
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

Estimation-based Local Search

for Stochastic Combinatorial Optimization

Mauro Birattari, Prasanna Balaprakash,
Thomas Stützle, and Marco Dorigo

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2007-003

February 2007

IRIDIA – Technical Report Series

ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2007-003

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsability for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

Estimation-based Local Search

for Stochastic Combinatorial Optimization

Mauro Birattari mbiro@ulb.ac.be

Prasanna Balaprakash pbalapra@ulb.ac.be

Thomas Stützle stuetzle@ulb.ac.be

Marco Dorigo mdorigo@ulb.ac.be

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

February 12, 2007

In recent years, much attention has been devoted to the development of metaheuristics and local
search algorithms for tackling stochastic combinatorial optimization problems. This paper focuses
on local search algorithms; their effectiveness is greatly determined by the evaluation procedure
that is used to select the best of several solutions in the presence of uncertainty. In this paper, we
propose an effective evaluation procedure that makes use of empirical estimation techniques. We
illustrate our approach and assess its performance on the probabilistic traveling salesman

problem. Experimental results on a large set of instances show that our approach can lead to a
very fast and highly effective local search algorithms.

Keywords: stochastic combinatorial optimization; suboptimal algorithms; iterative improvement;
simulation;

1 Introduction

In a large number of practically relevant combinatorial optimization problems, the objective
function is affected by uncertainty. Examples include portfolio management, vehicle routing,
resource allocation, scheduling, and the modeling and simulation of large molecular systems in
bio-informatics (Fu, 2002). In order to tackle these problems, it is customary that a setting is
considered in which the cost of each solution is a random variable, and the goal is to find a solution
that minimizes some statistics of the latter. For a number of practical and theoretical reasons, the
optimization is performed with respect to the expectation (Fu, 1994, 2002). In this context, two
approaches have been discussed in the literature: analytical computation and empirical estima-

tion. While the former explicitly relies on the underlying probabilistic model for computing the
expectation through a complex analytical development, the latter simply estimates the expectation
through Monte Carlo simulation.

Designing efficient algorithms for solving stochastic combinatorial optimization problems is
a challenging task. The main difficulty is that the computational complexity associated to the
combinatorial explosion of potential solutions is exacerbated by the added element of uncertainty
in the data. We refer the reader to Fu (1994) and Bianchi (2006) for surveys on solution tech-
niques for stochastic combinatorial optimization problems. Extensive computational results from
the literature have shown that local search is an effective approach for stochastic combinatorial
optimization (Pichitlamken and Nelson, 2003; Gutjahr, 2004; Bianchi et al., 2006). However, a
main challenge in applying local search lies in designing an effective evaluation procedure that
conclusively determines if one solution is better than another.

1

2 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

In this paper, we focus on a very basic local search algorithm known as iterative improvement,
which starts from some initial solution and then moves to an improving neighboring solution until
a local optimum is found. In this algorithm, the cost of solutions can be evaluated in two ways:
(i) full evaluation that computes the cost of each solution from scratch; (ii) partial evaluation that
computes only the cost difference between a particular solution and every neighboring solution.
The former is applicable to all classes of stochastic combinatorial optimization problems. The
latter, widely known as delta evaluation, is highly profitable in terms of computation time whenever
partial evaluation of solutions is feasible (Bertsimas, 1988).

The delta evaluation strategies proposed in the literature for iterative improvement algorithms
are based on analytical computation (Bertsimas, 1988; Bianchi, 2006). In this strategy, the cost
difference between two solutions is given by a closed-form expression that is obtained through
problem-specific knowledge and rather heavy mathematical derivations. The main drawbacks
of this techniques are that (i) they are not general-purpose; and (ii) they cannot be applied to
problems in which the cost difference cannot be expressed in an analytical way (Fu, 1994). Several
research results from the simulation literature suggest that the empirical estimation approach
can overcome the difficulties posed by analytical computation. Surprisingly, to the best of our
knowledge, the idea of using estimation techniques in delta evaluation has never been thoroughly
investigated.

The goal of this paper is to present an iterative improvement algorithm that performs delta

evaluation using empirical estimation techniques. We use the probabilistic traveling sales-

man problem as an example to illustrate the proposed approach and to assess its performance.

The paper is organized as follows. In Section 2, we give a formal definition of stochastic com-
binatorial optimization problems and introduce the PTSP as an example. In Section 3, we review
the state-of-the-art iterative improvement algorithms for the PTSP. In Section 4, we introduce
the estimation-based iterative improvement algorithm for the PTSP and we study its performance
in Section 5. In Section 6, we conclude the paper.

2 Stochastic Combinatorial Optimization Problems

In this paper, we consider stochastic combinatorial optimization problems that can be described
as:

Minimize F (x) = E
[

f(x, Ω)
]

, subject to x ∈ S, (1)

where x is a solution, S is the finite set of feasible solutions, the operator E denotes the mathe-
matical expectation, and f is the cost function, which depends on x and on a multivariate random
variable Ω. The presence of the latter makes f(x, Ω) a random variable. The goal is to find a
feasible solution that minimizes the expected cost.

A paradigmatic example of a stochastic combinatorial optimization problem is the probabilis-

tic traveling salesman problem (PTSP) (Jaillet, 1985). Formally, an instance of the PTSP
is defined on a complete graph G = (V, A, C, P), where V = {1, 2, . . . , n} is a set of nodes, A =
{〈i, j〉 : i, j ∈ V, i 6= j} is the set of edges that completely connects the nodes, C = {cij : 〈i, j〉 ∈ A}
is a cost-matrix that gives the travel cost associated with each edge 〈i, j〉 ∈ A, and P = {pi : i ∈ V }
is a set of probabilities that for each node i specifies its probability pi of requiring a visit. Hence,
for the PTSP the random variable Ω is described by an n-variate Bernoulli distribution and a
realization of Ω is a binary vector of size n where a 1 in position i indicates that node i requires
visit and a 0 indicates that it does not. We assume that the cost matrix C is symmetric.

Usually, the PTSP is tackled by a priori optimization (Jaillet, 1985; Bertsimas et al., 1990),
which consists of two stages: In the first stage, a solution, which can be represented as a permuta-
tion of the nodes, is determined before the actual realization of the random variable Ω is available.
This is the so-called a priori solution. In the second stage, after the realization of the random
variable is known, an a posteriori solution is obtained from the a priori solution by visiting the
nodes prescribed by the given realization in the order in which they appear in the a priori solution.
The nodes that do not require visit are simply skipped. Figure 1 shows an example.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 3

Figure 1: An a priori solution for a PTSP instance with 8 nodes. The nodes in the a priori

solution are visited in following order: 1, 2, 3, 4, 5, 6, 7, 8, and 1. Assume that a realization of
Ω prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The resulting a posteriori solution is
obtained by visiting the nodes in the order in which they appear in the a priori solution and by
skipping the nodes 2, 5, and 6, which do not require visit.

The goal in the PTSP is to find an a priori solution that minimizes the expected cost of the a

posteriori solution, where the expectation is computed with respect to a given n-variate Bernoulli
distribution. Note that when P = {pi = p : i ∈ V }, the PTSP instance is called homogeneous,
otherwise, if for at least two nodes i and j we have pi 6= pj , we are faced with a heterogeneous
PTSP.

3 Local Search for the PTSP

Local search is a method for searching a given space of solutions. It consists in moving from
one solution to another neighboring one according to an acceptance criterion. Many local search
methods exist and the one that has received the most attention in the PTSP literature is iterative
improvement. Iterative improvement algorithms start from some initial solution and repeatedly try
to move from a current solution x to a lower cost neighboring solution x′. A solution that does not
have any improving neighboring solution is a local minimum and the iterative improvement search
terminates with such a solution. In the PTSP literature, mainly the following two neighborhood
structures were considered:

• 2-exchange neighborhood : Two solutions are neighbors if, and only if, they differ in
exactly two edges. In other words, the neighborhood of a solution is the set of solutions
obtained by deleting any two edges 〈a, b〉 and 〈c, d〉 and by replacing them with 〈a, c〉 and
〈b, d〉. See Figure 2(a) for an example.

• Node-insertion neighborhood : Two solutions are neighbors if, and only if, they differ in
the position of exactly one node. In other words, the neighborhood of a solution is the set
of solutions obtained by deleting a node a and inserting it elsewhere in the solution. See
Figure 2(b) for an example.

Iterative improvement algorithms can be implemented using a first-improvement or a best-impro-

vement rule (Hoos and Stützle, 2005). While in the former an improving move is immediately
applied as soon as it is detected, in the latter the whole neighborhood is examined and a move
that gives the best improvement is chosen.

Iterative improvement algorithms for the PTSP are similar to the usual iterative improvement
algorithms for the TSP: the cost difference between two TSP neighboring solutions x and x′ is
computed by considering the cost contribution of solution components that are not common to x

4 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

(a) (b)

Figure 2: Plot 2(a) shows a 2-exchange move that is obtained by deleting two edges 〈1, 2〉 and
〈5, 6〉 of the solution and by replacing them with 〈1, 5〉 and 〈2, 6〉. Plot 2(b) shows a node-insertion

move obtained by deleting node 1 from its current position in the solution and inserting it between
nodes 5 and 6.

and x′. In the case of a 2-exchange move, the cost difference between the neighboring solutions is
simply given by ca,c + cb,d − ca,b − cc,d. This technique is widely known as delta evaluation. The
only difference between PTSP and TSP versions is that, in the former, the random variable Ω has
to be taken into account in the delta evaluation. In the rest of this section, we describe how delta

evaluation is performed in state-of-the-art iterative improvement algorithms for the PTSP.

3.1 State-of-the-art iterative improvement algorithms for the PTSP

For the homogenous PTSP, Bertismas (Bertsimas, 1988; Bertsimas and Howell, 1993) derived
closed-form delta evaluation expressions based on analytical computation for the 2-exchange neigh-

borhood and the node-insertion neighborhood. Equipped with these expressions, the author also
proposed two iterative improvement algorithms, namely, 2-p-opt and 1-shift. For both algo-
rithms, the total time complexity of the neighborhood exploration and evaluation is O(n2). For the
heterogeneous case, Chervi (1988) proposed closed-form delta evaluation expressions for 2-p-opt
and 1-shift, where each algorithm explores and evaluates the neighborhood in O(n3). Bianchi
et al. (2005) and Bianchi and Campbell (2007) proved that the expressions derived by Bertsimas
(1988); Chervi (1988); Bertsimas and Howell (1993) are incorrect and corrected the errors. Fur-
thermore, for the heterogeneous PTSP, the authors showed that the neighborhoods in 2-p-opt

and 1-shift can be explored and evaluated in O(n2) rather than O(n3).

In her Ph.D. thesis (Bianchi, 2006), Bianchi considered also the possibility of using an estimation-

based approach for the delta evaluation in 2-p-opt and 1-shift. However, based on an asymptotic
analysis, the author speculated that this approach might be much more computationally expensive
than analytical computation techniques and for this reason, the idea of using an estimation-based

approach has been abandoned without any empirical investigation. Note that the experimental
results of the estimation-based approach presented in this paper contradict Bianchi’s conjecture.

3.2 2-p-opt and 1-shift

The 2-p-opt algorithm comprises two phases: A first phase consists in exploring a special case of
the 2-exchange neighborhood, the swap-neighborhood, where the neighbors of the current solution
are all those that can be obtained by swapping two consecutive nodes. If the swap-neighborhood is
fully explored and no improvement is found, a second phase explores the 2-exchange neighborhood

with the first-improvement rule. It should be noted that the neighborhood is explored in a fixed
lexicographic order by considering pairs of edges that are separated by a fixed number k of nodes.
Starting with k = 2, the lexicographic exploration proceeds by incrementing k, and, whenever

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 5

Table 1: For a given probability p, the maximum size (ncritical) of the PTSP instance that can be
handled by 2-p-opt without numerical problems on a 32-bit GNU system.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ncritical 6733 3180 1990 1390 1025 775 591 442 309

an improvement is found, the search is restarted from the first phase: the swap-neighborhood

exploration. 1-shift differs from 2-p-opt only in the second phase: it uses the node-insertion

neighborhood with the best-improvement rule.

We refer the reader to Bianchi et al. (2005); Bianchi and Campbell (2007) for the delta eval-

uation expressions that are used in 2-p-opt and 1-shift. Even though the time complexity is
O(n2) for both 2-p-opt and 1-shift, the asymptotic notation captures only the growth rates
with respect to the number of neighboring solutions and does not reflect the large multiplicative
constant. Indeed, a closer look at the delta evaluation expressions presented in (Bianchi et al.,
2005; Bianchi and Campbell, 2007) reveals that there is a large constant of proportionality hidden
in the asymptotic notation.

The final picture we reach is that the state-of-the-art iterative improvement algorithms for
the PTSP use neighborhood-specific delta evaluation expressions, which are based on analytical

computation techniques. The advantage of this framework is that the values of the computed cost
differences are exact. However, from a practical perspective, this framework has some limitations.

3.3 Limitations of the state-of-the-art iterative improvement algorithms

for the PTSP

Theoretically, the delta evaluation expressions proposed in (Bianchi et al., 2005; Bianchi, 2006) for
the PTSP could be applied to solve instances of any size. However, in practice, these expressions
suffer from numerical precision problems when applied to large instances. In fact, to use the
delta evaluation expressions in 2-p-opt, the term (1 − p)(k−n) has to be computed, where p is
the probability, k is the number of nodes between two considered edges, and n is the size of the
instance. For some values of p, k, and n, this term can result in an overflow. As an illustration,
consider a typical 32-bit GNU system, where, according to the IEEE 754 standard (1985), double
precision floating point variables can take a maximum value of about 1e+308 (Griffith, 2002).
Given a homogeneous PTSP instance of probability p with n nodes, the condition for the numerical
overflow is (1−p)(k−n) > 1e+308. From this condition, one can obtain, after basic transformations,
a critical value for n, above which the computation of the delta evaluation expression is not possible:

ncritical = 1 −
308

log10(1 − p)
. (2)

Table 1 shows the probability levels and the corresponding maximum size of instances that can
be tackled by 2-p-opt without any numerical overflow in a 32-bit GNU system. Note that the
very same numerical problem occurs in 1-shift. Also the analytical computation algorithms for
the heterogeneous PTSP are affected by this problem.

A second limitation of the state-of-the-art iterative improvement algorithms for the PTSP is
that the lexicographic neighborhood exploration inhibits the adoption of the classical TSP neigh-
borhood reduction techniques such as fixed-radius search, candidate lists and don’t look bits (Martin
et al., 1991; Bentley, 1992). Based on results from the TSP literature (Johnson and McGeoch, 1997;
Hoos and Stützle, 2005), we speculate that the usage of the neighborhood reduction techniques in
the PTSP iterative improvement algorithms might speedup the search significantly.

6 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

4 Estimation-based iterative improvement algorithms for

the PTSP

The cost F (x) of a PTSP solution x can be empirically estimated on the basis of a sample
f(x, ω1), f(x, ω2), . . . , f(x, ωM) of costs of a posteriori solutions obtained from M independent
realizations ω1, ω2, . . . , ωM of the random variable Ω:

F̂M (x) =
1

M

M
∑

r=1

f(x, ωr). (3)

As it can be shown easily, F̂M (x) is an unbiased estimator of F (x). In iterative improvement
algorithms for the PTSP, we need to compare two neighboring solutions x and x′ to select the one
of lower cost. This can be achieved by determining the sign of the cost difference F (x′)−F (x). For
x′, an unbiased estimator F̂M ′(x′) of F (x′) can be obtained from a sample f(x′, ω′

1), f(x′, ω′

2), . . . ,
f(x′, ω′

M ′) of costs of a posteriori solutions through M ′ independent realizations of Ω. Eventually,

F̂M ′ (x′) − F̂M (x) is an unbiased estimator of F (x′) − F (x).
In order to increase the accuracy of this estimator, the well-known variance-reduction technique

called the method of common random numbers can be adopted. In the context of PTSP, this
technique consists in using the same set of realizations of Ω for estimating the costs F (x′) and
F (x). Consequently, we have M ′ = M and the estimator F̂M (x′) − F̂M (x) of the cost difference
is given by:

F̂M (x′) − F̂M (x) =
1

M

M
∑

r=1

f(x′, ωr) −
1

M

M
∑

r=1

f(x, ωr)

=
1

M

M
∑

r=1

(

f(x′, ωr) − f(x, ωr)
)

. (4)

In this paper, we use the same set of M realizations for all steps of the iterative improvement
algorithms. Other approaches could be adopted: for example, M realizations could be sampled
anew for each step of the algorithm or even for each comparison. A discussion about this issue is
given in Section 5.4.

Using Equation 4, given two neighboring solutions x and x′ and a realization ω, a näıve
approach to compute the cost difference between two a posteriori solutions consists in computing
first the complete cost of each a posteriori solution and then the difference between them. However,
a more efficient algorithm can be obtained by adopting the idea of delta evaluation: Given the a

priori solutions and a realization ω, such an algorithm requires identifying the edges that are not
common to the two a posteriori solutions.

For example, consider the 2-exchange move shown in Figure 3: The edges that are not common
to the a priori solutions are 〈1, 2〉, 〈5, 6〉 and 〈1, 5〉, 〈2, 6〉. For a realization prescribing that nodes
1, 3, 4, 7, and 8 are to be visited, the edges that are not common to the a posteriori solutions are
〈1, 3〉, 〈4, 7〉 and 〈1, 4〉, 〈3, 7〉. Therefore, the cost difference between the two a posteriori solutions
is given by c1,4 + c3,7 − c1,3 − c4,7. The delta evaluation procedure needs to identify these edges in
the a posteriori solutions.

In general, for every edge 〈i, j〉 that is deleted from x, one needs to find the corresponding
edge 〈i∗, j∗〉 in the a posteriori solution of x. We call this edge the a posteriori edge and it is
obtained as follows: If node i requires visit, then i∗ = i, otherwise, i∗ is the first predecessor
of i in x such that ω[i∗] = 1. If node j requires visit, then j∗ = j, otherwise, j∗ is the first
successor of j such that ω[j∗] = 1. Recall that in a 2-exchange move, the edges 〈a, b〉 and 〈c, d〉 are
deleted from x and replaced by 〈a, c〉 and 〈b, d〉. For a given realization ω and the corresponding
a-posteriori-edges, 〈a∗, b∗〉, 〈c∗, d∗〉, the cost difference between the two a posteriori solutions is
given by ca∗,c∗ + cb∗,d∗ − ca∗,b∗ − cc∗,d∗ . Figure 4 shows the a-posteriori-edges for the example
given in Figure 3.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 7

Figure 3: In this example, a 2-exchange move is obtained by deleting the edges 〈1, 2〉 and 〈5, 6〉
from the a priori solution and by replacing them with 〈1, 5〉 and 〈2, 6〉. Assume that a realization
of Ω prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The edges that are not common to
the a posteriori solutions are 〈1, 3〉, 〈4, 7〉 and 〈1, 4〉, 〈3, 7〉. The delta evaluation procedure needs
to identify these edges without considering the complete a posteriori solutions.

Figure 4: The steps performed for finding the a-posteriori-edges. Assume that, without loss of
generality, the nodes are visited in the order: 1, 2, 3, 4, 5, 6, 7, 8, and 1. The edges 〈1, 2〉 and
〈5, 6〉 are deleted and the gray colored nodes do not require visit. The first successor of node 2
that requires visit is 3; the first predecessor of node 5 that requires visit is 4; the first successor of
node 6 that requires visit is 7. The a-posteriori-edges are therefore given as 〈1, 3〉 and 〈4, 7〉.

8 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

Figure 5: In this example, the node-insertion move is obtained by deleting node 1 and inserting
it between nodes 5 and 6. Consequently, the edges 〈8, 1〉, 〈1, 2〉, and 〈5, 6〉 are deleted from the
a priori solution and replaced by 〈8, 2〉, 〈5, 1〉, and 〈1, 6〉 in the neighboring a priori solution.
Assume that a realization of Ω prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The edges
that are not common to the a posteriori solutions are 〈1, 3〉, 〈4, 7〉, 〈8, 1〉 and 〈8, 3〉, 〈4, 1〉, 〈1, 7〉.

The procedure described can be directly extended to the node-insertion move. See Figure 5
for an example.

It is worth discussing here some degenerate cases: in a 2-exchange move that deletes the
edges 〈a, b〉 and 〈c, d〉, and where no node between the nodes b and c or between nodes a and
d requires visit, the difference between the two a posteriori solutions is zero—see Figure 6(a);
in a node-insertion move, if the insertion node does not require vist, then the cost difference
between the two a posteriori solutions is zero—see Figure 6(b). In this second case, one can avoid
unnecessary computations by checking whether the insertion node requires visit before finding the
a-posteriori-edges.

The proposed approach has a number of advantages: First, the estimation-based delta evalu-

ation procedure is general and can be applied to any neighborhood structure without requiring
neighborhood-specific, complex and error-prone mathematical derivations. In virtue of this versa-
tility, rather than using the node-insertion neighborhood or the 2-exchange neighborhood structure,
we use a hybrid neighborhood structure that includes the node-insertion neighborhood on top of
the 2-exchange neighborhood structure. In the TSP literature (Bentley, 1992), this hybrid neigh-
borhood is widely known as the 2.5-exchange neighborhood : when checking for a 2-exchange move
on any two edges 〈a, b〉 and 〈c, d〉, it is also checked whether deleting any one of the nodes of
an edge, say for example a, and inserting it between nodes c and d results in an improved so-
lution (Bentley, 1992). Second, unlike 2-p-opt and 1-shift, the proposed approach does not
impose any constraints on the order in which the neighborhood should be explored. This allows
for an easy integration of the classical TSP neighborhood reduction techniques such as fixed-radius

search, candidate lists and don’t look bits (Martin et al., 1991; Bentley, 1992; Johnson and Mc-
Geoch, 1997). We denote the proposed algorithm 2.5-opt-EEswhere EE and s stand for empirical

estimation and speedup, respectively. Note that 2.5-opt-EEs uses the first-improvement rule.

In order to implement 2.5-opt-EEs effectively, a specific data structure is needed. We use
a data structure in which data items can be accessed both as elements of a doubly circularly
linked list and as elements of a one dimensional array, both of size n. Each data item has an
integer variable to store a node of the a priori solution. This structure is efficient for finding a

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 9

(a) Assume that a realization of Ω prescribes that
nodes 1, 6, 7, and 8 are to be visited. The 2-exchange

neighboring solutions shown in Figure 2(a) lead to
the same a posteriori solution. The cost difference is
therefore zero.

(b) Assume that a realization of Ω prescribes that
nodes 2, 3, 4, 5, 6, 7, and 8 are to be visited. The
node-insertion neighboring solutions shown in Fig-
ure 2(b) lead to the same a posteriori solution. Since
the two a posteriori solutions are the same. The cost
difference is therefore zero.

Figure 6: Some degenerate cases that can occur in the evaluation of cost differences.

posteriori-edges : predecessor and successor of a node are simply obtained by following the links
pointing towards the previous data item and next data item, respectively. To access data items
as the elements of the array, a data item representing node i is stored at position i of the array
and this arrangement is kept unchanged throughout the search process. Consequently, given a
node i, its data item can be accessed in O(1) time. Moreover, each data item stores an array of
size M—the realization array—which is indexed from 1 to M . Element r of the realization array,
1 6 r 6 M , is either 1 or 0 indicating whether the node requires visit or not in realization ωr.
Figure 7 shows the data structure that is used in 2.5-opt-EEs. Whenever, an improved solution
is found, only the links of the particular data items whose nodes are involved in the exchange move
are modified. Furthermore, each data item comprises also two auxiliary fields for the neighborhood
reduction techniques: one integer variable for the don’t look bit and one integer array of size L for
the candidate list of each node.

Concerning the computational complexity of the estimation-based iterative improvement algo-
rithm, Bianchi (2006) reached the conclusion that the time complexity of a complete neighborhood
scan is O(Mpn3). Indeed, the number of solutions in the 2.5-exchange neighborhood is O(n2); the
maximum number of steps for finding the a-posteriori-edges for a given realization is n; and the
number of realizations considered is M . Bianchi included in the complexity also the probability
p that a node requires visit, but the inclusion of this term is not completely justified and is not
thoroughly discussed in her work (Bianchi, 2006). The main result of the analysis of Bianchi is
that the time complexity grows with the cube of n. On the basis of this result, Bianchi decided
that the estimation-based approach does not deserve any further attention. However, the above
analysis does not hold for 2.5-opt-EEs: The use of a candidate list of size L reduces the neigh-
borhood size from O(n2) to O(nL), which in turn reduces the worst-case time complexity of a
neighborhood scan to O(n2LM). Furthermore, it should be observed that, since we explicitly deal
with a probabilistic model, a more informative average-case analysis can be derived easily: The
expected number of steps for finding an a posteriori edge is (1−p)/p. As a result, the average-case
time complexity of a complete neighborhood scan is O(nLMp−1).

5 Experimental analysis

In this section, we present the experimental settings considered and our empirical results. We base
our analysis on homogeneous PTSP instances that we obtained from TSP instances generated
with the DIMACS instance generator (Johnson et al., 2001). We carried out experiments with
two classes of instances. In the first class, nodes are uniformly distributed in a 106 × 106 square;

10 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

Figure 7: Assume that we have an a priori solution in which the nodes are visited in the order:
1, 5, 4, 3, 2, 6, 7, 8, 1. This is encoded in the doubly circularly linked list data structure as shown
in the plot. Also note that the data items can be accessed as the elements of the one dimensional
array.

in the second, nodes are arranged in a number of clusters, in a square of the same size. Due to the
limitations of the state-of-the-art PTSP algorithms that were discussed in Section 3.3, we compare
2.5-opt-EEs with 2-p-opt and 1-shift using instances up to 300 nodes. For each instance class,
we generated 100 TSP instances of 100, 200 and 300 nodes. From each TSP instance, we obtained
9 PTSP instances by letting the probability range in [0.1, 0.9] with a step size of 0.1. Due to space
limitations, we report only the results obtained on the clustered instances with 300 nodes. The
general trends of the experimental results obtained on the other instances are similar; we refer the
reader to Birattari et al. (2007) for the complete set of results.

All algorithms were implemented in C and the source codes were compiled with gcc, version 3.3.
Experiments were carried out on AMD OpteronTM244 1.75GHz processors with 1 MB L2-Cache
and 2 GB RAM, running under Debian GNU/Linux.

The nearest-neighbor heuristic is used to generate initial solutions. The candidate list is set to
size 40 and is constructed with the quadrant nearest-neighbor strategy (Penky and Miller, 1994;
Johnson and McGeoch, 1997). Each iterative improvement algorithm is run until it reaches a local
optimum. The number of realizations in 2.5-opt-EEs is set to 100. In order to highlight this fact,
we denote the algorithm 2.5-opt-EEs-100.

For the homogenous PTSP with probability p and size n, given an a priori solution x, the
exact cost F (x) of x can be computed using the formula

F (x) =

n
∑

u=1

n−1
∑

v=1

p2(1 − p)
v−1

c(x(u),x(v)), (5)

where x(u) and x(v) are the nodes of index u and v in x, respectively (Jaillet, 1985). We use
this formula for post-evaluation purposes: for each algorithm, whenever an improved solution is
found, we record the solution. In order to compare the cost of the a priori solutions reached by
the algorithms, we use Equation 5 to compute the cost of the recorded solutions obtained from
each algorithm.

In addition to tables, we visualize the results using runtime development plots. These plots
show how the cost of solutions develops over computation time and they can be used to compare
the performance of several algorithms over time. In these plots, the x-axis indicates computation
time and the y-axis indicates the cost of the solutions found, averaged over 100 instances. For
comparing several algorithms, one of them has been taken as a reference: for each instance, the
computation time and the cost of the solutions of the algorithms are normalized by the average

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 11

computation time and average cost of the local optima obtained by the reference algorithm. For
convenience, the x-axis is in logarithmic scale. We report one such plot for each probability level
under consideration.

5.1 Experiments on neighborhood reduction techniques

Before presenting the results of 2.5-opt-EEs, we first show that the adoption of the 2.5-exchange

neighborhood structure and the classical TSP neighborhood reduction techniques in the analytical

computation framework leads to a new state-of-the-art iterative improvement algorithm for the
PTSP. We denote this new iterative improvement algorithm as 2.5-opt-ACswhere AC and s stand
for analytical computation and speedup, respectively. The motivation behind these experiments is
the following: if we compared 2.5-opt-EEs with 2-p-opt and 1-shift, it would be difficult to
clearly identify whether the observed differences are due to the estimation-based delta evaluation

procedure or rather to the adoption of 2.5-exchange neighborhood and neighborhood reduction
techniques. Therefore, we implemented an iterative improvement algorithm based on analytical

computation that uses the 2.5-exchange neighborhood and the neighborhood reduction techniques,
and compared its performance to 2-p-opt and 1-shift.

A difficulty in the implementation of 2.5-opt-ACs is that, since the use of neighborhood re-
duction techniques prevents lexicographic exploration, the previously computed values cannot be
reused. Therefore, the cost difference between two solutions is always computed from scratch.
In order to compute the cost difference between 2.5-exchange neighboring solutions, we use the
closed-form expressions proposed for the 2-exchange and the node-insertion neighborhood struc-
tures (Bianchi, 2006).

The results given in Figure 8 show that 2.5-opt-ACs dominates 2-p-opt and 1-shift with
the only exception being for the values of p ranging between 0.5 and 0.9: at the early stages of
the search and for a very short time range, the average cost of the solutions obtained by 1-shift

is slightly lower than that of 2.5-opt-ACs. Concerning the time required to reach local optima,
irrespective of the probability value, 2.5-opt-ACs is faster than 2-p-opt by approximately a
factor of four. In the case of 1-shift, the same tendency holds when p ≥ 0.5. However, for small
values of p, the difference in speed between 2.5-opt-ACs and 1-shift is small. Concerning the
average cost of local optima found, 2.5-opt-ACs is between 2% and 5% better than 2-p-opt.
We can observe the same trend also in 1-shift; an exception is for p ≤ 0.3, where the difference
between the average cost of the local optima obtained by 2.5-opt-ACs and 1-shift is very small.
For details, see Table 2.

In order to test that the observed difference between the cost of local optima are significant
in a statistical sense, we use a Wilcoxon test. Table 3 shows the p-values. The cost of the local
optima obtained by 2.5-opt-ACs is significantly lower than that of 1-shift and 2-p-opt for all
probability values, the only exception being p ≤ 0.2, where the difference between the cost of the
local optima obtained by 2.5-opt-ACs and 1-shift is not significant.

The increased speed of 2.5-opt-ACs also shows that the amount of computational time saved
due to the use of neighborhood reduction techniques is much higher than the time that is lost in
computing the cost difference from scratch. Regardless of the values of p, with respect to the cost
of the local optima and the computation time, 2.5-opt-ACs is better than—and in very few cases
equal to—1-shift and 2-p-opt. Therefore, in the following sections, we take 2.5-opt-ACs as a
yardstick for measuring the effectiveness of 2.5-opt-EEs.

5.2 Experiments to assess the estimation approach

In this section, we compare 2.5-opt-EEs-100 with 2.5-opt-ACs. The two algorithms differ only
in the delta evaluation procedure they adopt: empirical estimation versus analytical computation.
The experimental results are illustrated using a run time development plot and are shown in
Figure 9. Moreover, in order to show how significant is the difference between the cost of the
solutions obtained by 2.5-opt-EEs-100 and 2.5-opt-ACs over time, in Figure 10 we provide a
plot of some quantiles of the distribution of the difference between the normalized values of the

12 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

1.
00

1.
10

1.
20

1.
30

p = 0.1

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Normalized computational time

N
or

m
al

iz
ed

 c
os

t o
f t

he
 s

ol
ut

io
ns

Clustered instances; Size = 300;
1.

00
1.

10
1.

20
1.

30
p = 0.2

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.3

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.5

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.6

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.7

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.8

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.9

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

2.5−opt−ACs 1−shift 2−p−opt

Figure 8: Experimental results on clustered homogeneous PTSP instances of size 300. The plots
represent the average cost of the solutions obtained by 2-p-opt and 1-shift normalized by the
one obtained by 2.5-opt-ACs. Each algorithm is stopped when it reaches a local optimum.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 13

1.
00

1.
10

1.
20

1.
30

p = 0.1

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Normalized computational time

N
or

m
al

iz
ed

 c
os

t o
f t

he
 s

ol
ut

io
ns

Clustered instances; Size = 300;

1.
00

1.
10

1.
20

1.
30

p = 0.2

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.3

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.5

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.6

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.7

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.8

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.9

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

2.5−opt−EEs−100 2.5−opt−ACs

Figure 9: Experimental results on clustered homogeneous PTSP instances of size 300. The plots
represent the average cost of the solutions obtained by 2.5-opt-EEs-100 normalized by the one
obtained by 2.5-opt-ACs. Each algorithm is stopped when it reaches a local optimum.

solution costs of 2.5-opt-EEs-100 and 2.5-opt-ACs. In this plot, a value greater than zero
indicates that 2.5-opt-EEs-100 is better than 2.5-opt-ACs, and vice versa.

Concerning the average cost of local optima, the two algorithms are similar with the only
exception of p = 0.1, where the average cost of the local optima obtained by 2.5-opt-EEs-100

is approximately 2% higher than that of 2.5-opt-ACs. Concerning the time required to reach
local optima, irrespective of the probability value, 2.5-opt-EEs-100 is approximately 1.5 orders
of magnitude faster than 2.5-opt-ACs. See Tables 2 for the absolute values and Table 3 for the
p-values of the Wilcoxon test.

In Table 4, we report the observed relative difference between the cost of the local optima
obtained by the two algorithms and a 95% confidence bound on this relative difference. This
bound is obtained through a one-sided paired Wilcoxon test. For the sake of completeness, we
also present these data for what concerns the comparison of 2.5-opt-EEs-100 with 1-shift and
2-p-opt.

Table 4 confirms that, concerning the average cost of the local optima found, 2.5-opt-EEs-100
is essentially equivalent to 2.5-opt-ACs. To be more precise, for p = 0.1, 2.5-opt-ACs obtains
solutions, the average cost of which is lower than the one of those obtained by 2.5-opt-EEs-100.

14 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.1

Normalized computational time

N
or

m
al

iz
ed

 c
os

t o
f t

he
 s

ol
ut

io
ns

Clustered instances; Size = 300; Realizations = 100

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.2

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.3

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.4

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.5

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.6

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.7

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.8

−0
.2

0.
0

0.
2

0.
4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

p = 0.9

min 5% 25% 50% 75% 95% max

Figure 10: Experimental results on clustered homogeneous PTSP instances of size 300. For the
normalized values shown in Figure 9, the difference between 2.5-opt-EEs-100 and 2.5-opt-ACs

over time is computed and the 5%, 25%, 50%, 75%, and 95% quantiles of the distribution of the
differences are plotted. For a curve, a value greater than zero indicates that 2.5-opt-EEs-100 is
better than 2.5-opt-ACs and vice versa.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 15

Table 2: Experimental results for 2.5-opt-EEs-100, 2.5-opt-ACs, 2-p-opt and 1-shift on
clustered instances of size 300. Each algorithm is allowed to run until it reaches a local optimum.
The table gives mean and standard deviation (s.d.) of final solution cost and computation time
in seconds. The results are obtained on 100 instances for each probability level.

Algorithm Solution Cost Computation Time
mean s.d. mean s.d.

p = 0.1

2.5-opt-EEs-100 2776865 456487 0.120 0.014
2.5-opt-ACs 2730221 454321 6.453 1.067
1-shift 2738026 450970 11.771 2.404
2-p-opt 2870013 462383 22.440 5.831

p = 0.2

2.5-opt-EEs-100 3595283 467721 0.086 0.011
2.5-opt-ACs 3585254 471967 3.413 0.540
1-shift 3606878 467069 10.103 1.773
2-p-opt 3775106 474269 13.848 3.254

p = 0.3

2.5-opt-EEs-100 4239788 499001 0.064 0.008
2.5-opt-ACs 4259032 501810 2.214 0.399
1-shift 4286461 481061 8.478 1.856
2-p-opt 4429328 497857 9.842 2.462

p = 0.4

2.5-opt-EEs-100 4764400 517350 0.052 0.006
2.5-opt-ACs 4769245 519437 1.672 0.303
1-shift 4861195 518759 7.154 1.452
2-p-opt 4936775 511292 7.389 1.867

p = 0.5

2.5-opt-EEs-100 5190835 537186 0.046 0.005
2.5-opt-ACs 5201221 557895 1.421 0.230
1-shift 5336979 544328 5.933 1.355
2-p-opt 5352456 553028 5.978 1.616

p = 0.6

2.5-opt-EEs-100 5552434 564439 0.042 0.004
2.5-opt-ACs 5568872 586369 1.231 0.204
1-shift 5744938 577165 5.358 1.215
2-p-opt 5689353 567193 5.315 1.204

p = 0.7

2.5-opt-EEs-100 5874044 579475 0.038 0.004
2.5-opt-ACs 5875100 579015 1.127 0.209
1-shift 6087249 597356 4.851 1.056
2-p-opt 5993481 589339 4.776 1.146

p = 0.8

2.5-opt-EEs-100 6154030 586937 0.037 0.004
2.5-opt-ACs 6170881 593782 1.042 0.190
1-shift 6401881 611155 4.399 0.972
2-p-opt 6259008 598772 4.366 1.094

p = 0.9

2.5-opt-EEs-100 6412335 602907 0.036 0.004
2.5-opt-ACs 6428845 602878 1.020 0.220
1-shift 6683735 628833 4.112 0.937
2-p-opt 6491451 604388 4.093 0.954

16 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

Table 3: The p-values of the comparison of 2.5-opt-EEs-100, 2.5-opt-ACs, 2-p-opt and
1-shift on clustered instances of size 300. Each algorithm is allowed to run until it reaches
a local optimum. The statistical test adopted is the paired Wilcoxon test with p-values adjusted
by Holm’s method. The confidence level is 95%. Values in bold mean that the algorithm in the
row performs significantly better than the algorithm in the column, while values in italic mean
that the algorithm in the column performs significantly better than the algorithm in the row.

p-values

p = 0.1

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.000 0.000 0.000

2.5-opt-ACs 0.000 - 0.402 0.000

1-shift 0.000 0.402 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.2

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.153 0.542 0.000

2.5-opt-ACs 0.153 - 0.153 0.000

1-shift 0.542 0.153 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.3

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.094 0.000 0.000

2.5-opt-ACs 0.094 - 0.017 0.000

1-shift 0.000 0.017 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.4

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.432 0.000 0.000

2.5-opt-ACs 0.432 - 0.000 0.000

1-shift 0.000 0.000 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.5

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.679 0.000 0.000

2.5-opt-ACs 0.679 - 0.000 0.000

1-shift 0.000 0.000 - 0.217
2-p-opt 0.000 0.000 0.217 -

p = 0.6

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.153 0.000 0.000

2.5-opt-ACs 0.153 - 0.000 0.000

1-shift 0.000 0.000 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.7

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.892 0.000 0.000

2.5-opt-ACs 0.892 - 0.000 0.000

1-shift 0.000 0.000 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.8

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.517 0.000 0.000

2.5-opt-ACs 0.517 - 0.000 0.000

1-shift 0.000 0.000 - 0.000

2-p-opt 0.000 0.000 0.000 -

p = 0.9

2.5-opt-EEs-100 2.5-opt-ACs 1-shift 2-p-opt

2.5-opt-EEs-100 - 0.160 0.000 0.000

2.5-opt-ACs 0.160 - 0.000 0.000

1-shift 0.000 0.000 - 0.000

2-p-opt 0.000 0.000 0.000 -

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 17

Table 4: Comparison of the average cost obtained by 2.5-opt-EEs-100 and by 2.5-opt-ACs,
1-shift, and 2-p-opt, on clustered instances of size 300. Each algorithm is allowed to run
until it reaches a local optimum. For each level of probability, the table reports the observed
relative difference and a 95% confidence bound on the relative difference. This bound is obtained
through a one-side paired Wilcoxon test. Concerning the relative difference, if the value is positive,
2.5-opt-EEs-100 obtained an average cost that is larger than the one obtained by the other
algorithm considered; if it is negative, 2.5-opt-EEs-100 reached solutions of lower average cost.
In both cases, a value is typeset in boldface if it is significantly different from zero according to
a two-side paired Wilcoxon test, at a confidence of 95%. Concerning the bound, a positive value
+d% indicates that, at a confidence of 95%, 2.5-opt-EEs-100 is not more than d% worse than
the other algorithm considered; a negative value −d% indicates that, at a confidence of 95%,
2.5-opt-EEs-100 at least d% better.

p-values

2.5-opt-EEs-100
vs.

2.5-opt-ACs

2.5-opt-EEs-100
vs.

1-shift

2.5-opt-EEs-100
vs.

2-p-opt

p Difference Bound Difference Bound Difference Bound
0.1 +1.71% +1.98% +1.42% +1.86% −3.25% −2.88%
0.2 +0.28% +0.60% −0.32% +0.26% −4.76% −4.42%
0.3 −0.45% −0.01% −1.09% −0.53% −4.28% −3.90%
0.4 −0.10% +0.18% −1.99% −1.50% −3.49% −3.10%
0.5 −0.20% +0.27% −2.74% −2.21% −3.02% −2.64%
0.6 −0.30% +0.03% −3.35% −2.99% −2.40% −2.17%
0.7 −0.02% +0.24% −3.50% −2.96% −1.99% −1.64%
0.8 −0.27% +0.17% −3.87% −3.47% −1.68% −1.36%
0.9 −0.26% +0.04% −4.06% −3.66% −1.22% −0.98%

The difference is significant in a statistical sense but it is nonetheless relatively small: with a
confidence of 95%, we can state that the average cost of the solutions obtained by 2.5-opt-EEs-

-100 is at most 1.98% higher than the one obtained by 2.5-opt-ACs.1 For p = 0.2, the observed
average cost obtained by 2.5-opt-EEs-100 is slightly higher than the one of 2.5-opt-ACs but
the difference is not significant in a statistical sense. Moreover, the average cost obtained by
2.5-opt-EEs-100 is not more than 0.60% higher than the one of 2.5-opt-ACs. For probabilities
larger than 0.2, on average, 2.5-opt-EEs-100 obtains slightly better results, even if our experi-
ments were not able to detect statistical significance. Nonetheless, should ever the average cost
obtained by 2.5-opt-EEs-100 be higher than the one obtained by 2.5-opt-ACs, the difference
would be at most 0.27% for all values of probability larger than 0.2.

Similar conclusions can be drawn for what concerns the comparison between 2.5-opt-EEs-100

and 1-shift. For p = 0.1, 1-shift obtains a lower average cost than that of 2.5-opt-EEs-100.
The difference is significant in a statistical sense but it is relatively small: the average cost obtained
by 2.5-opt-EEs-100 is within a bound of 1.86% of the one obtained by 1-shift. For p = 0.2,
the difference between the two algorithms is not significant and the average cost obtained by
2.5-opt-EEs-100 is not more than 0.26% higher than the one of 1-shift. For probabilities
larger than 0.2, 2.5-opt-EEs-100 performs significantly better than 1-shift and, the average
cost of the solutions obtained by 2.5-opt-EEs-100 is between at least 0.53% (for p = 0.3) and at
least 3.66% (for p = 0.9) lower that the one of 2.5-opt-ACs.

Concerning the last comparison, 2.5-opt-EEs-100 is significantly better than 2-p-opt across
the whole range of probabilities. The average improvement obtained by 2.5-opt-EEs-100 ranges
roughly between 1% and 4%.

In order to highlight the impact of the speed factor of 2.5-opt-EEs-100 on the cost of the
solutions, we can observe the cost of the solutions obtained by 2.5-opt-ACs in the time needed

1In the same way, we make the rest of the statements concerning the observed relative difference with 95%
confidence.

18 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

by 2.5-opt-EEs-100 to find the local optima. From the results, irrespective of the value of p, we
can observe that the average cost of the solutions obtained by 2.5-opt-EEs-100 is between 16%
and 18% lower than that of 2.5-opt-ACs. Clearly, the speed factor gives 2.5-opt-EEs-100 a
significant advantage over 2.5-opt-ACs. Even though 2.5-opt-ACs and 2.5-opt-EEs-100 adopt
the same neighborhood exploration and neighborhood reduction techniques, the higher speed of
2.5-opt-EEs-100 is due to the simplicity of the estimation-based delta evaluation procedure.

The poorer solution cost of 2.5-opt-EEs-100 for p = 0.1 can be attributed to the number of
realizations used to estimate the cost difference between two solutions. Intuitively, the variance of
the PTSP cost difference estimator depends on p and M . The smaller the value of p, the higher
the variance of the cost difference estimator. For p = 0.1 and M = 100, the variance of the cost
difference estimator is very high, which eventually results in a misleading estimation of the cost
difference between two solutions. As a consequence, 2.5-opt-EEs-100 stops prematurely. We
address this issue in Section 5.3.

5.3 Experiments on large instances

In this section, we study the performance of 2.5-opt-EEs-100when applied to large instances. We
considered PTSP instances with 1000 nodes, which are generated in the same way as described
before. Since algorithms based on the analytical computation techniques suffer from numerical
problems for p > 0.5 (for details, see Table 1), we compare solution cost and computation time of
2.5-opt-EEs-100 to 2.5-opt-ACs, 1-shift and 2-p-opt only for p ≤ 0.5. In addition to these
results, in the very same setting, we also study the impact of the number of realizations considered
on the performance of 2.5-opt-EEs. For this purpose, we consider samples of size 10, 100, and
1000 and we denote the algorithms 2.5-opt-EEs-10, 2.5-opt-EEs-100, and 2.5-opt-EEs-1000.
The results are given in Figure 11 and Table 5.

Let us first focus on the performance of 2.5-opt-EEs-100: from the results, we can observe
that the percentage difference between the average cost of the solutions obtained 2.5-opt-EEs-100

and 2.5-opt-ACs exhibits a trend similar to the one observed on instances of size 300. However, the
difference between the computation times of the two algorithms is very high. Regarding the time
required to reach local optima, irrespective of the value of p, 2.5-opt-EEs-100 is approximately
2.3, 2.5 and 3 orders of magnitude faster than 2.5-opt-ACs, 1-shift and 2-p-opt, respectively.
Concerning the average cost of local optima, 2.5-opt-EEs-100 achieves an average cost similar
to that of 2.5-opt-ACs with the exception of p = 0.1, where the average cost of local optima
obtained by 2.5-opt-EEs-100 is approximately 3% higher than that of 2.5-opt-ACs. However,
2.5-opt-EEs-100 completely dominates 1-shift and 2-p-opt.

Concerning the impact of the sample size on the performance of 2.5-opt-EEs, we can observe
that the use of a large number of realizations, in our case M = 1000, is indeed very effective with
respect to the cost of the local optima for low probability values. Even though this improvement
is achieved at the expense of computation time, the total search time is relatively short when
compared to the analytical computation algorithms. On the other hand, the use of few realiza-
tions, in our case M = 10, is less effective and does not significantly reduce the computation
time. Concerning the average computation time, 2.5-opt-EEs-10 is faster than 2.5-opt-EEs-

-100 approximately by a factor of two, while 2.5-opt-EEs-1000 is slower than 2.5-opt-EEs-100

by a factor of four. Nonetheless, an important observation is that 2.5-opt-EEs-1000 is ap-
proximately 1.5 orders of magnitude faster than 2.5-opt-ACs. Concerning the average cost of
local optima, 2.5-opt-EEs-10 is worse than the algorithms that use 100 and 1000 realizations;
2.5-opt-EEs-1000 is similar to 2.5-opt-EEs-100 and 2.5-opt-ACswith the exception of p = 0.1,
where the average cost of the local optima obtained by 2.5-opt-EEs-1000 is approximately 3%
lower than that of 2.5-opt-EEs-100 and is comparable with the one of 2.5-opt-ACs.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 19

1.
00

1.
10

1.
20

1.
30

p = 0.1

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Normalized computation time

N

or
m

al
iz

ed
 c

os
t o

f t
he

 s
ol

ut
io

ns

Clustered instances; Size = 1000;

1.
00

1.
10

1.
20

1.
30

p = 0.2

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.3

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.5

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

2.5−opt−EEs−10 2.5−opt−EEs−100 2.5−opt−EEs−1000 2.5−opt−EEs−ACs 1−shift 2−p−opt

Figure 11: Experimental results on clustered homogeneous PTSP instances of size 1000. The
plots represent the cost of the solutions obtained by 2.5-opt-EEs-10, 2.5-opt-EEs-100,
2.5-opt-EEs-1000, 1-shift, and 2-p-opt normalized by the one obtained by 2.5-opt-ACs.
Each algorithm is stopped when it reaches a local optimum. Note that the algorithms based on
the analytical computation techniques do not produce meaningful results for p > 0.5 due to the
numerical problem (for details, see Table 1). The algorithms based on the empirical estimation

do not suffer from this problem.

20 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

Table 5: Experimental results for 2.5-opt-EEs-10, 2.5-opt-EEs-
-100, 2.5-opt-EEs-1000, 2.5-opt-ACs, 2-p-opt and 1-shift on
clustered instances of size 1000. Each algorithm is allowed to run
until it reaches a local optimum. The table gives mean and stan-
dard deviation (s.d.) of final solution cost and computation time in
seconds. The results are given for 100 instances at each probability
level. The symbol × indicates that the algorithms do not produce
meaningful results due to the numerical problem (for details, see
Table 1). The algorithms based on the empirical estimation do not
suffer from this problem.

Algorithm Solution Cost Computation Time
mean s.d. mean s.d.

p = 0.1

2.5-opt-EEs-10 5909938 461029 0.462 0.030
2.5-opt-EEs-100 5158215 448385 1.839 0.190
2.5-opt-EEs-1000 5069560 424448 9.487 1.170
2.5-opt-ACs 5068223 450709 443.952 70.934
1-shift 5178144 469977 635.757 84.010
2-p-opt 5365486 449318 1464.535 341.993

p = 0.2

2.5-opt-EEs-10 7364518 513937 0.524 0.032
2.5-opt-EEs-100 6692459 486598 1.024 0.092
2.5-opt-EEs-1000 6681179 475423 3.981 0.447
2.5-opt-ACs 6697814 480609 229.288 33.165
1-shift 6744906 494658 547.263 71.878
2-p-opt 6978843 477590 859.276 159.102

p = 0.3

2.5-opt-EEs-10 8263425 554699 0.507 0.030
2.5-opt-EEs-100 7894854 547385 0.722 0.051
2.5-opt-EEs-1000 7875735 511413 2.658 0.306
2.5-opt-ACs 7901717 524412 149.881 22.702
1-shift 7982498 531787 451.773 58.575
2-p-opt 8175022 547812 552.554 95.447

p = 0.4

2.5-opt-EEs-10 9025641 585240 0.459 0.031
2.5-opt-EEs-100 8830141 596439 0.600 0.041
2.5-opt-EEs-1000 8846373 594006 2.026 0.198
2.5-opt-ACs 8848198 549139 106.665 17.015
1-shift 8995824 567472 374.877 50.938
2-p-opt 9060142 551377 422.211 76.872

p = 0.5

2.5-opt-EEs-10 9693061 630069 0.422 0.020
2.5-opt-EEs-100 9592605 623310 0.526 0.038
2.5-opt-EEs-1000 9591076 635788 1.689 0.149
2.5-opt-ACs 9597432 599270 89.272 14.155
1-shift 9856073 579796 316.049 44.883
2-p-opt 9799426 594452 338.203 63.679

p = 0.6

2.5-opt-EEs-10 10282713 609678 0.391 0.018
2.5-opt-EEs-100 10238620 648265 0.481 0.027
2.5-opt-EEs-1000 10264821 637652 1.444 0.129
2.5-opt-ACs × × × ×
1-shift × × × ×
2-p-opt × × × ×

p = 0.7

2.5-opt-EEs-10 10849469 680716 0.370 0.017
2.5-opt-EEs-100 10809915 627073 0.446 0.024
2.5-opt-EEs-1000 10782974 669036 1.280 0.108
2.5-opt-ACs × × × ×

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 21

1-shift × × × ×
2-p-opt × × × ×

p = 0.8

2.5-opt-EEs-10 11323598 678658 0.355 0.015
2.5-opt-EEs-100 11325374 667811 0.424 0.020
2.5-opt-EEs-1000 11326928 665397 1.126 0.086
2.5-opt-ACs × × × ×
1-shift × × × ×
2-p-opt × × × ×

p = 0.9

2.5-opt-EEs-10 11754423 697164 0.346 0.013
2.5-opt-EEs-100 11764130 697751 0.406 0.019
2.5-opt-EEs-1000 11764290 705736 1.016 0.073
2.5-opt-ACs × × × ×
1-shift × × × ×
2-p-opt × × × ×

5.4 Experiments on sampling strategies

In this section, we present empirical results on several sampling strategies. For this study, we
considered the following two alternatives in addition to the one adopted by 2.5-opt-EEs, which
consists in using the same set of M realizations for all steps of the iterative improvement algorithm:
(i) a set of M realizations is sampled anew each time an improved solution is found; (ii) a set
of M realizations is sampled anew for each comparison. We denote the former 2.5-opt-EEs-ri,
where ri stands for resampling for each improvement and the latter 2.5-opt-EEs-rc, where rc

stands for resampling for each comparison. Note that the sample size is set to 100. We compare
2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rcwith 2.5-opt-EEs-100. Moreover, 2.5-opt-ACs
is included in the analysis as a reference.

In 2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc, for p = 0.1, the search cycles between
solutions due to the high variance of the cost difference estimator. To avoid this problem, we
implemented a mechanism that for p = 0.1 memorizes moves in order to reject them in successive
search steps. The results on clustered instances with 300 nodes are given in Figure 12.

The results clearly show that the strategies in which the set of realizations is changed for each
improvement and for each comparison are less effective: 2.5-opt-EEs-100-riand 2.5-opt-EEs-100-

-rc are dominated by 2.5-opt-EEs-100. Concerning the time required to reach local optima,
2.5-opt-EEs-100 is by approximately 0.5 and 2 orders of magnitude faster than 2.5-opt-EEs-100-ri

and 2.5-opt-EEs-100-rc, respectively. Moreover, 2.5-opt-EEs-100-rc is slower than 2.5-opt-ACs

by a factor of approximately five. Concerning the average cost of local optima, 2.5-opt-EEs-100
is similar to 2.5-opt-EEs-100-rc and 2.5-opt-EEs-100-ri; an exception is p = 0.1, where
the poor solution cost of 2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc is due to the cycling
problem and to the operations performed in order to avoid it.

5.5 Experiments with iterated local search

In this section, we study the behavior of 2.5-opt-EEs and 2.5-opt-ACs embedded into iter-
ated local search (ILS) (Lourenço et al., 2002), a metaheuristic on which many state-of-the-art
algorithms for the TSP are based (Hoos and Stützle, 2005). We implemented a standard ILS al-
gorithm that accepts only improving local optima and that uses a random double-bridge move for
the perturbation of local optima. We denote the two algorithms (ILS versions) ILS-2.5-opt-EEs
and ILS-2.5-opt-ACs, respectively. For ILS-2.5-opt-EEs, we use 100 and 1000 realizations; we
denote these algorithms ILS-2.5-opt-EEs-100 and ILS-2.5-opt-EEs-1000. Note that the set
of realizations is kept unchanged throughout the search.

The stopping criteria for the considered algorithms is the following: ILS-2.5-opt-ACs is run
until it performs 25 perturbations and the time needed for completion is recorded; this time is
then taken as the time limit for ILS-2.5-opt-EEs. The results on clustered instances with 1000

22 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

1.
00

1.
10

1.
20

1.
30

p = 0.1

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Normalized computation time

N
or

m
al

iz
ed

 c
os

t o
f t

he
 s

ol
ut

io
ns

Clustered instances; Size = 300;

1.
00

1.
10

1.
20

1.
30

p = 0.2

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.3

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.5

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.6

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.7

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.8

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

1.
00

1.
10

1.
20

1.
30

p = 0.9

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

2.5−opt−EEs−100 2.5−opt−EEs−100−ri 2.5−opt−EEs−100−rc 2.5−opt−EEs−ACs

Figure 12: Experimental results on clustered homogeneous PTSP instances of size 300. The plots
represent the average cost of the solutions obtained by 2.5-opt-EEs-100, 2.5-opt-EEs-100-ri,
2.5-opt-EEs-100-rc normalized by the one obtained by 2.5-opt-ACs. Each algorithm is stopped
when it reaches a local optimum.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 23

Table 6: Experimental results for ILS-2.5-opt-EEs-100, ILS-2.5-opt-EEs-1000, and ILS-

-2.5-opt-ACs on clustered instances of size 1000. The table gives mean and standard deviation
(s.d.) of final solution cost and computation time in seconds. The results are given for 100 in-
stances at each probability level. Note that the algorithms based on the analytical computation

techniques do not produce meaningful results for p > 0.5 due to the numerical problem (for details,
see Table 1). The algorithms based on the empirical estimation do not suffer from this problem.

Algorithm Solution Cost Computation Time
mean s.d. mean s.d.

p = 0.1
ILS-2.5-opt-EEs-100 4979874 399713

3261.500 362.575ILS-2.5-opt-EEs-1000 4843776 394002
ILS-2.5-opt-ACs 4877318 396493

p = 0.2
ILS-2.5-opt-EEs-100 6236305 433606

1933.850 200.543ILS-2.5-opt-EEs-1000 6212680 435542
ILS-2.5-opt-ACs 6376838 452242

p = 0.3
ILS-2.5-opt-EEs-100 7244262 470112

1306.395 144.981ILS-2.5-opt-EEs-1000 7259346 471874
ILS-2.5-opt-ACs 7511449 492782

p = 0.4
ILS-2.5-opt-EEs-100 8073761 501743

1017.768 115.292ILS-2.5-opt-EEs-1000 8120875 502695
ILS-2.5-opt-ACs 8450032 532982

p = 0.5
ILS-2.5-opt-EEs-100 8787387 532259

842.500 97.555ILS-2.5-opt-EEs-1000 8845621 525797
ILS-2.5-opt-ACs 9235088 560814

nodes are given in Figure 13 and Table 6.

Concerning the average cost of the solutions obtained, ILS-2.5-opt-EEs-100 is between 1%
and 3% better than ILS-2.5-opt-ACs, except for p = 0.1, where the average cost of ILS-2.5-opt-
-ACs is approximately 1% lower than that of ILS-2.5-opt-EEs-100. On the other hand, ILS-
-2.5-opt-EEs-1000 outperforms ILS-2.5-opt-ACs for all values of p: the average cost reached
by the former is between 1% and 4% lower than that of the latter.

The results of the comparison of ILS-2.5-opt-EEs-100 and ILS-2.5-opt-EEs-1000 show
that the average cost reached by the latter is between 0.2% and 2% better than that of the former
for p ≤ 0.2. Since the variance of the cost difference estimator is high at this probability range, the
use of a large number of realizations results in a more precise estimator, which eventually leads
to solutions of lower cost. Nevertheless, for p ≥ 0.3, the average cost of ILS-2.5-opt-EEs-100

is between 0.2% and 0.6% better than that of ILS-2.5-opt-EEs-1000. Since the variance of the
cost difference estimator is low at this probability range, the use of 100 realizations instead of 1000
allows ILS-2.5-opt-EEs-100 to perform more iterations than ILS-2.5-opt-EEs-1000, which in
turn results in solutions of lower cost.

Note that the observed differences between the algorithms are statistically significant according
to a paired Wilcoxon test with p-values adjusted by Holm’s method, with a confidence of 95%.
Since all the p-values obtained from the pairwise comparisons are less than 2.2e-16, we do not
present them in a table.

We also implemented another sampling strategy for the estimation-based ILS in which the set
of realizations is sampled anew for each iteration of ILS (after each perturbation). However, the
results did not show any significant difference from the one presented in this section.

6 Conclusions and Future Work

We introduced an estimation-based iterative improvement algorithm for the PTSP. The main
novelty of our approach consists in using the empirical estimation techniques in the delta evaluation

procedure. The proposed approach is conceptually simple, easy to implement, scalable to large
instance sizes and can be applied to problems in which the cost difference cannot be expressed in

24 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

p = 0.1

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

Normalized computation time

N

or
m

al
iz

ed
 c

os
t o

f t
he

 s
ol

ut
io

ns

Clustered instances; Size = 1000;
0.

9
1.

0
1.

1
1.

2
1.

3
1.

4

p = 0.2

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

p = 0.3

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

p = 0.4

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

p = 0.5

1e−04 1e−03 1e−02 1e−01 1e+00 1e+01

ILS−2.5−opt−EEs−100 ILS−2.5−opt−EEs−1000 2.5−opt−EEs−ACs

Figure 13: Experimental results on clustered homogeneous PTSP instances of size 1000. The
plots represent the cost of the solutions obtained by ILS-2.5-opt-EEs-100 and ILS-2.5-opt-

-EEs-1000 normalized by the one obtained by ILS-2.5-opt-ACs. Note that the algorithms based
on the analytical computation techniques do not produce meaningful results for p > 0.5 due to the
numerical problem (for details, see Table 1). The algorithms based on the empirical estimation

do not suffer from this problem.

IRIDIA – Technical Report Series: TR/IRIDIA/2007-003 25

a closed-form. Moreover, we have shown that the TSP-specific neighborhood reduction techniques
are also effective for the PTSP. Furthermore, we identified a major practical limitation in applying
the current state-of-the-art iterative improvement algorithms to large PTSP instances.

There are a large number of avenues for further research. The performance of the proposed
approach is affected by the number of realizations considered. In this context, our future work
will aim at developing adaptive sampling procedures that save computational time by selecting
the most appropriate number of realizations with respect to the variance of the cost difference
estimator.

Given the promising results obtained by the iterated local search presented in Section 5.5,
further research will be devoted to assess the behavior of the proposed approach when used as an
embedded heuristic in metaheuristics such as ant colony optimization and genetic algorithms.

From the application perspective, the estimation-based iterative improvement algorithms will
be applied to more complex problems such as stochastic vehicle routing, stochastic scheduling,
and TSP with time windows and stochastic service time.

Acknowledgments

The authors thank Leonora Bianchi for providing the source code of 2-p-opt and 1-shift.
This research has been supported by COMP

2
SYS, a Marie Curie Early Stage Research Training

Site funded by the European Community’s Sixth Framework Programme under contract number
MEST-CT-2004-505079, and by the ANTS project, an Action de Recherche Concertée funded by
the Scientific Research Directorate of the French Community of Belgium. Prasanna Balaprakash,
Thomas Stützle, and Marco Dorigo acknowledge support from the Belgian FNRS of which they
are an Aspirant, a Research Associate, and a Research Director, respectively. The information
provided is the sole responsibility of the authors and does not reflect the opinion of the sponsors.
The European Community is not responsible for any use that might be made of data appearing
in this publication.

References

754, IEEE. 1985. IEEE Standard for Binary Floating-Point Arithmetic.

Bentley, J. L. 1992. Fast algorithms for geometric traveling salesman problems. ORSA Journal

on Computing 4 387–411.

Bertsimas, D. 1988. Probabilistic combinatorial optimization problems. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA.

Bertsimas, D., L. Howell. 1993. Further results on the probabilitsic traveling salesman problem.
European Journal of Operations Research 65 68–95.

Bertsimas, D., P. Jaillet, A. Odoni. 1990. A priori optimization. Operations Research 38 1019–
1033.

Bianchi, L. 2006. Ant colony optimization and local search for the probabilistic traveling salesman
problem: A case study in stochastic combinatorial optimization. Ph.D. thesis, Université Libre
de Bruxelles, Brussels, Belgium.

Bianchi, L., M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-Doria,
T. Schiavinotto. 2006. Hybrid metaheuristics for the vehicle routing problem with stochastic
demands. Journal of Mathematical Modelling and Algorithms 5 91–110.

Bianchi, L., A. Campbell. 2007. Extension of the 2-p-opt and 1-shift algorithms to the heteroge-
neous probabilistic traveling salesman problem. European Journal of Operations Research 176

131–144.

26 IRIDIA – Technical Report Series: TR/IRIDIA/2007-003

Bianchi, L., J. Knowles, N. Bowler. 2005. Local search for the probabilistic traveling salesman
problem: Correction to the 2-p-opt and 1-shift algorithms. European Journal of Operational

Research 162 206–219.

Birattari, M., P. Balaprakash, T. Stützle, M. Dorigo. 2007. Extended empirical analysis of
estimation-based local search for stochastic combinatorial optimization. IRIDIA Supplemen-
tary page. URL http://iridia.ulb.ac.be/supp/IridiaSupp2007-001/.

Chervi, P. 1988. A computational approach to probabilistic vehicle routing problems. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA.

Fu, M. C. 1994. Optimization via simulation: A review. Annals of Operations Research 53

199–248.

Fu, M. C. 2002. Optimization for simulation: theory vs. practice. INFORMS Journal on Com-

puting 14 192–215.

Griffith, A. 2002. GCC: The Complete Reference. McGraw Hill/Osborne Media.

Gutjahr, W.J. 2004. S-ACO: An ant based approach to combinatorial optimization under uncer-
tainity. M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, T. Stützle, eds.,
Ant Colony Optimization and Swarm Intelligence, 5th International Workshop, ANTS 2004 ,
LNCS , vol. 3172. Springer-Verlag, Berlin, Germany, 238–249.

Hoos, H., T. Stützle. 2005. Stochastic Local Search: Foundations and Applications . Morgan
Kaufmann.

Jaillet, P. 1985. Probabilistic traveling salesman problems. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA.

Johnson, D. S., L. A. McGeoch. 1997. The travelling salesman problem: A case study in local
optimization. E. H. L. Aarts, J. K. Lenstra, eds., Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester, United Kingdom, 215–310.

Johnson, D. S., L. A. McGeoch, C. Rego, F. Glover. 2001. 8th DIMACS implementation challenge.
URL http://www.research.att.com/∼dsj/chtsp/.

Lourenço, H. R., O. Martin, T. Stützle. 2002. Iterated local search. F. Glover, G. Kochenberger,
eds., Handbook of Metaheuristics , International Series in Operation Research and Management

Science, vol. 57. Kluwar Academic Publishers, Norwell, MA, 321–353.

Martin, O., S. W. Otto, E. W. Felten. 1991. Large-step Markov chains for the traveling salesman
problem. Complex Systems 5 299–326.

Penky, J. F., D.L. Miller. 1994. A staged primal-dual algorithm for finding a minimum cost perfect
two-matching in an undirected graph. ORSA Jornal on Computing 6 68–81.

Pichitlamken, J., B. L. Nelson. 2003. A combined procedure for optimization via simulation. ACM

Transactions on Modeling and Computer Simulation 13 155–179.

