estimates
are better when applied to data from the specific instance and algorithm
whence they came. However, we are encouraged by the relative quality of
the parametric estimates.

Table 1: RMSFE statistics, measured in % deviation from non-parametric
estimate

Instance Algorithm Avg Min Max
n110 v5 pig TS 26.58 -35.85 114.56

SA 20.03 0.61 57.73
n162 v8 rw TS 26.80 -8.87 109.51

SA 22.60 -10.64 99.01
n196 v8 rw TS 16.89 -23.76 47.20

SA 20.44 -0.36 42.11

28

Figure 1 gives an example of a line fit, showing both prediction lines for
the model and the actual data points for the run that is being predicted.
Table 1 shows that the errors generated by the parametric model are less
than 30% greater than the errors from a non-parametric model, which causes
us to be optimistic that with further research the parametric models can be
useful for predictions across instances. Figure 1 is typical in that the errors
are small for both types of models.

0 1 2 3 4 5 6

x 10
5

0

5

10

15

20

25

30

Time units

%
 a

bo
ve

 b
es

t k
no

w
n

ob
j v

al
ue

Figure 1: The data for the out-of-sample tabu search run of instance
n196 v8 rw with prediction lines from the other 9 runs shown.

4 Conclusions and Directions for Future Research

This is ongoing research, and more work is needed to improve the model
discussed here. We are finding ways to discover if one of the search phases
described in section 2 is missing. Better models for the two phases should
also be sought. For example, the initial improvement phase might be mod-
eled by an exponential or Wiebull. To get a broader basis for our models, we
have also looked at other classes of optimization problems and other local
search based algorithms beyond those described here.

29

References

[1] H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann Publishers, San Francisco, USA, 2005.

[2] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: An experimental evaluation; part i, graph
partitioning. Operations Research, 37(6):865–892, November-December
1989.

[3] J. Oppen and A. Løkketangen. A tabu search approach for the livestock
collection problem. Computers and Operations Research, 2007. Accepted
for publication.

30

Communication Policies for a Parallel Multi-colony

ACO Algorithm with Identical Colonies

Max Manfrin, Mauro Birattari, Thomas Stützle and Marco Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

Abstract

In this article, we present a study that analyzes the impact that
communication policies have on the solution quality reached by a par-
allel multicolony ant colony optimization algorithm for the traveling
salesman problem. We consider several factors of the parallel vari-
ants: the number of colonies, migration frequencies, communication
strategies on different interconnection topologies, and the usage of lo-
cal search (k-opt) or not. We adopt a full factorial design, empirically
testing the parallel variants on a distributed-memory parallel architec-
ture, and we analyze the results with a multi-factor analysis of variance.
Conclusions are drawn about the performance of the different policies.
It is shown that the parallel variant adopted has a large influence on
the actual performance of the algorithm.

1 Introduction

Ant colony optimization (ACO) [1] is a metaheuristic for combinatorial op-
timization problems that is inspired by the pheromone trail laying and fol-
lowing behavior of some ants species. In ACO, artificial ants are a set of
stochastic procedures that incrementally construct candidate solutions us-
ing artificial pheromone and possibly available heuristic information. The
artificial pheromone is a parametrized probabilistic model that is modified
at computation time, based on previously seen solutions [5].

In this paper, we present a study of various communication policies for a
parallel homogeneous multi-colonyMAX -MIN Ant System (MMAS) [1],
by means of a design of experiments approach. The idea of the multi-
colony approach is to have several colonies running in parallel that exchange
information to intensify the search for solutions toward promising regions of
the search space. At the same time, the tendency of each colony to explore
the search space differently must be preserved.

Unfortunately, previous studies on cooperation of multiple colonies often
suffer from a lack of rigorous empirical analysis (i.e., empirical tests on very
few instances of small size, lack of comparison with the null policy—parallel

31

independent runs (PIR)—or with a single colony algorithm that uses the
same cumulative computational effort). Therefore, the question remained
open on how to implement efficient parallel versions and what improvement
in performance can be expected.

Here, we use factorial experiments based on a full factorial design, exten-
sively testing the parallel variants on the traveling salesman problem
(TSP) using message passing libraries and a distributed-memory parallel ar-
chitecture; we analyze the impact of the factors studied on the solution qual-
ity with a multi-factor analysis of variance (ANOVA). The factors considered
are: the number of colonies (2 levels), migration frequencies (2 levels), com-
munication strategies on different interconnection topologies (4 levels), and
usage or not of k-opt local searches (3 levels). All cited factors result in
2 · 2 · 4 · 3 = 48 different treatments.

2 Experimental settings

To evaluate the quality of a parallel multi-colony ACO algorithm, the parallel
independent runs variant should be taken as a baseline for the comparison.
In PIR, several runs of a sequential ACO algorithms are executed indepen-
dently and in parallel. Some of our previous studies [2, 3] led us to conjecture
that cooperation becomes less effective for increasing search length and more
performing algorithms. In this study, we test this conjecture. Furthermore,
we study the influence of the communication policy on the solution quality.

All the policies in this study share the following elements: each colony
selects as the only migrant the best-so-far solution; a colony replaces its
iteration-worst solution with a received solution, if and only if the latter has
a lower cost than the colony’s current best-so-far solution. For the number
of colonies we consider two levels: 4 and 8 identical colonies of 25 ants
each. We consider two types of migration frequency : fixed and increasing.
In the fixed schema, colonies exchange solutions every 25 iterations after an
initial period of independent exploration of 100 iterations. In the increasing
schema, solutions are exchanged with increasing frequency but taking care
that at least 25 iterations pass between two exchanges. The ith exchange
happens at iteration

∑i−1
k=0b0.9k · 1000c25, where bxc25 = 25 if x < 25,

bxc25 = bxc otherwise, where bxc is the largest integer not exceeding x.
We examine the following communication strategies and interconnection

topologies: unidirectional ring (R) over the ring topology, in which each
colony has one predecessor and one successor; hypercube (HC) over the hy-
percube topology, in which each colony is located on a vertex of a hypercube
and neighbor colonies are on adjacent vertices; fully-connected (FC) and
replace-worst (RW) over the fully-connected topology, in which each colony
is in the neighborhood of any other. In this way, we move from a localized
communication, to a more global communication. We refer the reader to [2]

32

for a more detailed explanation of the adopted communication strategies.
Each algorithm is tested with and without the k-opt local search component
(both 2-opt and 3-opt are considered).

Experiments are performed on the same computational environment as
in [2] on various instances from TSPLIB. For each instance, 30 runs of
10000 iterations each are performed in order to gain statistical evidence and
provide conclusions that are meaningful. We refer the readers interested in
the full data to [4].

3 Results

To identify the impact of problem size and algorithm features on the effec-
tiveness of the communication policies, we analyze the full factorial exper-
iments by means of the ANOVA technique. The response variable is the
percentage error from the known optimal cost. We consider only first and
second order interactions. To meet the assumptions of the ANOVA anal-
ysis, we need to separate the empirical results in three groups, according
to the local search level. In each group, we divide the instances in three
classes according to their sizes: large, medium, and small, and we consider
the results after 1000, 3162, and 10000 iterations. We perform a separate
ANOVA for each of the 3 · 3 · 3 = 27 resulting groups. For full details of the
various ANOVA we refer the readers to [4]. Globally, the two factors with
the largest F-Ratio are the “instance size” and the “number of colonies”. As
expected, the larger the instances, the larger the average percentage error
from the known optimal cost, and also the average results produced by 8
colonies are better than those produced by 4 colonies. The migration fre-
quency (fixed vs. increasing schema) has the third largest F-Ratio. The use
of the fixed schema produces better results, on average, for the less per-
forming algorithms, while the use of the increasing schema produces better
results, on average, for the more performing ones. In Figure 1, we show a
high-level representation of which level of the “migration frequency” factor
produces, on average, lower solution cost.

Once having identified the components for the communication policies
that result in high performance, we need to assess the statistical significance
of the differences in solution costs obtained by these policies with respect
to the PIR approach. We perform a series of Pairwise Wilcoxon rank sum
tests with p-values adjusted by Holm’s method. We refer to [4] for the full
set of data on the comparison and the boxplots of the normalized solution
costs with respect to the percentage error from the known optimal cost.

The empirical results of the parallel variants under analysis support the
initial conjecture. The beneficial effects of communication tend to reduce
both when increasing the search length and when adopting better performing
algorithms.

33

Algorithm performance

instance
size

no LS 2-opt LS 3-opt LS

1000

10000

instance
size

instance
size

3162
S

ea
rc

h
 le

n
g

th

Figure 1: Overview of which level for the “migration frequency” factor in
cooperation policies produces, on average, lower solution costs. Black stays
for the fixed schema, white for the increasing schema. The level of grey is
related to the advantage of the fixed schema over the increasing schema.

4 Conclusions

In this article, we have presented a study that analyzes the impact on so-
lution quality of various communication policies for a parallel multicolony
ACO algorithm for the TSP using message passing libraries. Previous stud-
ies on cooperation of multiple colonies did not fully answer the question
on how to implement efficient parallel variants and what improvement in
performance to expect from them. By means of a design of experiments
approach we studied the impact of factors on the effectiveness of communi-
cation policies. Some of our previous studies [2, 3] led us to conjecture that
communication becomes less effective for increasing search length and more
performing algorithms. Empirical results of the algorithms under analysis
support this conjecture. From the results, we observed that communication
is more effective for increasing instance size, but the beneficial effects of
communication tend to reduce both when increasing the search length and
when adopting more performing algorithms. An extended empirical analysis
is available in [4]. In future works we will analyze in more details the various
trends that emerge from this study.

References

[1] M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press,
Cambridge, MA, USA, 2004.

34

[2] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo. Parallel Ant Colony
Optimization for the Traveling Salesman Problem. In Ant Colony Op-
timization and Swarm Intelligence, ANTS 2006, volume 4150 of LNCS,
pages 224–234. Springer-Verlag, 2006.

[3] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo. Parallel multi-
colony ACO algorithm with exchange of solutions. In 18th Belgium–
Netherlands Conference on Artificial Intelligence, BNAIC 2006, pages
409–410, 2006.

[4] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo. Ex-
tendend Empirical Analysis: Communication Policies for a
Parallel Multicolony ACO Algorithm with Identical Colonies.
http://iridia.ulb.ac.be/supp/IridiaSupp2007-006/, 2007.

[5] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based
search for combinatorial optimization: A critical survey. Annals of Op-
erations Research, 131:373–395, 2004.

35

On the Potential of Automatic Algorithm
Configuration

Frank Hutter
University of British Columbia, Canada

Abstract

Design and implementation of efficient and robust algorithms are core
topics of computer science and operations research, and the determina-
tion of appropriate values for free algorithm parameters is a challenging
and tedious task in the design of effective algorithms for hard prob-
lems. Such parameters include categorical choices (e.g., neighborhood
structure in local search or variable/value ordering heuristics in tree
search), as well as numerical parameters (e.g., noise or restart timing).
In practice, tuning of these parameters is largely carried out manually
by applying rules of thumb and crude heuristics, while more principled
approaches are only rarely used. In this paper, we study some tuning
scenarios in more detail and demonstrate the large potential of even
very simple automatic algorithm configuration approaches.

1 Introduction

The problem of setting an algorithm’s free parameters for maximal per-
formance on a class of problem instances is ubiquitous in the design and
empirical analysis of algorithms. Examples of parameterised algorithms can
be found in tree search [6] and local search [9]; commercial solvers, such as
ILOG CPLEX1, also offer a plethora of parameter settings. Considerable
effort is often required to find a default parameter configuration that yields
high and robust performance across all or at least most instances within a
given set or distribution [3, 1].

The use of automated tools for finding performance-optimising parame-
ter settings has the potential to liberate algorithm designers from the tedious
task of manually searching the parameter space. Notice that the task of con-
structing an algorithm by combining various building blocks can be seen as
a special case of algorithm configuration: Consider, for example, two tree
search algorithms for SAT that only differ in their preprocessing and vari-
able ordering heuristics – in fact, these can be seen as a single algorithm
with two nominal parameters.

Algorithm configuration is commonly (either implicitly or explicitly)
treated as an optimisation problem, where the objective function captures

1http://www.ilog.com/products/cplex/

36

performance on a fixed set of benchmark instances. Depending on the
number and type of parameters, the methods used to solve this optimi-
sation problem include exhaustive enumeration, beam search [15], exper-
imental design [5, 2], genetic programming [16], the application of racing
algorithms [4, 3], and combinations of fractional experimental design and
local search [1].

Recently, we have introduced an iterated local search approach for algo-
rithm configuration [12]. This approach has subsequently lead to enormous
speed-ups of tree search algorithms for SAT for solving SAT-encoded soft-
ware verification (speedups of a factor of 500) and bounded model-checking
instances (speedups of a factor of 4.5) [10].

2 Tuning scenarios

In this paper, we study tuning scenarios including tree search and local
search for propositional satisfiability (SAT) and mixed integer program-
ming. In particular, we study the tree search algorithm SPEAR [10] with 26
mixed discrete/continuous parameters, the local search algorithm SAPS [13]
with four continuous parameters, and the commercial software CPLEX for
mixed integer programming (MIP)2 with 80 mixed discrete/continuous pa-
rameters. All continous parameters are discretized to seemingly meaningful
values spread around the algorithm defaults. As SAT domains, we employ
a set of SAT-encoded quasi-group completion (QCP) problems [8] and a
set of SAT-encoded graph colouring problems based on small-world graphs
(SWGCP) [7]. For MIP, we employ a set of combinatorial auction (CATS)
instances from the combinatorial auctions test set [14].

In order to get an idea about the potential of improvement for these
tuning scenarios, and about the potential for overtuning to be expected,
we sampled a number of parameter configurations uniformly at random,
evaluating them on a small training set with N = 10 instances, and iterated
this process up to a total CPU time usage of five hours. In Figure 1, we
plot both performance on the small training set and on an independent
test set with M = 100 instances; configurations are ordered with respect to
training quality. Note that the cutoff time for each domain is five seconds,
unsuccesful runs are counted as taking ten times this time, and we plot
average performance over the training/test instances; thus, a performance
of 50 is the absolute worst a parameter configuration can achieve, and zero
is the best. We note that the differences between parameter configrations
vary between tuning scenarios, as does the correlation between training and
test performance.

Figure 2 takes a closer look at test performance of a number of selected
parameter configurations, namely the default parameter configuration of the
algorithms, and five of the randomly sampled configurations: the best and
worst in terms of training performance, as well as the 25%, 50%, and 75%

2http://www.ilog.com/products/cplex/

37

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n
ru

nt
im

e
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

Training performance (N=10)
Test performance (N=100)

(a) SAPS-SWGCP

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n
ru

nt
im

e
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

Training performance (N=10)
Test performance (N=100)

(b) SAPS-QCP

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n
ru

nt
im

e
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

Training performance (N=10)
Test performance (N=100)

(c) SPEAR-SWGCP

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n
ru

nt
im

e
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

SPEAR on QCP

Training performance (N=10)
Test performance (N=100)

(d) SPEAR-QCP

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Param. configs, sorted by train performance

M
ea

n
ru

nt
im

e
of

 p
ar

am
et

er
 c

on
fig

ur
at

io
n

Training performance (N=10)
Test performance (N=100)

(e) CPLEX-CATS

Figure 1: Performance of randomly sampled parameter configurations on a
small training set of N = 10 instances and a test set of 100 instances. For
details see text.

quantiles. For each of these parameter configurations, we plot the cumulative
distribution of the probability of solving the instances in the test set. We
note that in each single scenario, the best parameter configuration based
on the small training set of ten instances already performs better than the
default parameter setting. Of course, we do not anticipate this to generalize
to arbitrary tuning scenarios, but it at least speaks for the potential of
automatic tuning.

3 Experiments with iterated local search

In this section, we study the effectiveness of our iterated local search from [12]
in the above tuning scenarios. We compare test performances of pure ran-
dom sampling based on a training set of 100 instances, BasicILS based on
the same training set, and FocusedILS (which uses a different number of in-
stances to evaluate each parameter configuration). Compared to [12], we im-
plemented one important improvement for all approaches, namely a pruning
technique that stops evaluations of parameter configurations when they are
already proovably worse than a previously seen parameter configurations.
This technique improves random sampling the most, followed by BasicILS,
and only improves FocusedILS marginally. Without this pruning technique
BasicILS and FocusedILS outperformed random sampling in our experi-
ments for [12] and FocusedILS outperformed BasicILS. In Table 1 we see
that the picture becomes less clear when pruning is used: while FocusedILS
performs statistically significantly better than the other approaches on two
domains, the other two approaches reach similar or better (albeit not sta-
tistically significantly better) performance in the remaining three scenarios.

38

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time
P

er
ce

nt
 te

st
 in

st
an

ce
s

so
lv

ed

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(a) SAPS-SWGCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s
so

lv
ed

SAPS on QCP

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(b) SAPS-QCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s
so

lv
ed

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(c) SPEAR-SWGCP

10
−3

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s
so

lv
ed

SPEAR on QCP

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

worst in training

(d) SPEAR-QCP

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time

P
er

ce
nt

 te
st

 in
st

an
ce

s
so

lv
ed

default setting
best in training
q

0.25
 in training

q
0.5

 in training

q
0.75

 in training

(e) CPLEX-regions100

Figure 2: Test performance for a number of selected parameter configura-
tions; for details, see text.

Based on our above analysis of correlations between training and test
set, we expected overtuning effects to be strongest for the tuning scenarios
involving the QCP domain. This expectation is confirmed by the results in
Table 1. Finally, note that the automatically found parameter configurations
always clearly outperform the default configuration, much more so than the
random parameter configurations, sampled without pruning.

4 Conclusions

Automatic algorithm configuration can greatly improve performance for all
tuning scenarios we studied here, and even a simple random sampling of
parameter configurations shows very good performance when combined with
a simple pruning technique that stops algorithm evaluations once they are
proovably worse (on the training set) than the incumbent solution.

In future work, we plan to study model-based approaches in order to
speed up the search for good parameter configurations. We also plan to
integrate computationally cheap instance features into this model and use
it to perform per-instance algorithm configuration, where we automatically
choose an appropriate parameter configuration for each given instance [11].

References
[1] B. Adenso-Diaz and M. Laguna. Fine-tuning of algorithms using fractional experimental

design and local search. Operations Research, 54(1):99–114, Jan–Feb 2006.

[2] T. Bartz-Beielstein. Experimental Research in Evolutionary Computation. Springer Verlag,
2006.

[3] M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[4] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In Proc. of GECCO-02, pages 11–18, 2002.

39

Scenario Default Random(100) BasicILS(100) FocusedILS

SAPS-SWGCP 45.41
0.21± 0.03 0.21± 0.03 0.35± 0.05
0.32± 0.05 0.32± 0.06 0.32± 0.05

SPEAR-SWGCP 9.74
6.71± 1.2 6.65± 1.48 8.26± 0.73
7.97± 1.14 8.05± 0.9 8.3± 1.06

SAPS-QCP 15.80
3.4± 1.53 2.78 ± 1.28 3.95± 0.27
5.92± 0.44 5.5± 0.53 5.21 ± 0.39

SPEAR-QCP 2.65
0.45± 0.51 0.36± 0.41 1.08± 0.18
1.2± 0.18 1.39± 0.33 1.29± 0.2

CPLEX-regions100 1.61
0.7± 0.12 0.39 ± 0.12 0.35± 0.04
0.71± 0.12 0.4± 0.11 0.35 ± 0.04

Table 1: Performance for our tuning scenarios; the top row for each scenario
gives training performance, the bottom row test performance, mean±stddev
over 25 executions of the tuning approach. The training performance of
Random(100) and BasicILS(100) is directly comparable since they use the
same training set: bold face indicates statistically better performance for
BasicILS, but due to limited representativeness of the training set this does
not transfer to statistically better performance on the test set. For Fo-
cusedILS, bold face indicates statistically better performance than the other
approaches on the test set; the cases where Random performs best are not
statistically significant.

[5] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics, 7(1):77–97, 2001.

[6] N. Eén and N. Sörensson. An extensible SAT solver. In Proc. of SAT-03, pages 502–518,
2003.

[7] I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and
randomness. In Proc. of AAAI-99, pages 654–660, Orlando, Florida, 1999.

[8] C. P. Gomes and B. Selman. Problem structure in the presence of perturbations. In Proc. of
AAAI-97, 1997.

[9] H. H. Hoos and T. Stützle. Stochastic Local Search – Foundations & Applications. Morgan
Kaufmann, 2005.

[10] F. Hutter, D. Babić, H. H. Hoos, and A. J.Hu. Boosting verification by automatic tuning of
decision procedures. In Formal Methods in Computer Aided Design (FMCAD’07), 2007. To
appear.

[11] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Performance prediction and
automated tuning of randomized and parametric algorithms. In Proc. of CP-06, pages 213–
228, 2006.

[12] F. Hutter, H. H. Hoos, and T. Stützle. Automated algorithm configuration based on local
search. In Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-
07), 2007. To appear.

[13] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probabilistic smoothing: Efficient
dynamic local search for SAT. In Proc. of CP-02, pages 233–248, 2002.

[14] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for combina-
torial auction algorithms. In ACM Conference on Electronic Commerce (EC-00), 2000.

[15] S. Minton. Automatically configuring constraint satisfaction programs: A case study. Con-
straints, 1(1):1–40, 1996.

[16] M. Oltean. Evolving evolutionary algorithms using linear genetic programming. Evolutionary
Computation, 13(3):387–410, 2005.

40

Development of Algorithms for Knowledge

Discovery. Swarm Intelligence and Rough Set

Theory as Tools.

Yudel Gómez1, Rafael Bello1 and Ann Nowe2

1CS Department, Universidad Central de Las Villas, Cuba
2Como Lab, Vrije Universiteit Brussel, Belgium

Abstract

This research deals with the development of algorithms for Knowledge
Discovery, specifically feature selection and rules induction. Two mod-
els to feature selection based on Ant Colony Optimization and Rough
Set Theory and Particle Swarm Optimization and Rough Set Theory
are presented. Variants of these algorithms in two stages are developed.
I use Learning Rules using Rough Set (LRRS) algorithm from Rough
Set Theory to rule induction. A new model to learning rules taking
into account sharing meta information from several dataset should be
developed.

1 Introduction

New papers continuously appear related to Feature Selection Problem (FSP)
and Rule Induction [15] [13]. Classification rule induction [12] is an area of
machine learning where formal rules are extracted from observations. The
extracted rules may represent a full scientific model of the data.

Swarm intelligence [5] can be defined as the collective intelligence that
emerges from a group of simple entities; these agents enter into interactions,
sense and change their environment locally. There are two popular swarm
inspired methods in computational areas: Ant Colony Optimization (ACO)
and Particle Swarm Optimization (PSO). ACO is inspired by the behavior
of ants and has many applications in discrete optimization problems. The
approach relies on a metaheuristic which is used to guide other heuristics
in order to obtain better solutions than those that are generated by local
optimization methods. This computational model was introduced by Marco
Dorigo; for an overview see [6]. PSO is a population based stochastic opti-
mization technique developed by Eberhart and Kennedy [9, 7], inspired by
social behavior of bird flocking. This is a metaheuristic for the optimization
of continuous functions; but has also been extended to a discrete particle
swarm optimization algorithm [10].

41

Rough Set Theory (RST) offers the heuristic function to measure the
quality of one feature subset. RST was proposed by Z. Pawlak [14]. An
important issue in the RST is about feature reduction based on the reduct
concept. A reduct is a minimal set of attributes that preserves the parti-
tioning of universe and hence the ability to perform classifications [11].

2 Problem

The problem faced is to solve a typical classification problem. For a new ob-
ject is necessary to know which class it belongs to. Usually there is a dataset
with objects that are described by many attributes, and its class. Those at-
tributes can be nominal, integer or real (continuous). So, the problem is to
determine the class (or classes) for a new object with same attributes.

There are many algorithms that have been developed in order to solve
this problem [16] [13]. Even though, the results can be improved and also,
their run time and complexity can be decreased.

This problem can be solved by using a Rule Base System. This is the
simplest expert system, but it is very difficult to find the rules with high
global performance. It involves several tasks; one of them is feature selection,
that is, to choose from the original ones the subset of relevant attributes
that provides the best results for the classification. This is a combinatorial
problem with exponential complexity and, hence, heuristics methods are
useful.

The feature selection problem (FSP) can be viewed as a particular case
of a more general subset selection problem in which the goal is to find a
subset maximizing some adopted criterion. Feature selection methods search
through the subsets of features and try to find the best subset among the
competing 2N-1 candidate subsets according to some evaluation measure,
where N denotes the total number of features.

Swarm intelligence techniques have been used as the search algorithm in
the FSP. Methods which combine ACO and RST to find reducts with good
results have been proposed [8]. An algorithm to find rough set reducts by
using PSO was introduced in [18, 19]. In this case, a binary representation
of the particles was used. The experimental results developed in that work
showed that PSO is efficient for rough set-based feature selection. The
application of this approach for rule learning was presented in [17].

The effect of introducing local search in the PSO and ACO meta-heuristics
to feature selection is been studied. For instance, ACO algorithms perform
best when coupled with local search algorithms because these locally op-
timize the ant’s solutions, the coupling can therefore greatly improve the
quality of the solutions generated by ants [6]. In this work, the local search
algorithm is used to delete some features from the subsets found by the
swarm intelligence methods.

42

3 Tasks

T1. Improve the performance of the ACO+RST model to feature
selection problem. Methods which combine ACO and Rough Set Theory
(RST) to find reducts with promising results were proposed. They are based
on the reduct concept. Because the setting of parameters is crucial for the
performance of the ant algorithms [6], we have developed a study about the
parameters of this algorithm in the problem of feature selection. We have
studied three variants of ant algorithms and the influence of the parameters
on the performance both in terms of quality of the results and the number
of reducts found [4, 2, 3].

T2. Improve the performance of the PSO+RST model to feature
selection problem by the new Two Step PSO+RST. A new model
of PSO called Two-Step PSO will be presented [1], the basic idea is to split
the heuristic search performed by particles into two stages. The algorithm
divides the search process made by the particles in two stages, so that in the
first stage preliminary results are reached which are used to build the initial
swarm for the second stage. In FSP, this means that subsets of features
which are potential reducts are generated in the first stage; these subsets
are used to modify the swarm resulting from the last cycle in the first stage,
the modified swarm is used as initial population of the second stage.

An important issue in the feature selection problem is the length of
reducts, that is, the quantity of features included in the reduct. Shorter
reducts are preferable. In order to decrease the length of reducts a post
processing step can be applied. I studied the effect of introducing local
search in the PSO and ACO meta-heuristics to FSP by using local search
algorithm to delete some features from the subsets found by the swarm
intelligence methods.

T3. Rule induction. I will use classical Learning Rules using Rough Set
(LRRS) algorithm from Rough Set Theory to rule induction but taking into
account reducts calculated with proposed algorithm. A comparison between
algorithms should be established.

T4. Develop a new computational model to learning for the fol-
lowing problem. Suppose there are some entities (see Figure 1) with
their dataset and need a system to classify new object based on dataset and
attributes values from the new object. Those entities decide to collaborate
to have the system. It could be solved in some ways:

1. each entity gets its rules, these are mixed and the system work with
all rules together. It fails because different conditions/situation could
appear in different places.

43

Figure 1: Sharing ”meta” information to learning rules.

2. all data are put together and the system obtains the rules. It fails if
entities do not want to give their data.

3. So, what happen if factories interchange meta information? These
could share just the relevant attributes, and each entity gets its rules.

References

[1] P. R. Bello, Y. Gómez, et al. Two step particle swarm optimization
to solve the feature selection problem. In To appear in Proceedings of
ISDA 200707. IEEE Computer Society, 2007.

[2] P. R. Bello, A. Nowe, Y. Caballero, Y. Gómez, and P. Vrancx. A model
based on ant colony system and rough set theory to feature selection.
In Proceedings of GECCO 2005, pages 275–276, New York, NY, USA,
2005. ACM Press.

[3] P. R. Bello, A. Nowe, Y. Caballero, Y. Gómez, and P. Vrancx. Using
ant colony system meta-heuristic and rough set theory to feature se-
lection. In Proceedings of MIC 2005, August 22-26, Vienna, Austria.
2005, 2005.

[4] P. R. Bello, A. Nowe, P. Vrancx, Y. Caballero, and H. Gómez. Using
aco and rough set theory to feature selection. WSEAS Transactions on
Information Science and Applications, 2(5):512–517, May 2005.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, 1999.

44

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, USA, 2004.

[7] R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pages 39–43, 1995.

[8] R. Jensen and S. Q. Finding rough set reducts with ant colony optimiza-
tion. In Proceedings of UK Workshop on Computational Intelligence,
pages 15–22, 2003.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceed-
ings IEEE International Conference on Neural Networks, pages 1942–
1948, 1995.

[10] J. Kennedy and R. Eberhart. A discrete binary version of the particle
swarm optimization algorithm. In Proceedings of the IEEE Interna-
tional Conference on Neural Networks, Perth, Australia, pages 4104–
4108, 1997.

[11] J. Komorowski, L. Polkowski, and A. Skowron. Rough sets: a tutorial,
1998.

[12] T. M. Mitchell. Does machine learning really work? AI Magazine,
18(3):11–20, 1997.

[13] R. Parpinelli, H. Lopes, and A. Freitas. Data Mining with an Ant
Colony Optimization Algorithm. IEEE Transactions on Evolutionary
Computation, 6(4):321–332, August 2002.

[14] Z. Pawlak. Rough sets. International Journal of Information & Com-
puter Sciences, 11:341–356, 1982.

[15] R. C. Prati and P. A. Flach. ROCCER: An algorithm for rule learning
based on ROC analysis. In L. P. Kaelbling and A. Saffiotti, editors,
IJCAI, pages 823–828. Professional Book Center, 2005.

[16] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, 1986.

[17] X. Wang, J. Yang, R. Jensen, and X. Liu. Rough set feature selection
and rule induction for prediction of malignancy degree in brain glioma.
Computer Methods and Programs in Biomedicine, 83(2):147–156, 2006.

[18] X. Wang, J. Yang, N. Peng, and X. Teng. Finding minimal rough set
reducts with particle swarm optimization. In D. Slezak et al., editors,
Proceedings of RSFDGrC 2005, volume 3641 of LNCS, pages 451–460.
Springer, 2005.

45

[19] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature selection
based on rough sets and particle swarm optimization. Pattern Recog-
nition Letters, 28(4):459–471, 2007.

46

Novel Genetic Algorithm Crossover Approaches for

Time-Series Problems

Paul M. Godley, Julie Cowie and David E. Cairns
Department of Computing Science and Mathematics

University of Stirling, Scotland

Abstract

Genetic Algorithms (GAs) are a commonly used stochastic search
heuristic which have been applied to a plethora of problem domains.
GAs work on a population of chromosomes (an encoding of a solu-
tion to the problem at hand) and breed solutions from fit parents to
hopefully produce fitter children through a process of crossover and
mutation. This work discusses two novel crossover approaches for GAs
when applied to the optimisation of time-series problems, with partic-
ular application to bio-control schedules.

1 Introduction

In optimization of intervention schedules for models of dynamic systems, Ge-
netic Algorithms (GAs) commonly use Uniform Crossover (UC) as a method
of achieving recombination [8]. Recent work [4] has produced alternative
crossover approaches which work on variable length chromosomes that have
been shown to outperform UC when applied to dynamic problems, with spe-
cific application to the area of bio-control scheduling. Although alternative
variable length crossover approaches such as Messy GAs (mGA) exist [6],
these have considerable complexity and a two-phase evolutionary approach
[1]. This work discusses a simplified approach, which is specifically designed
for time-series problems.

2 Problem Domain

This work focuses on the optimisation of intervention schedules and has
been tested initially in scheduling bio-control agents to combat sciarid flies.
In mushroom farming, the presence of sciarid flies can drastically affect the
quality of crop produced. Sciarid fly larvae feed on the mycelium in the
casing layer of mushrooms which cause degradation of the crop. The nema-
tode worm Steinernema feltiae has proven effective as a bio-control agent to

47

combat this pest. A set of differential equations which represents the life-
cycle of the sciarid flies and potential infection from nematode worms has
been produced [3]. These equations have been utilised as a fitness function
for testing the novel crossover approaches developed in this work, described
in [4] and [5].

3 Crossover Approaches

The novel crossover approaches detailed in [4] were designed to investigate if
incorporating the number of interventions (application of bio-control agent)
used by good solutions could be used to effectively drive the crossover pro-
cess. These approaches, CalEB (Calculated Expanding Bin) and TInSSel
(Targeted Intervention with Stochastic Selection) both provide mechanisms
for crossover of variable and fixed length chromosomes, where each chro-
mosome represents an intervention schedule. CalEB and TInSSel both use
the number of interventions present in the parents to calculate the number
required in the children, with CalEB utilising a “binning” approach to select
the genetic material from the parents, whereas TInSSel contains an element
of stochastic selection.

4 Experiments

Previous experiments reviewed CalEB, TInSSel and UC across varying ini-
tial intervention samples [4],[5]. These experiments were undertaken for
initial population samples from min intervention to min intervention (i.e.
1 to 1, where each member of the initial population has 1 intervention) to
min intervention to max intervention (i.e. 1 to 50, where each member of
the initial population has between 1 and 50 interventions). These differing
variances in possible initial interventions enabled evaluation of how initial
spread affects each of the crossover approaches in finding a solution. In
addition it demonstrates how the initial variance in population affects the
robustness of each crossover approach. Current work reviews the quality
of solutions produced when all experiments have min intervention to max
intervention (1 to 50), which represents the decision maker being unsure
of the sample population to use. The aim of this work is to evaluate the
search ability of UC, CalEB and TInSSel across varying limits of fitness
functions evaluations to ascertain if there is any difference in search ability
between these crossover types. The run parameters used for both these and
previous experiments are shown in Table 1. Each run was undertaken 500
times and averaged for each fitness function limit. Tournament selection was
used to select parents for breeding as it has been shown to provide better
or equivalent convergence and computational properties when compared to
alternative approaches [2]. The average scores for these experiments along

48

Table 1: GA Run Parameters
Parameter Value Parameter Value

Population size 50 Crossover probability 1
Number of parents 2 Mutation probability 0.05
Number of children 2 Days in nematode schedule 50
Fitness Evaluations 50 - 500 Nematodes / intervention 1000

Figure 1: Intervention Utilisation for Solutions

with the associated 95% confidence intervals are depicted in Figures 1 and 2.
Figure 1 shows that regardless of the number of fitness functions available,
UC solutions require more interventions than solutions returned by CalEB
and TInSSel. Figure 2 shows a clear difference in fitness score between TinS-
Sel, CalEB and UC for most experiments, with the exception being those
experiments where the number of fitness functions are very large (as all ap-
proaches have sufficient time to find a solution). This experiment shows that
both CalEB and TInSSel outperform UC in terms of intervention usage and
quality of solution found over a varying number of fitness function limits.
This was also true when experiments were undertaken over varying initial
population intervention numbers [4].

5 Future Work

In order to better understand the dynamics of the novel approaches, appli-
cation to varying problem domains is required. Future work will focus on

49

Figure 2: Fitness Scores for Solutions

deriving optimal treatment schedules for cancer chemotherapy [9], using the
single drug model detailed in [7].

References

[1] D. Dasgupta and D. McGregor. Sga: A structured genetic algorithm,
1992.

[2] K. Deb and D. Kalyanmoy. Multi-Objective Optimization Using Evo-
lutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA,
2001.

[3] A. Fenton, R. L. Gwynn, A. Gupta, R. Norman, J. P. Fairbairn, and
P. J. Hudson. Optimal application strategies for entomopathogenic ne-
matodes: integrating theoretical and empirical approaches. Journal of
Applied Ecology, 39(3):481–492, 2002.

[4] P. M. Godley, D. E. Cairns, and J. Cowie. Directed intervention crossover
applied to bio-control scheduling. In IEEE CEC 2007: Proceedings of
the IEEE Congress On Evolutionary Computation, 2007.

[5] P. M. Godley, D. E. Cairns, and J. Cowie. Maximising the efficiency of
bio-control application utilising genetic algorithms. In EFITA / WCCA
2007: Proceedings of the 6th Biennial Conference of European Federation
of IT in Agriculture, Glasgow, Scotland, UK, 2007. Glasgow Caledonian
University.

50

[6] D. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms : motiva-
tion, analysis, and first results. Clearinghouse for Genetic Algorithms,
Dept. of Mechanical Engineering, University of Alabama, 1989.

[7] A. Petrovski. An Application of Genetic Algorithms to Chemotherapy
Treatments. PhD thesis, 1999.

[8] A. Petrovski, A. Brownlee, and J. McCall. Statistical optimisation and
tuning of ga factors. In Congress on Evolutionary Computation, pages
758–764, 2005.

[9] A. Petrovski, J. McCall, and E. Forrest. An application of genetic algo-
rithms to optimisation of cancer chemotherapy. Int. J. of Mathematical
Education in Science and Technology, 29:377–388, 1998.

51

Parameterized Random Greedy Algorithms for the

Heterogeneous VRP with Time Windows

Zhi Yuan and Armin Fügenschuh
Department of Mathematics, Darmstadt University of Technology,

Germany

Abstract

We apply the new meta-heuristic framework of parameterized greedy
algorithms (PGreedy) to four different real-world heterogeneous vehicle
routing problems with time windows. We extend PGreedy by includ-
ing more than one scoring function and by a further randomization of
the selection within the construction step. Numerical results indicate
that our heuristic algorithms are able to achieve large savings in the
various application contexts.

1 Introduction

Greedy algorithms are in general simple heuristics to construct feasible so-
lutions for combinatorial optimization problems from scratch in short time.
In some cases, they even find proven optimal solutions (for example, Prim’s
algorithm for spanning trees). For hard optimization problem however they
only give sub-optimal solutions. Research interest in the past two decades
has thus turned to more sophisticated meta-heuristics (such as genetic al-
gorithms, tabu search, ant colony optimization, GRASP, or simulated an-
nealing). Our approach differs from that. It is well known that the scoring
function plays an essential role in the success of a greedy algorithm. We
notice in many hard combinatorial optimization problems, it is in general
difficult to identify an immediate best local step during the construction pro-
cess. Thus a simple scoring function statically depending on single criterion
is unreliable and even misleading. To overcome this structural problem of
greedy algorithms, the parameterized greedy algorithm (PGreedy, for short)
was developed by Fügenschuh in [1], [2], [3] as a new type of meta-heuristic.
Here more than one criterion is introduced and parameterized with individ-
ual weights into a linear scoring function. A parameter tuning technique is
performed to find the best parameter weight setting. To this end, methods
form Global Optimization, such as improving hit-and-run, can be applied
[9]. PGreedy can be further hybridized with existing local search heuristics,

52

or can be included in a GRASP framework [4], or to generate a starting
population for a genetic algorithm.

In this work, we adapt the PGreedy framework for certain vehicle rout-
ing problems to be described in the next sections. It turns out that the
general framework introduced by Fügenschuh could be further improved by
including a higher degree of randomization. For instance, not only the best
local step that was identified by the parameterized scoring function is se-
lected immediately. Instead, we select randomly from the list of all scores,
where the random function is biased by the score itself, so that lower scores
have a higher probability for being selected.

2 Heterogeneous VRP with Time Windows

The heterogeneous vehicle routing problem (VRP) with time windows is
stated as follows. Given is a heterogeneous fleet of vehicles. These vehicles
differ in home depot location, size, power, loading capacity, costs, and max-
imal or average speed, for instance. Given is also a set of customers, who
expect exactly one of the vehicles to arrive at a certain time or within a
certain time window. If the vehicle arrives early then waiting is permitted,
but late arrival is strictly forbidden. The objective of the problem is to
find a minimum cost assignment of vehicles to customers. That means, it
is desired to serve all customers with a minimum size fleet, and on a sub-
sidiary level the total length of all driving distances has to be minimal. A
mathematical description of the constraints and objective as a mixed-integer
programming model can be found in the book of Toth and Vigo [7]. The
adaption of PGreedy for finding good feasible solutions of this VRP problem
can be done as follows. We make use of three individual scoring functions.

The first scoring function evaluates each possible assignment of a “fresh”
vehicle from the depot. More detailed, for each vehicle type, this parameter-
dependent scoring function takes into account the fixed cost for using a
vehicle of this type. As a second criterion, it takes into account the capability
of the vehicle, that is, how many customers can potentially be served by it.

The second scoring function uses three parameters for evaluating which
customer to serve first with the previously selected “fresh” vehicle. To this
end, it takes into account the driving cost from the depot to each customer,
the earliest possible starting time for this customer, and the number of
possible further customers after this one has been served.

The third scoring function is the most critical one for the quality of
the produced solution. It also makes use of three parameters. The first
parameter takes the driving cost between two customers into account. The
second parameter evaluates the idle time the vehicle has to accept when
possibly arriving early at the next customer’s site. The third parameter
evaluates the compatibility of the time windows of the two customers.

53

These three scoring functions are called iteratively. By the first, we find
the most promising vehicle. By the second, we find the most promising first
customer for it. Then we apply the third scoring function to generate its
route until no further customer can be added, and the vehicle has to be
sent back to the depot. Then we start again with the first scoring function,
and so on, until all customers are served. At that point in the algorithm,
we have a feasible solution to the problem, which is now undergoing a local
search phase for further improvement.

The local search consists of two different steps which are carried out
iteratively, until no further improvement is found. First, we do a local tour
optimization, where we apply classical node insertion and node exchange
steps between two routes. Second, we do a local exchange on the vehicle
type, where we assign the cheapest possible type to each existing route.
Finally, the generated solution is returned.

3 Applications and Results

We applied our general PGreedy strategy to four different real-world appli-
cations of heterogeneous VRP with time windows. Besides the general VRP
structure, each of the four problem has individual constraints depending
on the type of application. The main implementation effort was to adapt
PGreedy to each individual situation.

3.1 Locomotive Scheduling

In scheduling locomotives for Deutsche Bahn, several new aspects have to
be taken into account, such as cyclic departures of the trains, network-load
dependent travel times, and wagon transfers between trains. For further de-
tails we refer to [5] and [6]. A complex starting time propagation procedure
is developed to keep the multiple and coupled time window feasible dur-
ing each solution construction. Experiment results show that the heuristic
usually generates a good solution (in average around 10% from optimality)
in several minutes, and in combination with the MILP solver, where the
heuristic solution serves as a start value, it has also significantly speeded up
the process of solving the medium instances to optimality.

There has been another locomotive scheduling project cooperated with
Siemens, where depots are geographically dispersed and coupling locomo-
tives for pulling a train is allowed. A carefully tuned PGreedy algorithm
yields a solution with less than 5% gap from optimality where available, and
shows at least 20% potential saving. More details can be found in Yuan [8].

54

3.2 Home Health Care Services

In a project in cooperation with a local home health care service provider,
we focus on the specific field of nurses visiting and providing medical ser-
vices to clients at home. The task is to plan a weekly schedule, to assign
each patient visit to a nurse with competent qualification on an appropriate
day at a time within a patient-specified time window. Many other practical
restrictions from the problem nature need to be considered, for example, pa-
tients need several visits per week, and a minimum inter-visit day difference
between some pair of visits should be retained, e.g. some injections must be
given twice a week with at least 3 days’ break in between; patients can in-
dicate on which day(s) they are expecting a visit, while each nurse has their
preferred working days; under the legal framework and personal preference,
a maximum daily resp. weekly working time is imposed on each nurse; each
patient should, if possible, be visited by the same nurse. The goal is to min-
imize the operating cost, especially the number of staff members required,
while improve the route quality including balancing the workload among
staff. The scheduling tool should also be robust, if any changes happen, the
reallocation of a new schedule should be made in a short time with as few
modifications to the original schedule as possible.

To this end the local search procedure is crucial for this project. After
building a set of routes with our PGreedy construction search, a two-phase
local search is performed, applying a neighborhood of node insertion fol-
lowed by a node exchange in each phase. In the first phase we iteratively
insert nodes (patient visits) from the nurses with less workload to those
with heavier workload, in the hope of reducing the number of nurses. Af-
ter the number of nurses cannot be reduced anymore, in the second phase
conversely, we iteratively insert nodes from nurses with heavier workload to
those with less workload, to balance among nurses. In order to ensure each
step of local search to be feasible and efficient, a linear constraint propaga-
tion is performed, including intra-route propagation for time windows and
maximum working time, and inter-route propagation for inter-visit day dif-
ference. Current experiment result on a real-world instance shows saving of
one nurse out of nine, to serve in total 130 patients with weekly 460 visits.

3.3 School Taxi Routing for Handicapped Pupils

This project differs from school bus scheduling for normal pupils (see Fügenschuh
[2]), in the sense that handicapped pupils are usually picked up directly at
home by taxis, and more capacity restrictions come to the scene, such as
vehicle capacity with respect to different types of wheelchairs. Also the
pupils usually have to attend a special school far away from home, and a
maximum driving time from home to school is specified for each pupil and
must be complied with. There is no explicit time window for each pupil,

55

however pupils should arrive at school within a given time window, coupled
with the maximum driving time, the time interval in which they should be
picked up is implied. This problem is a heterogeneous VRP with pickup and
delivery (VRPPD) and coupled time windows.

We currently tackle the problem using our PGreedy heuristic. Our first
implementation is to pick up pupils always from the same school into one
car, and make sure they arrive at school within their driving time tolerance.
Thereafter we implement it in a way that pupils from different schools can
also be on one car simultaneously, which is more subtle, since during each
route construction step one has to check all permutations of to be reached
schools to determine a candidate node’s feasibility. But experiment confirms
that allowing pupils from different schools on board results in a noticeable
route efficiency enhancement, in other words, reduced fleet size and cost. A
current real-world instance with 11 vehicle types, 700 pupils and 50 schools is
solved, and the heuristic solution can potentially save 27 vehicles comparing
to the current schedule with 130 vehicles in use.

4 Outlook and Conclusions

In this article we applied the meta-heuristic framework of PGreedy to four
different real-world heterogeneous vehicle routing problems with time win-
dows. We adapted PGreedy and extended the general framework with fur-
ther randomization ideas. The latter were crucial for generating high quality
solutions for the given instances of the four problems. It turns out that our
solutions improve the status quo to a large extent. In cases where lower
bounds were available, we are able to show that our solutions are reason-
ably close to global optimality.

We think this type of PGreedy algorithm is further applicable in a wide
variety of other hard combinatorial optimization problems, such as job shop,
flow shop, and open shop scheduling problems, among others.

References

[1] A. Fügenschuh. Parametrized greedy heuristics in theory and practice.
Lecture Notes in Computer Science, Vol. 3636: “Hybrid Metaheuristics,
Second International Workshop, HM 2005, Barcelona, Spain, August 29-
30, 2005”, pages 21 – 31, 2005.

[2] A. Fügenschuh. The Integrated Optimization of School Starting Times
and Public Bus Services. Logos Verlag Berlin, ISBN 3-8325-1037-0, 2006.

[3] A. Fügenschuh. The vehicle routing problem with coupled time windows.
Central European Journal of Operations Research, 14(2):157 – 176, 2006.

56

[4] A. Fügenschuh and B. Höfler. Parametrized grasp heuristics for three-
index assignment. Lecture Notes in Computer Science, Vol. 3906: “Evo-
lutionary Computation in Combinatorial Optimization: 6th European
Conference, EvoCOP 2006, Budapest, Hungary, April 10-12, 2006”,
pages 61 – 72, 2006.

[5] A. Fügenschuh, H. Homfeld, A. Huck, and A. Martin. Locomotive and
wagon scheduling in freight transport. Proceedings of the ATMOS06,
2006.

[6] A. Fügenschuh, H. Homfeld, A. Huck, A. Martin, and Z. Yuan. Loco-
motive and wagon scheduling in freight transport. submitted.

[7] P. Toth and D. Vigo. The Vehicle Routing Problem. SIAM, Philadelphia,
2002.

[8] Z. Yuan. Multi-Depot Locomotive Scheduling Problem with Coupling
Trips and Time Windows. Bachelor thesis in Darmstadt University of
Technology, also available on request: ericyuanzhi@gmail.com, 2007.

[9] Z. Zabinsky, R. Smith, J. McDonald, H. Romeijn, and D. Kaufman.
Improving hit-and-run for global optimization. Journal of Global Opti-
mization, 3:171 – 192, 1993.

57

A Study of Ant Colony Optimization Algorithms

for a Biobjective Permutation Flowshop Problem

Trung Truc Huynh, Thomas Stützle,
Mauro Birattari and Yves De Smet

Université Libre de Bruxelles, Brussels, Belgium

Abstract

In this article, we present a study that compares variants of two
ACO algorithms designed to tackle a biobjective permutation flow-
shop scheduling problem where the makespan and the total tardiness
are the objectives considered. These two algorithms use respectively
one and two pheromone matrices. The analysis of the results gives
indications on the choices to adopt when designing an ACO approach
for biobjective flowshop scheduling.

1 Introduction

Ant Colony Optimization (ACO) is a population-based SLS method inspired
by the foraging behaviour of some ants species [1]. The main idea in ACO
algorithms is to mimic the pheromone trails used by real ants. In ACO
algorithms, artificial pheromone trails serve as a distributed, numerical in-
formation that the ants use to probabilistically construct solutions to the
problem being tackled and to adapt these pheromone at run-time to reflect
their search experience.

The permutation flowshop scheduling problem (PFSP) requires schedul-
ing n jobs with given processing times on each of m machines such that the
job sequence on all machines is identical. Typical further assumptions are
that each job can be processed on only one machine at a time, operations
are not preemptable, jobs are available for processing at time zero and setup
times are independent. Given its industrial relevance, various variants of the
PFSP have been considered, including variants that consider various objec-
tive functions to be optimized simultaneously. In multiobjective optimiza-
tion, the goal is to identify all efficient alternatives, that is, the set of Pareto
optimal solutions that comprises all solutions that are non-dominated solu-
tions w.r.t. Pareto dominance, which is defined as follows: if all objectives
are minimization, an objective vector V (x) is said to dominate a vector V (x′)
if and only if ∀i : vi(x) ≤ vi(x′)∧∃i.vi(x) < vi(x′). In this work, we consider

58

a biobjective version of the PFSP and the two objectives, f1 and f2, con-
sidered are to minimize the makespan (f1 = Cmax = max{C1, C2, . . . , Cn})
and the total tardiness (f2 = T =

∑n
i=1 Ti, where Ti = max{0, Ci − di},

where di is the due date and Ci the completion time of of the job i).

2 ACO algorithms for biobjective PFSP

The two proposed approaches uses multiple runs of an ACO algorithm and
the idea is to force each run to search in different regions of the space. The
first method (1phero) consists in aggregating the two objective functions
into one single objective function F = λ1f1 + λ2f2, λ1 + λ2 = 1. For
approximating different areas of the Pareto front, dynamically the search
directions are modified by modifying the weights λ1 and λ2: if k weight
vectors are used, λ1 and λ2 change by ±1/k when moving from one weight
vector to the next one, that is, the weights are uniformly spaced and the
minimum amount of change is done when moving from one weight vector
to the next one. The second approach (2phero) associates to each objective
one pheromone matrix and ants will construct their solutions based on an
aggregation of the two pheromone matrices, where a pheromone matrix entry
at position i, j is defined by τij = λ1τ

1
ij + λ2τ

2
ij ; again the values of λ1 and

λ2 are modified to attain different areas of the Pareto front. The use of two
pheromone matrices has already been proposed in [2].

Each resulting ACO algorithm is combined with an iterative improve-
ment algorithm in the insert neighbourhood and with a component-wise local
search that looks for non dominated solutions in the insert neighbourhood
and adds these to the archive. For each of the 1phero and 2phero algo-
rithms, two further variants have been studied. In the scratch approach, the
colonies for each weight vector λ work independently of each other. In the
2phase approach, the best solution found for the previous weight, is used for
the initialisation for the current weight vector. Hence, for each λ vector, a
colony starts with a solution that was good for the previous weight. Hence,
the solutions in the 2phase approach are treated like a chain. For the two
pheromone matrices approach (2phero), two further sub-variants have been
studied. These two configurations, 2pheroG and 2pheroL differ in the up-
date of the pheromones. In 2pheroG, only the best solutions found for each
objective function across all already considered weight vectors are allowed
to update the pheromone matrices τ1

ij and τ2
ij , respectively. For 2pheroL,

the update is done by the best solutions found for the current aggregation
weight. In addition to these variants, we also have studied the influence of
the number of weights used and the influence of the direction in which the
weight vector changes (initial weight one for either f1 or f2).

59

Figure 1: Difference of EAFs, comparison scratch-2phase approach

3 Experimental results

Each of the variants defined above was experimentally tested in a number of
benchmark instances using ten independent trials. The computation times
were chosen the same for all algorithmic variants. The analysis of the results
is based on pairwise comparisons between the outcomes of algorithms. To
avoid the known short-comings of performance measures for multi-objective
optimizers [4], we first examine whether for one algorithm the outperfor-
mance relation holds and, if this is not the case, we compute attainment
functions, apply statistical tests on the equality of two attainment functions
and, if the test is rejected, we use the visualization of the difference of two
attainment surfaces to detect these [3]. In the plots of the attainment sur-
faces (see Figures 1 and 2), we draw three lines where the rightmost connects
the set of points attained by any run of the two configurations (worst case
performance) and the leftmost connects the best set of point attained (best
case performance). The line between the two gives the median. The differ-
ent shades of gray indicate how large are the differences at specific points
of the attainment function (only differences above 0.2 are given); the darker
the point, the larger is the difference. On the left is given the advantage of
algorithm A over B, while on the right side, the advantage of B over A is
given, where A and B are the variants indicated below the x-axis of each
plot.

The two examples of the visualization of the differences between two al-
gorithms indicate the following facts. Figure 1 indicates that 2pheroL,2phase
performs better than 2pheroL,scratch in most regions of the objective space.

60

Figure 2: Difference of EAFs, comparison global-local strategy

This means that for the tackled instance, it is advantageous to keep informa-
tion from previous colonies. In Figure 2, we can observe that the two strate-
gies, 2pheroL,scratch and 2pheroG,scratch have advantages in two distinct
regions: 2pheroL,scratch is clearly better in the center, while 2pheroG,scratch
is better in the upper left corner.

The main observations of these and further comparisons can be summa-
rized as follows.

– The use of the component-wise local search often improves significantly
the quality of the approximation obtained.

– The 2phase approach in most cases leads to an improved performance
over the scratch approach.

– A minimum number of weight vectors seems to be necessary to obtain
good approximation sets.

– When comparing 2pheroG and 2pheroL, typically the former is less
performing in the middle of the front but it can give advantages towards the
extremes, where one objective receives a very high weight.

– The direction of the changes of the weight vector can have an influence
on the performance in the 2phase approach.

– In general, the performance of the different variants depends strongly
on the instances tackled and, apparently, strongly on the number of ma-
chines.

Future work can focus on different directions. A first would certainly
be to extend further the empirical basis of our findings by enlarging the
experimental study by more instances or a more systematic modification of
instance characteristics. Other directions are to explore further some of the

61

observations made here. One is to study with our or similar algorithms the
influence of different directions taken in the changes to the weight vectors.
Another would be to provide combinations between the 2pheroG and 2pheroL
search strategies, given that each has its own advantages in different areas
of the approximation to the Pareto front. Finally, comparisons with other
multiobjective optimizers will also be necessary.

References

[1] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, 2004.

[2] S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with
multi colony ant algorithms. In E. Zitzler et al., editors, Proceedings of
EMO’01, volume 1993 of LNCS, pages 359–372. Springer Verlag, 2001.

[3] M. López-Ibáñez, L. Paquete, and T. Stützle. Hybrid population-based
algorithms for the bi-objective quadratic assignment problem. Journal
of Mathematical Modelling and Algorithms, 5(1):111–137, 2006.

[4] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert
da Fonseca. Performance assessment of multiobjective optimizers: an
analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

62

	v2bis.pdf
	Introduction
	Model and methods
	Results
	Discussion

	abstract.pdf
	Introduction
	SLS Methods
	Experimental setup and results
	Conclusions

	BalBirStuDor2007.DocSym.pdf
	Introduction
	Estimation-based iterative improvement algorithm for the PTSP
	Conclusion and Future Work

	OppenWoodruff_SLS-DS_2007.pdf
	Introduction
	Models
	Computational Results
	Conclusions and Directions for Future Research

	ManBirStuDor.pdf
	Introduction
	Experimental settings
	Results
	Conclusions

	sls07.pdf
	Introduction
	Tuning scenarios
	Experiments with iterated local search
	Conclusions

	article.pdf
	Introduction
	Problem
	Tasks

	symposiumPaper.pdf
	Introduction
	Problem Domain
	Crossover Approaches
	Experiments
	Future Work

	article-huynh.pdf
	Introduction
	ACO algorithms for biobjective PFSP
	Experimental results

	abstract.pdf
	Introduction
	SLS Methods
	Experimental setup and results
	Conclusions

	abstract.pdf
	Introduction
	SLS Methods
	Experimental setup and results
	Conclusions

