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Abstract

Ant colony optimization (ACO) is a promising metaheuristic and a great amount of research

has been devoted to its empirical and theoretical analysis. Recently, with the introduction

of the hyper-cube framework [1], Blum and Dorigo have explicitly raised the issue of the

invariance of ACO algorithms to transformation of units. They state [1] that the performance

of ant colony optimization depends on the scale of the problem instance under analysis.

In this paper, we show that the ACO internal state—commonly referred to as the pheromo-

ne—indeed depends on the scale of the problem at hand. Nonetheless, we formally prove

that this does not affect the sequence of solutions produced by the three most widely adopted

algorithms belonging to the ACO family: ant system, MAX–MIN ant system, and ant colony

system. For these algorithms, the sequence of solutions does not depend on the scale of the

problem instance under analysis.

Moreover, we introduce three new ACO algorithms, the internal state of which is indepen-

dent of the scale of the problem instance considered. These algorithms are obtained as minor

variations of ant system, MAX–MIN ant system, and ant colony system. We formally show

that these algorithms are functionally equivalent to their original counterparts. That is, for

any given instance, these algorithms produce the same sequence of solutions as the original

ones.

1 Introduction

Ant colony optimization (ACO) [2] is a metaheuristic inspired by the foraging behavior of ants [3].

In order to find the shortest path from the nest to a food source, ant colonies exploit a positive

feedback mechanism: They use a form of indirect communication called stigmergy [4], which is

based on the laying and detection of pheromone trails. In ant colony optimization, a generic

combinatorial optimization problem is encoded into a constrained shortest path problem. A num-

ber of paths are generated in a Monte Carlo fashion on the basis of a probabilistic model whose

parameters are called artificial pheromone—or more simply pheromone. In the ant colony opti-

mization metaphor, these paths are said to be constructed by artificial ants walking on the graph

that encodes the problem. The cost of the generated paths is used to modify the pheromone and

therefore to bias the generation of further paths towards promising regions of the search space [5].

The ant colony optimization framework has been explicitly defined by Dorigo et al. in 1999 [6],

and comprises a number of algorithms including the original ant system [7, 8, 9], ant colony system

[10], and MAX–MIN ant system [11, 12]. A vast literature exists on ant colony optimization and

on its application to a large number of problems. We refer the reader to Dorigo and Stützle [2]

for a comprehensive overview.

1
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Recently, with the introduction of the hyper-cube framework [1], Blum and Dorigo have ex-

plicitly raised the issue of the invariance of ACO algorithms to transformation of units. In the

hyper-cube framework, the cost of solutions is normalized on a per iteration basis. This entrains a

number of desirable properties [1], among which the invariance to transformation of units. Blum

and Dorigo [1] maintain that this property is peculiar to the hypercube framework:

in standard ACO algorithms the pheromone values and therefore the performance of

the algorithms, strongly depend on the scale of the problem. [1]

Here by “performance,” the authors informally mean the sequence of solutions generated when

solving a problem instance.

In this paper, we formally show that this statement is only partially correct: Indeed, in stan-

dard ant colony optimization algorithms the pheromone values (and the heuristic information)

depend on the scale of the problem. Nonetheless, the sequence of solutions ACO algorithms find

is independent of the scale of the problem. For concreteness, in this paper we focus on ant sys-

tem, MAX–MIN ant system, and ant colony system, which are the three most representative

algorithms in the ant colony optimization family.

As a second contribution, we propose variants of the aforementioned algorithms called strongly-

invariant ant system (siAS), strongly-invariant MAX–MIN ant system (siMMAS), and strongly-

invariant ant colony system (siACS). These variants are equivalent to their original counterparts,

but they enjoy the further property that the pheromone and the heuristic values do not depend

on the scale of the problem. Although this property might be desirable in practical applications,

the significance of the introduction of strongly-invariant ACO algorithms is mostly theoretical and

speculative. Indeed, the fact of showing that it is possible to define algorithms enjoying the above

invariance property provides new insight into ant colony optimization.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminary

concepts. In Sections 3, 4, and 5, we deal with ant system, MAX–MIN ant system, and ant

colony system, respectively. In these sections, we formally define the three algorithms and we

prove that the sequence of solutions they produce does not depend on the scale of the problem

instance under analysis. Moreover, in these sections we propose the strongly-invariant versions

of the three algorithms and we formally study their properties. In Section 6, we describe three

combinatorial optimization problems—namely the traveling salesman problem, the quadratic as-

signment problem, and the open shop scheduling problem—and we illustrate how the theorems

proved in Sections 3, 4, and 5 apply to these problems. In Section 7, we conclude the paper with

some final remarks.

2 Preliminary definitions

In this section, we introduce a number of fundamental concepts that will be needed in the following.

Definition 1 (Linear transformation of units). A linear transformation of units is a binary relation

defined on the space of the instances of a combinatorial optimization problem. Two instances I

and Ī are related via a linear transformation of units if they share the same space of solutions S

and, for any solution s ∈ S, f̄(s) = g1f(s), where g1 > 0 is a constant and f(s) and f̄(s) are the

value of the objective function in s for I and Ī, respectively. In the following, the notation Ī = g1I

will be adopted.

Being reflexive, symmetric, and transitive, a linear transformation of units is an equivalence re-

lation. Accordingly, two instances I and Ī that meet the conditions given in Definition 1 will be

said to be equivalent up to a linear transformation of units or more simply equivalent.



IRIDIA – Technical Report Series: TR/IRIDIA/2006-025 3

Algorithm 1 The Ant Colony Optimization Metaheuristic

Set parameters, set heuristic information, and initialize pheromone;

while termination condition not met do

Construct solutions based on pheromone and heuristic information;

Improve solutions via local search;1 (optional)

Update pheromone;

end while

Remark 1. In the following, if y is a generic quantity that refers to an instance I, then ȳ is the

corresponding quantity for what concerns instance Ī, when Ī is equivalent to I up to a linear

transformation of units.

Definition 2 (Construction graph, pheromone, and heuristic information). In ant colony opti-

mization, a combinatorial optimization problem is mapped on a graph G = (N, E), where N is

the set of nodes and E is the set of edges. The graph G is called construction graph.

The solutions of the original problem are mapped to paths on G. Variables called pheromone

and heuristic information are associated with the edges in E.

Ant colony optimization algorithms are iterative. At each iteration, a number of solutions are

built incrementally on the basis of stochastic decisions that are biased by pheromone and heuristic

information. These solutions are used for updating the pheromone in order to bias future solutions

towards promising regions of the search space. A pseudo-code of a generic ant colony optimization

algorithm is given in Algorithm 1. The constraints of the optimization problem are implemented by

enumerating the solution components that can be added at each step. This set typically depends

on the partial solution constructed so far.

In the following, we will adopt the notation 〈i, j〉 to denote the edge connecting nodes i and j.

With ηij we denote the heuristic information on the desirability of constructing a path on G

featuring node j immediately after i. Finally, with τij,h we denote the pheromone on edge 〈i, j〉

at iteration h of the algorithm.

The following hypothesis will be used in the paper.

Hypothesis 1 (Pseudo-random number generator). When solving two equivalent instances I and

Ī, the stochastic decisions taken while constructing solutions are made on the basis of random

experiments based on pseudo-random numbers produced by the same pseudo-random number

generator. We assume that this generator is initialized in the same way (for example, with the

same seed) when solving the two instances so that the two sequences of pseudo-random numbers

that are generated are the same in the two cases.

Similarly, when two algorithms A and Ã solve the same instance I, we assume that the pseudo-

random number generators adopted by the two algorithms are the same and are initialized in the

same way.

Definition 3 (Weak-invariance). An algorithm A is weakly-invariant (or more simply invari-

ant) to linear transformation of units if the sequence of solutions SI and SĪ generated when

solving respectively the instances I and Ī are the same, whenever Ī is equivalent to I up to a

linear transformation of units. If A is a stochastic algorithm, it is said to be invariant if it is so

under Hypothesis 1.

1In this paper, we will not discuss the adoption of a local search to improve solutions constructed by ants.

Nonetheless, it is worth noticing here that local search algorithms are typically invariant to transformation of units.

Therefore, all the theorems presented in the paper hold true also when a local search is adopted.
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Definition 4 (Strong-invariance). An algorithm A is said to be strongly-invariant if, besides

generating the same solutions on any two equivalent instances I and Ī, it also enjoys the property

that its internal state at each iteration is the same when solving I and Ī. If A is stochastic, it is

said to be strongly-invariant if it is so under Hypothesis 1.

Remark 2. An ant colony optimization algorithm is strongly-invariant if heuristic information and

pheromone at each iteration are the same when solving any two equivalent instances.

Definition 5 (Functional equivalence). Two algorithms A and Ã are functionally equivalent, or

simply equivalent, if for any instance I, the sequence of solutions SI generated by A and the

sequence of solutions S̃I generated by Ã are the same. If A and Ã are stochastic, they are said to

be equivalent if they are so under Hypothesis 1.

Definition 6 (Reference solution). Let s0 be a solution of instance I returned by some appropriate

invariant algorithm. Such an algorithm, which is necessarily problem-specific, might be based

either on a heuristic or more simply on a random sampling of the solution space. In this latter

case, the invariance of the algorithm relies on Hypothesis 1. From this definition, it follows that

f̄(s0) = g1f(s0), for any two equivalent instances I and Ī such that Ī = g1I.

3 Ant system

Ant system is the original ant colony optimization algorithm proposed by Dorigo et al. [7, 8, 9].

In the following, we provide a formal definition of the algorithm.

Definition 7 (Random proportional rule). At the generic iteration h, suppose that ant k is in

node i. Further, let N k
i be the set of feasible nodes that can be visited by ant k. In general, this

set depends on the partial solution constructed so far by ant k. The node j ∈ N k
i , to which ant k

moves, is selected with probability:

pk
ij,h =

[τij,h]α[ηij ]
β

∑

l∈Nk
i

[τil,h]α[ηil]β
,

where α and β are parameters.

Definition 8 (Pheromone update rule). At the generic iteration h, suppose that m ants have

generated the solutions s1
h
, s2

h
, . . . , sm

h
of cost f(s1

h
), f(s2

h
), . . . , f(sm

h
), respectively. The pheromone

on each edge 〈i, j〉 is updated according to the following rule:

τij,h+1 = (1 − ρ)τij,h +
m
∑

k=1

∆k
ij,h,

where ρ is a parameter called the evaporation rate and

∆k
ij,h =

{

1/f(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise.
(1)

Definition 9 (Pheromone initialization). At iteration h = 1, the pheromone is initialized to

τij,1 = m/f(s0), for all 〈i, j〉 ∈ E,

where m is the number of ants and s0 is the reference solution.
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Definition 10 (Ant system). Ant system is an ant colony optimization algorithm in which

solutions are constructed according to the random proportional rule given in Definition 7, the

pheromone is initialized as in Definition 9 and updated according to the rule given in Definition 8.

The evaporation rate ρ, the number of ants m, and the exponents α and β are parameters of the

algorithm. The definition of the heuristic information is problem-specific.

The following theorem holds true.

Lemma 1. The random proportional rule is invariant to concurrent linear transformation of the

pheromone and of the heuristic information. Formally, for any two positive constants γ1 and γ2,

(τ̄ij,h = γ1τij,h) ∧ (η̄ij = γ2ηij), for all 〈i, j〉 =⇒ p̄k
ij,h = pk

ij,h, for all 〈i, j〉,

where p̄k
ij,h is obtained on the basis of τ̄ij,h and η̄ij , according to Definition 7.

Proof. According to Definition 7:

p̄k
ij,h =

[τ̄ij,h]α[η̄ij ]
β

∑

l∈Nk
i

[τ̄il,h]α[η̄il]β
=

[γ1τij,h]α[γ2ηij ]
β

∑

l∈Nk
i

[γ1τil,h]α[γ2ηil]β

=
[γ1]

α[γ2]
β [τij,h]α[ηij ]

β

[γ1]α[γ2]β
∑

l∈Nk
i

[τil,h]α[ηil]β
=

[τij,h]α[ηij ]
β

∑

l∈Nk
i

[τil,h]α[ηil]β
= pk

ij,h.

Theorem 1 (Weak invariance of ant system). Let I and Ī be two equivalent instances such that

Ī = g1I, with g1 > 0. Further, let G = (N, E) be the construction graph associated with I and Ī.

Ant system obtains the same sequence of solutions on I and Ī if

(Condition 1) the heuristic information is such that:

[η̄ij ]
β = [g2ηij ]

β , for all 〈i, j〉 ∈ E,

where β is the parameter appearing in Definition 7 and g2 > 0 is an arbitrary constant.

Proof. The theorem is proved by induction: We show that if at the generic iteration h some set

of conditions C holds, then the solutions generated for the two instances I and Ī are the same,

and the set of conditions C also holds at the following iteration h + 1. The proof is concluded by

showing that C holds at the very first iteration. With few minor modifications, this technique is

adopted in the following for proving all theorems enunciated in the paper.

According to Lemma 1 and given Condition 1, if at the generic iteration h, τ̄ij,h = 1
g1

τij,h, for all

〈i, j〉, then p̄k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1,

s̄k
h

= sk
h
, for all k = 1, . . . , m,

and therefore,

f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m.

According to Equation 1:

∆̄k
ij,h =

{

1/f̄(s̄k
h
), if 〈i, j〉 ∈ s̄k

h
;

0, otherwise;
=

{

1/g1f(sk
h
), if 〈i, j〉 ∈ s̄k

h
= sk

h
;

0/g1, otherwise;

=
1

g1

{

1/f(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise;
=

1

g1
∆k

ij,h,
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and therefore, for any edge 〈i, j〉:

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +

m
∑

k=1

∆̄k
ij,h = (1 − ρ)

1

g1
τij,h +

m
∑

k=1

1

g1
∆k

ij,h

= (1 − ρ)
1

g1
τij,h +

1

g1

m
∑

k=1

∆k
ij,h =

1

g1

(

(1 − ρ)τij,h +

m
∑

k=1

∆k
ij,h

)

=
1

g1
τij,h+1.

The proof is completed by observing that a basis for the above induction follows from Definition 9:

τ̄ij,1 =
m

f̄(s0)
=

m

g1f(s0)
=

1

g1
τij,1, for all 〈i, j〉.

Remark 3. One notable case in which Condition 1 is satisfied is when β = 0, that is, when no

heuristic information is used.

Strongly-invariant ant system

In this section, we introduce siAS, which is a strongly-invariant version of ant system. We first

define the algorithm, then we prove that it is functionally equivalent to ant system, and finally

that it is indeed strongly invariant.

Definition 11 (Strongly-invariant pheromone update rule). The pheromone is updated using the

same rule given in Definition 8, with the only difference that ∆k
ij,h is given by:

∆k
ij,h =

{

f(s0)/mf(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise;

where m is the number of ants and s0 is the reference solution.

Definition 12 (Strongly-invariant pheromone initialization). At the first iteration h = 1, the

pheromone is initialized to τij,1 = 1, for all 〈i, j〉.

Definition 13 (Strongly-invariant ant system). The strongly-invariant ant system (siAS) is a

variation of ant system. In siAS, the random proportional rule is adopted for the construction

of solutions, the pheromone is initialized according to Definition 12, and the update is performed

according to Definition 11. The heuristic information is set in an invariant way through some

appropriate problem-specific rule.

Theorem 2. Ant system and siAS are functionally equivalent if

(Condition 2) the heuristic information is such that:

[η̃ij ]
β = [ληij ]

β , for all 〈i, j〉,

where β is the parameter appearing in Definition 7, η̃ij and ηij are the heuristic information

on edge 〈i, j〉 respectively in siAS and ant system, and λ > 0 is an arbitrary constant.

Proof. Let us consider a generic instance I. In this proof, a tilde placed above a symbol indicates

that it refers to siAS. Let µ = f(s0)/m. According to Lemma 1 and given Condition 2, if at the

generic iteration h, τ̃ij,h = µτij,h, for all 〈i, j〉, then p̃k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1,

s̃k
h

= sk
h
, for all k = 1, . . . , m. According to Definitions 8 and 11,

∆̃k
ij,h =

{

f(s0)/mf(s̃k
h
), if 〈i, j〉 ∈ s̃k

h
;

0, otherwise;
= µ

{

1/f(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise;
= µ∆k

ij,h.
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Therefore, for any edge 〈i, j〉:

τ̃ij,h+1 = (1 − ρ)τ̃ij,h +
m
∑

k=1

∆̃k
ij,h = (1 − ρ)µτij,h +

m
∑

k=1

µ∆k
ij,h = µτij,h+1.

The proof is completed by observing that a basis for the above induction is provided by

τ̃ij,1 = µτij,1, for all 〈i, j〉,

which follows from Definitions 9 and 12.

Theorem 3. siAS is strongly-invariant if

(Condition 3) the heuristic information is such that:

[η̄ij ]
β = [ηij ]

β , for all 〈i, j〉,

for any two instances I and Ī such that Ī = g1I, with g1 > 0.

Proof. Given Condition 3, according to Lemma 1 and Hypothesis 1, if at the generic iteration h,

τ̄ij,h = τij,h, for all 〈i, j〉, then p̄k
ij,h = pk

ij,h, for all 〈i, j〉, and s̄k
h

= sk
h
, for all k = 1, . . . , m, and

therefore, f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m. According to Definition 11:

∆̄k
ij,h =

{

f̄(s0)/mf̄(s̄k
h
), if 〈i, j〉 ∈ s̄k

h
;

0, otherwise;
=

{

f(s0)/mf(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise;
= ∆k

ij,h,

and therefore, for any edge 〈i, j〉:

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +

m
∑

k=1

∆̄k
ij,h = (1 − ρ)τij,h +

m
∑

k=1

∆k
ij,h = τij,h+1.

The proof is completed by observing that Definition 12 provides a basis for the above induction.

Remark 4. It is worth noticing that by initializing the pheromone to τij,1 = 1/m, for all 〈i, j〉, and

by defining ∆k
ij,h as:

∆k
ij,h =

{

f(s0)/f(sk
h
), if 〈i, j〉 ∈ sk

h
;

0, otherwise;

one would have obtained nonetheless a strongly invariant algorithm. The advantage of the for-

mulation given in Definitions 11 and 12 is that the magnitude of the pheromone deposited on the

arcs does not depend on the number m of ants considered.

4 MAX–MIN ant system

The results given for ant system can be extended to MAX–MIN ant system [11, 12]. The char-

acterizing element of MAX–MIN ant system is the fact that the pheromone value is constrained

between a minimum and a maximum, which possibly change iteration by iteration.

Definition 14 (Pheromone trail limits). At iteration h + 1, the pheromone value τij,h+1 on a

generic edge 〈i, j〉 is constrained:

τmin

h
≤ τij,h+1 ≤ τmax

h
,

with τmax
h

= 1/ρf(sbs
h

) and τmin
h

= aτmax
h

, where sbs
h

is the best solution found up to and including

iteration h, ρ is the evaporation rate, and a is a parameter, with 0 ≤ a < 1.



8 IRIDIA – Technical Report Series: TR/IRIDIA/2006-025

Remark 5. The following notation will be adopted:

[

x
]max

min
=















max , if x > max ;

x, if min ≤ x ≤ max ;

min, if x < min.

It can be easily shown that, if g > 0,

[

g · x
]g·max

g·min
= g
[

x
]max

min
.

This property will be used in the following.

Definition 15 (Pheromone update rule). If τij,h is the value of the pheromone on edge 〈i, j〉 at

the current iteration h, the value of the pheromone at iteration h + 1 is given by:

τij,h+1 =
[

(1 − ρ)τij,h + ∆ij,h

]τmax

h

τmin

h

, (2)

where ρ is the evaporation rate. The quantity ∆ij,h is given by:

∆ij,h =

{

1/f(sbest
h

), if 〈i, j〉 ∈ sbest
h

;

0, otherwise;
(3)

where sbest
h

is either the best-so-far solution sbs
h

, that is, best solution found up to and including

iteration h, or the iteration-best solution sib
h

, that is, the best solution found in iteration h.

Remark 6. At a given iteration h, whether a best-so-far or an iteration-best update is to be

performed is a design choice. In the typical implementation of MAX–MIN ant system, in the

initial iterations the iteration-best update is mostly adopted, and the frequency with which the

best-so-far update is employed increases iteration after iteration [12].

Definition 16 (Pheromone initialization). At iteration h = 1, the pheromone on each edge is

initialized to

τij,1 =
1

ρf(s0)
, for all 〈i, j〉 ∈ E,

where ρ is the evaporation rate and s0 is the reference solution.

Definition 17 (MAX–MIN ant system). MAX–MIN ant system is an ACO algorithm in which

solutions are constructed according to the random proportional rule given in Definition 7, the

pheromone is initialized as in Definition 16, and it is updated according to Definition 15. The

evaporation rate ρ, the exponents α and β, the number of ants m, and the factor a are parameters

of the algorithm. The heuristic information is problem-specific.

Theorem 4. Let I and Ī be two equivalent instances such that Ī = g1I, with g1 > 0. Further, let

G = (N, E) be the construction graph associated with I and Ī. MAX–MIN ant system obtains

the same sequence of solutions on I and Ī if

(Condition 1) the heuristic information is such that:

[η̄ij ]
β = [g2ηij ]

β , for all 〈i, j〉 ∈ E,

where β is the parameter appearing in Definition 7 and g2 > 0 is an arbitrary constant.
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Proof. The proof follows the one given for Theorem 1. Let us assume that, at the beginning of the

generic iteration h, s̄bs
h−1

= sbs
h−1

and τ̄ij,h = 1
g1

τij,h, for all 〈i, j〉. According to Lemma 1 and given

Condition 1, p̄k
ij,h = pk

ij,h, for all 〈i, j〉. Under Hypothesis 1, s̄k
h

= sk
h
, for all k = 1, . . . , m, and

therefore, f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m. In particular, s̄ib

h
= sib

h
, and f̄(s̄ib

h
) = g1f(sib

h
).

Moreover, whether or not an improvement is made on the best-so-far solution, s̄bs
h

= sbs
h

. Indeed,

since s̄bs
h−1

= sbs
h−1

, then f̄(s̄bs
h−1

) = g1f(sbs
h−1

). If f(sib
h

) < f(sbs
h−1

), then also f̄(s̄ib
h

) < f̄(s̄bs
h−1

), and

s̄bs
h

= s̄ib
h

= sib
h

= sbs
h

. On the other hand, if f(sib
h

) ≥ f(sbs
h−1

), then also f̄(s̄ib
h

) ≥ f̄(s̄bs
h−1

), and

s̄bs
h

= s̄bs
h−1

= sbs
h−1

= sbs
h

.

According to Equation 3,

∆̄ij,h =

{

1/f̄(s̄best
h

), if 〈i, j〉 ∈ s̄best
h

;

0, otherwise;
=

{

1/g1f(sbest
h

), if 〈i, j〉 ∈ sbest
h

;

0/g1, otherwise;
=

1

g1
∆ij,h,

where s̄best
h

= sbest
h

= sbs
h

, in case of a best-so-far update; and s̄best
h

= sbest
h

= sib
h

, in case of an

iteration-best update. In both cases,

τ̄max

h
=

1

ρf̄(s̄bs
h

)
=

1

g1ρf(sbs
h

)
=

1

g1
τmax

h
,

and therefore,

τ̄min

h
= aτ̄max

h
=

a

g1
τmax

h
=

1

g1
τmin

h
.

It follows that,

τ̄ij,h+1 =
[

(1 − ρ)τ̄ij,h + ∆̄ij,h

]τ̄max

h

τ̄min

h

=

[

(1 − ρ)
1

g1
τij,h +

1

g1
∆ij,h

]
1

g1
τmax

h

1
g1

τmin

h

=

[

1

g1

(

(1 − ρ)τij,h + ∆ij,h

)

]
1

g1
τmax

h

1
g1

τmin

h

=
1

g1

[

(1 − ρ)τij,h + ∆ij,h

]τmax

h

τmin

h

=
1

g1
τij,h+1.

The proof is completed by observing that, according to Definition 16, the pheromone is initialized

as:

τ̄ij,1 =
1

ρf̄(s0)
=

1

ρg1f(s0)
=

1

g1
τij,1, for all 〈i, j〉.

and the initial best-so-far solutions are s̄bs
0

= sbs
0

= s0, where s0 is the reference solution.

Remark 7. Condition 1 is trivially satisfied when no heuristic information is used, that is, when

β = 0.

Strongly-invariant MAX–MIN ant system

A strongly-invariant version of MAX–MIN ant system (siMMAS) can be defined. We first define

the algorithm, then we prove that it is functionally equivalent to MAX–MIN ant system, and

finally that it is indeed strongly invariant.

Definition 18 (Strongly-invariant pheromone update rule). The pheromone is updated as in

Definition 15, with the difference that

∆ij,h =

{

ρf(s0)/f(sbest
h

), if 〈i, j〉 ∈ sbest
h

;

0, otherwise;
(4)

where ρ is the evaporation rate, s0 is the reference solution, and sbest
h

is either the best-so-far or

the iteration-best solution.
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Definition 19 (Strongly-invariant pheromone initialization). The pheromone is initialized to

τij,1 = 1, for all 〈i, j〉.

Definition 20 (Strongly-invariant pheromone trail limits). At iteration h + 1, the value τij,h+1

of the pheromone on a generic edge 〈i, j〉 is constrained: τmin
h

≤ τij,h+1 ≤ τmax
h

, with τmax
h

=

f(s0)/f(sbs
h

) and τmin
h

= aτmax
h

, where s0 is the reference solution, f(sbs
h

) is the best solution

found up to and including iteration h, and a is a parameter.

Definition 21 (Strongly-invariant MAX–MIN ant system). The strongly-invariant MAX–MIN

ant system (siMMAS) is a variation of MAX–MIN ant system. In siMMAS, the random

proportional rule given in Definition 7 is adopted for the construction of solutions. The pheromone

is initialized according to Definition 19, limited according to Definition 20, and the update is

performed according to Definition 18. The heuristic information is set in an invariant way through

some appropriate problem-specific rule.

Theorem 5. MAX–MIN ant system and siMMAS are functionally equivalent if

(Condition 2) the heuristic information is such that:

[η̃ij ]
β = [ληij ]

β , for all 〈i, j〉,

where β is the parameter appearing in Definition 7, η̃ij and ηij are the heuristic information

on edge 〈i, j〉 respectively in siMMAS and MAX–MIN ant system, and λ > 0 is an arbitrary

constant.

Proof. As in the proof of Theorem 2, a tilde placed above a symbol indicates that the latter refers

to siMMAS. Let µ = ρf(s0). According to Lemma 1 and given Condition 2, if at the generic

iteration h, s̃bs
h−1

= sbs
h−1

and τ̃ij,h = µτij,h, for all 〈i, j〉, then p̃k
ij,h = pk

ij,h, for all 〈i, j〉. Under

Hypothesis 1, s̃k
h

= sk
h
, for all k = 1, . . . , m. In particular, s̃ib

h
= sib

h
. Moreover, whether or

not an improvement is made on the best-so-far solution, s̃bs
h

= sbs
h

—see the proof of Theorem 4.

According to Equation 4:

∆̃ij,h =

{

ρf(s0)/f̃(s̃best
h

), if 〈i, j〉 ∈ s̃best
h

;

0, otherwise;
= µ

{

1/f(sbest
h

), if 〈i, j〉 ∈ sbest
h

;

0, otherwise;
= µ∆ij,h,

where sbest
h

is either the best-so-far sbs
h

, or the iteration-best solution sib
h

. In both cases, according

to Definitions 14 and 20, τ̃max
h

= f(s0)/f(sbs
h

) = ρf(s0)/ρf(sbs
h

) = µτmax
h

and τ̃min
h

= aτ̃max
h

=

aµτmax
h

= µτmin
h

. It follows that, for all 〈i, j〉:

τ̃ij,h+1 =
[

(1 − ρ)τ̃ij,h + ∆̃ij,h

]τ̃max

h

τ̃min

h

=

[

(1 − ρ)µτij,h + µ∆ij,h

]µτmax

h

µτmin

h

= µτij,h+1.

The proof is completed by observing that at the first iteration h = 1, τ̃ij,1 = 1 = ρf(s0)/ρf(s0) =

µτij,1, for all 〈i, j〉; and the initial best-so-far solutions are s̃bs
0

= sbs
0

= s0.

Theorem 6. siMMAS is strongly-invariant if

(Condition 3) the heuristic information is such that:

[η̄ij ]
β = [ηij ]

β , for all 〈i, j〉,

for any two instances I and Ī such that Ī = g1I, with g1 > 0.
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Proof. Given Condition 3, according to Lemma 1 and Hypothesis 1, if at the generic iteration

h, τ̄ij,h = τij,h, for all 〈i, j〉, and if s̄bs
h−1

= sbs
h−1

, then p̄k
ij,h = pk

ij,h, for all 〈i, j〉, s̄k
h

= sk
h

and

f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m. It follows that s̄bs

h
= sbs

h
and, due to Definition 20,

τ̄max
h

= τmax
h

and τ̄min
h

= τmin
h

. Moreover, it can be easily observed that, as a consequence of

Definition 18, ∆̄ij,h = ∆ij,h, for all 〈i, j〉; therefore, τ̄ij,h+1 = τij,h+1, for all 〈i, j〉. The proof is

completed by observing that, according to Definition 19, τ̄ij,1 = τij,1, for all 〈i, j〉, and the initial

best-so-far solutions are s̄bs
0

= sbs
0

= s0.

5 Ant colony system

The weak invariance property holds also for ant colony system [10]. In ant colony system, the con-

cept of local pheromone update is introduced: When an ant traverses edge 〈i, j〉 while constructing

a solution, that is, when the solution component encoded by edge 〈i, j〉 is included in the solution

being constructed, the pheromone on 〈i, j〉 is decreased [10, 2]. In order to describe this feature, a

slightly modified notation is needed: With sk
h,t

we denote the partial solution constructed by ant

k, at iteration h, in the first t steps of the solution construction process. Further, sk
h,t

(t′), with

t′ ≤ t, is the solution component added at step t′. Similarly, τk

ij,h,t
is the value of the pheromone

on edge 〈i, j〉 at iteration h, when ant k is performing step t of the solution construction process.

Finally, if ant k is in node i at construction step t of iteration h, pk
ij,h,t

is the probability that it

moves to node j.

Definition 22 (Local pheromone update rule). At the generic iteration h, in turn, the m ants

perform a step of the solution construction by traversing an edge, the pheromone on which is then

decreased. This process is iterated until each of the m ants has constructed its complete solution.

After the generic ant k has performed step t of the construction of its solution, the pheromone is

modified according to:

τk+1

ij,h,t
=

{

(1 − ξ) τk

ij,h,t
+ ξ τ 1

ij,1,1
, if sk

h,t
(t) = 〈i, j〉;

τk

ij,h,t
, otherwise;

where ξ is a parameter called the local pheromone evaporation rate, and τ 1

ij,1,1
is the initial value

of the pheromone—see Definition 25. When all m ants have completed step t of the solution

construction process, step t + 1 is started with τ 1

ij,h,t+1
= τm+1

ij,h,t
.

Definition 23 (Global pheromone update rule). At each iteration h, after all m ants have built

their solution and performed the local pheromone update, the pheromone on the edges belonging

to the best-so-far solution sbs
h

found up to and including iteration h, are reinforced:

τ 1

ij,h+1,1
=

{

(1 − ρ)τm+1

ij,h,T
+ ρ∆ij,h, if 〈i, j〉 ∈ sbs

h
;

τm+1

ij,h,T
, otherwise;

where ∆ij,h = 1/f(sbs
h

), and T is the number of construction steps needed to obtain a complete

solution. The quantity τm+1

ij,h,T
is the value of the pheromone on edge 〈i, j〉 after all m ants have

completed the T construction steps of iteration h, while τ 1

ij,h+1,1
is the quantity of pheromone on

edge 〈i, j〉 right before the first ant performs the first construction step of iteration h + 1.

Definition 24 (Pseudorandom proportional rule). At the generic iteration h and generic construc-

tion step t, suppose that ant k is in node i and N k
i is the set of feasible nodes. The node to be

visited next is selected according to the following rule: With a probability given by the parameter

q0, the ant moves to the feasible node that maximizes τk

il,h,t
[ηil]

β , where l ∈ N k
i ; with probability
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1 − q0 a node is selected according to the random proportional rule given in Definition 7, with

α = 1.2 Formally:

pk
ij,h,t

=























q0 + (1 − q0)
τk

ij,h,t
[ηij ]

β

∑

l∈Nk
i

τk

il,h,t
[ηil]β

, if j = argmaxl∈Nk
i

τk

il,h,t
[ηil]

β ;

(1 − q0)
τk

ij,h,t
[ηij ]

β

∑

l∈Nk
i

τk

il,h,t
[ηil]β

, otherwise;

where β and q0 are parameters, with 0 ≤ q0 ≤ 1.

Definition 25 (Pheromone initialization). At iteration h = 1, the pheromone on each edge is

initialized to

τ 1

ij,1,1
=

1

nf(s0)
, for all 〈i, j〉 ∈ E,

where n = |N | is the number of nodes in the construction graph G, and s0 is the reference solution.

Definition 26 (Ant colony system). Ant colony system is an ACO algorithm in which solu-

tions are constructed according to the pseudorandom proportional rule given in Definition 24,

the pheromone is initialized as in Definition 25 and updated according to Definitions 22 and 23.

The local and global evaporation rates ξ and ρ, the number of ants m, the exponent β, and the

probability q0 are parameters of the algorithm. The definition of the heuristic information is

problem-specific.

Lemma 2. The pseudorandom proportional rule is invariant to concurrent linear transformation

of the pheromone and of the heuristic information. Formally, for any two positive constants g1

and g2,

τ̄k

ij,h,t
= g1τ

k

ij,h,t
∧ η̄ij = g2ηij , for all 〈i, j〉 =⇒ p̄k

ij,h,t
= pk

ij,h,t
, for all 〈i, j〉.

where p̄k
ij,h,t

is obtained on the basis of τ̄k

ij,h,t
and η̄ij, according to Definition 24.

Proof. Indeed:

p̄k
ij,h,t

=



















q0 + (1 − q0)
τ̄k

ij,h,t
[η̄ij ]

β

∑

l∈Nk
i

τ̄k

il,h,t
[η̄il]β

, if j = arg maxl∈Nk
i

τ̄k

il,h,t
[η̄il]

β ;

(1 − q0)
τ̄k

ij,h,t
[η̄ij ]

β

∑

l∈Nk
i

τ̄k

il,h,t
[η̄il]β

, otherwise;

=



















q0 + (1 − q0)
g1τ

k

ij,h,t
[g2ηij ]

β

∑

l∈Nk
i

g1τk

il,h,t
[g2ηil]β

, if j = arg maxl∈Nk
i

g1τ
k

il,h,t
[g2ηil]

β ;

(1 − q0)
g1τ

k

ij,h,t
[g2ηij ]

β

∑

l∈Nk
i

g1τk

il,h,t
[g2ηil]β

, otherwise;

=



















q0 + (1 − q0)
τk

ij,h,t
[ηij ]

β

∑

l∈Nk
i

τk

il,h,t
[ηil]β

, if j = arg maxl∈Nk
i

τk

il,h,t
[ηil]

β ;

(1 − q0)
τk

ij,h,t
[ηij ]

β

∑

l∈Nk
i

τk

il,h,t
[ηil]β

, otherwise;

= pk
ij,h,t

.

Theorem 7. Let I and Ī be two equivalent instances such that Ī = g1I, with g1 > 0. Further,

let G = (N, E) be the construction graph associated with I and Ī. Ant colony system obtains the

same sequence of solutions on I and Ī if

2In the original ant colony system, α is set to 1 and is not a free parameter.
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(Condition 1) the heuristic information is such that:

[η̄ij ]
β = [g2ηij ]

β , for all 〈i, j〉 ∈ E,

where β is the parameter appearing in Definition 7 and g2 > 0 is an arbitrary constant.

Proof. The proof follows those given for Theorems 1 and 4. Let us assume that, at the beginning

of the generic iteration h, s̄bs
h−1

= sbs
h−1

and τ̄ 1

ij,h,1
= 1

g1
τ 1

ij,h,1
, for all 〈i, j〉. Let us consider the first

construction step at iteration h. According to Lemma 2, for the first ant, p̄1
ij,h,1

= p1
ij,h,1

, for all

〈i, j〉. Under Hypothesis 1, s̄1
h,1

= s1
h,1

. On the basis of Definition 22,

τ̄ 2

ij,h,1
=

{

(1 − ξ) τ̄ 1

ij,h,1
+ ξ τ̄ 1

ij,1,1
, if s̄1

h,1
(1) = 〈i, j〉;

τ̄ 1

ij,h,1
, otherwise;

=

{

(1 − ξ) 1
g1

τ 1

ij,h,1
+ ξ 1

g1
τij,1,1

if s1
h,1

(1) = 〈i, j〉;
1
g1

τ 1

ij,h,1
, otherwise;

=
1

g1
τ 2

ij,h,1
.

Under the condition τ̄ 2

ij,h,1
= 1

g1
τ 2

ij,h,1
, Lemma 2 applies also to the second ant at the first step of

the solution construction at iteration h: p̄2
ij,h,1

= p2
ij,h,1

, for all 〈i, j〉. Therefore, s̄2
h,1

= s2
h,1

and

finally τ̄ 3

ij,h,1
= 1

g1
τ 3

ij,h,1
, for all 〈i, j〉. This procedure is repeated for all m ants at the first step of

the solution construction at generation h, with the net result that s̄k
h,1

= sk
h,1

, for all k = 1, . . . , m,

and τ̄m+1

ij,h,1
= 1

g1
τm+1

ij,h,1
for all 〈i, j〉. The same reasoning holds also for the second step of the

solution construction. Indeed, according to Definition 22, τ̄ 1

ij,h,2
= τ̄m+1

ij,h,1
= 1

g1
τm+1

ij,h,1
= 1

g1
τ 1

ij,h,2
,

for all 〈i, j〉. Eventually, after T construction steps, τ̄m+1

ij,h,T
= 1

g1
τm+1

ij,h,T
, for all 〈i, j〉, and s̄k

h
= sk

h
,

for all k = 1, . . . , m. Therefore, f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m. In particular, f̄(s̄ib

h
) =

g1f(sib
h

). Moreover, whether or not an improvement is made on the best-so-far solution, s̄bs
h

= sbs
h

and therefore f̄(s̄bs
h

) = g1f(sbs
h

)—see the proof of Theorem 4—which results in ∆̄ij,h = 1
g1

∆ij,h.

According to Definition 23,

τ̄ 1

ij,h+1,1
=







(1 − ρ)τ̄m+1

ij,h,T
+ ρ∆̄ij,h, if 〈i, j〉∈ s̄bs

h
;

τ̄m+1

ij,h,T
, otherwise;

=







(1 − ρ) 1
g1

τm+1

ij,h,T
+ ρ 1

g1
∆ij,h, if 〈i, j〉∈sbs

h
;

1
g1

τm+1

ij,h,T
, otherwise;

=
1

g1







(1 − ρ)τm+1

ij,h,T
+ ρ∆ij,h, if 〈i, j〉∈sbs

h
;

τm+1

ij,h,T
, otherwise;

=
1

g1
τ 1

ij,h+1,1
.

The proof is completed by observing that, according to Definition 25, the pheromone is initialized

as:

τ̄ 1

ij,1,1
=

1

nf̄(s0)
=

1

ng1f(s0)
=

1

g1
τ 1

ij,1,1
, for all 〈i, j〉.

and the initial best-so-far solutions are s̄bs
0

= sbs
0

= s0, where s0 is the reference solution.

Remark 8. Condition 1 is trivially satisfied when no heuristic information is used, that is, when

β = 0.

Strongly-invariant ant colony system

A strongly-invariant version of ant colony system (siACS) can be defined. We first define the

algorithm, then we prove that it is functionally equivalent to ant colony system, and finally that

it is indeed strongly invariant.
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Definition 27 (Strongly-invariant global pheromone update rule). The global pheromone update

is performed as in Definition 23, with the difference that ∆ij,h = nf(s0)/f(sbs
h

), where n = |N |

and s0 and sbs
h

are the reference and the best-so-far solution, respectively.

Definition 28 (Strongly-invariant pheromone initialization). The pheromone is initialized to

τ 1

ij,1,1
= 1, for all 〈i, j〉.

Definition 29 (Strongly-invariant ant colony system). The strongly-invariant ant colony system

(siACS) is a variation of ant colony system. In siACS, the pseudorandom proportional rule is used

for the construction of solutions, the pheromone is initialized according to Definition 28 and the

local and global pheromone updates are performed according to Definitions 22 and 27, respectively.

The heuristic information is set in an invariant way through some appropriate problem-specific

rule.

Theorem 8. Ant colony system and siACS are functionally equivalent if

(Condition 2) the heuristic information is such that:

[η̃ij ]
β = [ληij ]

β , for all 〈i, j〉,

where β is the parameter appearing in Definition 7, η̃ij and ηij are the heuristic information

on edge 〈i, j〉 respectively in siACS and ant colony system, and λ > 0 is an arbitrary constant.

Proof. As in the proofs of Theorems 2 and 5, a tilde placed above a symbol indicates that the

latter refers to siACS. Let µ = nf(s0). According to Lemma 2, given Condition 2, and under

Hypothesis 1, if at the beginning of the generic iteration h, s̃bs
h−1

= sbs
h−1

and τ̃ 1

ij,h,1
= µτ 1

ij,h,1
, for

all 〈i, j〉, then, p̃k
ij,h,t

= pk
ij,h,t

, for all 〈i, j〉, for all ants k = 1, . . . , m, and for all construction steps

t = 1, . . . , T . Further, τ̃k

ij,h,t
= µτk

ij,h,t
and therefore s̃k

h
= sk

h
—see the proof of Theorem 7. In

particular, τ̃m+1

ij,h,T
= µτm+1

ij,h,T
. Moreover, s̃ib

h
= sib

h
. Finally, whether or not an improvement is made

on the best-so-far solution, s̃bs
h

= sbs
h

—see the proof of Theorem 4. The global pheromone update

takes place on the basis of the quantities:

∆̃ij,h =
nf(s0)

f(s̃bs
h

)
=

µ

f(sbs
h

)
= µ∆ij,h.

It follows that, for all 〈i, j〉:

τ̃ 1

ij,h+1,1
=

{

(1 − ρ)τ̃m+1

ij,h,T
+ ρ∆̃ij,h, if 〈i, j〉∈ s̃bs

h
;

τ̃m+1

ij,h,T
, otherwise;

=

{

(1 − ρ)µτm+1

ij,h,T
+ ρµ∆ij,h, if 〈i, j〉∈sbs

h
;

µτm+1

ij,h,T
, otherwise;

= µ

{

(1 − ρ)τm+1

ij,h,T
+ ρ∆ij,h, if 〈i, j〉∈sbs

h
;

τm+1

ij,h,T
, otherwise;

= µτ 1

ij,h+1,1
.

The proof is completed by observing that at the first iteration h = 1, τ̃ 1

ij,1,1
= 1 = nf(s0)/nf(s0) =

µτ 1

ij,1,1
, for all 〈i, j〉; and the initial best-so-far solutions are s̃bs

0
= sbs

0
= s0.

Theorem 9. siACS is strongly-invariant if

(Condition 3) the heuristic information is such that:

[η̄ij ]
β = [ηij ]

β , for all 〈i, j〉,

for any two instances I and Ī such that Ī = g1I, with g1 > 0.
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Proof. Under Hypothesis 1 and given Condition 3, according to Lemma 2 and Definition 22, if

at the generic iteration h, s̄bs
h−1

= sbs
h−1

and τ̄ 1

ij,h,1
= τ 1

ij,h,1
, for all 〈i, j〉, then τ̄k

ij,h,t
= τk

ij,h,t
and

p̄k
ij,h,t

= pk
ij,h,t

, for all 〈i, j〉, for all ants k = 1, . . . , m, and for all construction steps t = 1, . . . , T .

It follows that s̄k
h

= sk
h

and f̄(s̄k
h
) = g1f(sk

h
), for all k = 1, . . . , m. In particular, s̄bs

h
= sbs

h
from

which, as a consequence of Definition 27, ∆̄ij,h = ∆ij,h, for all 〈i, j〉; therefore, τ̄ 1

ij,h+1,1
= τ 1

ij,h+1,1
,

for all 〈i, j〉.

The proof is completed by observing that, according to Definition 28, τ̄ 1

ij,1,1
= τ 1

ij,1,1
= 1, for

all 〈i, j〉, and the initial best-so-far solutions are s̄bs
0

= sbs
0

= s0.

6 Problems

In this section, we illustrate how the theorems proved in Sections 3, 4, and 5 apply to some well

known combinatorial optimization problems. In particular, Section 6.1 deals with the traveling

salesman problem, Section 6.2 with the quadratic assignment problem, and Section 6.3 with the

open shop scheduling problem. Further examples of how the proposed theorems apply to other

combinatorial optimization problems are given in Pellegrini and Birattari [13] and can be found

on-line at http://iridia.ulb.ac.be/supp/IridiaSupp2006-008/.

6.1 Traveling salesman problem

The traveling salesman problem (TSP) consists in finding a Hamiltonian circuit of minimum cost

on an edge-weighted graph G = (N, E), where N is the set of nodes, and E is the set of edges.

If a directed graph is considered, the problem is known as the asymmetric traveling salesman

problem [14].

Let xij(s) be a binary variable taking value 1 if edge 〈i, j〉 is included in tour s, and 0 otherwise.

Let cij be the cost associated to edge 〈i, j〉. The goal is to find a tour s such that the function

f(s) =
∑

i∈N

∑

j∈N

cijxij(s)

is minimized.

1) Transformation of units: If the cost of all edges is multiplied by a constant ζ, the resulting

instance Ī is equivalent to the original I, that is, Ī = g1I, with g1 = ζ. Indeed, c̄ij = ζcij , for

all 〈i, j〉 =⇒ f̄(s) = ζf(s), for all s.

2) Reference solution: Many constructive heuristics exist for the TSP [15] that can be conve-

niently adopted here.

3) Heuristic information: The typical setting is ηij = 1/cij , for all 〈i, j〉. This meets Condi-

tion 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold. In the literature, the three variants of ant colony optimization considered in

this paper have been applied to the traveling salesman problem with the setup just described [2].

4) Strongly-invariant heuristic information: ηij = f(s0)/ncij , for all 〈i, j〉, where n = |N |.

It is worth noting that the term n is not needed for the invariance to transformation of units.

It has been included for achieving another property: the above defined ηij does not depend

on the size of the instance under analysis—that is, on the number n of cities. This definition

meets Condition 2 with λ = f(s0)/n, and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.
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6.2 Quadratic assignment problem

In the quadratic assignment problem (QAP), n facilities and n locations are given, together with

two n × n matrices A = [aij ] and B = [buv], where aij is the distance between locations i and j,

and buv is the flow between facilities u and v. A solution s is an assignment of each facility to a

location. Let xi(s) denote the facility assigned to location i. The goal is to find an assignment

that minimizes the function:

f(s) =
n
∑

i=1

n
∑

j=1

aijbxi(s)xj(s).

1) Transformation of units: If all distance are multiplied by a constant ζ1 and all flows by a

constant ζ2, the resulting instance Ī is equivalent to the original I, that is, Ī = g1I, with

g1 = ζ1ζ2.

2) Reference solution: The construction of the reference solution is typically stochastic: a num-

ber of solutions are randomly generated and improved through a local search. The best solu-

tion obtained is adopted as the reference solution [16]. It is worth noting that a local search

is an invariant algorithm.

3) Heuristic information: Often, the heuristic information is not adopted [16], that is, β = 0.

In this case, Condition 1 is trivially met. Some authors [17] set ηij = 1/
∑n

l=1 ail. This meets

Condition 1 with g2 = 1/ζ1.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: If the heuristic information is adopted, ηij =

f(s0)/
∑n

l=1 ail, for all 〈i, j〉. This meets Condition 2 with λ = f(s0), and Condition 3. On

the other hand, if no heuristic information is adopted as suggested in [16], Conditions 2 and 3

are trivially met.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

6.3 Open shop scheduling problem

In open shop scheduling problems (OSP) [18], a finite set O of operations is given, which is

partitioned into a collection of subsets M = {M1, M2, . . . , MU} and a collection of subsets J =

{J1, J2, . . . , JV }. Each Mu is the set of operations that have to be performed by machine u;

and each Jv is the set of operations belonging to job v. A non-negative processing time t(oj)

and an earliest possible starting time e(oj) are associated with operation oj ∈ O. A solution s

is a collection of schedules X (s) = {X1(s), X2(s), . . . , XU (s)}, where Xu(s) is the sequence of

operations scheduled for machine u and Xu
r (s) is the operation in position r in sequence Xu(s).

The completion time cu
r (s) of operation Xu

r (s) is computed recursively from cu
r′(s) = t

(

Xu
r′(s)

)

+

max
[

e
(

Xu
r′(s)

)

, cu
r′−1(s)

]

, with cu
0 (s) = 0. The goal is to minimize the makespan, which is given

by:

f(s) = max
u

cu
|Mu|

(s).

1) Transformation of units: If all processing times and earliest possible starting times are mul-

tiplied by a constant ζ, the resulting instance Ī is equivalent to the original I, that is, Ī = g1I,

with g1 = ζ.
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2) Reference solution: The construction of the reference solution is typically stochastic.

3) Heuristic information: The heuristic information is typically ηij = 1/e(oj), for all 〈i, j〉,

which meets Condition 1 with g2 = 1/ζ.

Therefore, the theorems on the weak invariance of ant system, MAX–MIN ant system, and ant

colony system hold.

4) Strongly-invariant heuristic information: ηij = f(s0)/e(oj), for all 〈i, j〉. This meets

Condition 2 with λ = f(s0), and Condition 3.

Therefore, siAS, siMMAS, and siACS are indeed strongly invariant and are functionally equiva-

lent to their original counterparts.

7 Conclusions

Contrary to what previously believed [1], at least three of the most representative and most

widely adopted algorithms belonging to the ant colony optimization family appear to be invariant

to transformation of units. In this paper, we have formally proved that ant system, MAX–MIN

ant system, and ant colony system are indeed weekly-invariant. In other words, the sequence

of solutions they produce does not depend on the scale of the problem instance at hand. The

technique adopted for proving the theorems is basically the same for the three algorithms. In the

three cases, the proof is of an inductive nature: We prove that if some conditions are fulfilled at the

beginning of iteration h, then the solutions produced at iteration h are the same whenever solving

any two instances that are equivalent up to a linear transformation of units. Moreover, the same

conditions hold also at the following iteration h + 1. The prove is concluded by showing that the

conditions are fulfilled at the beginning of the first iteration. The same technique can be adopted

for formally showing the invariance of other algorithms belonging to the ant colony optimization

family. It is worth noticing here that the initialization of the pheromone plays a critical role: In

order for the algorithm to be invariant, the pheromone should be initialized in an invariant way.

Definitions 9, 16, and 25 guarantee the invariance of the initialization. A similar remark holds for

what concerns the heuristic information. In order to obtain an invariant algorithm, the heuristic

information should meet Condition 1 as given in the statement of Theorems 1, 4, and 7.

As a second contribution, the paper introduces three algorithms: siAS, siMMAS, and siACS.

These algorithms are functionally equivalent to AS, MMAS, and ACS, respectively, but they

enjoy the further property of being strongly invariant. In other words, besides producing the same

sequence of solutions irrespective of any linear transformation of units, these algorithms are such

that the pheromone and the heuristic information do not change with the units adopted.

Blum and Dorigo [1] were the first to draw attention to the property that in this paper we

call strong invariance. This property is definitely desirable for at least two main reasons: first, it

reduces possible numerical problems in the implementations and contributes therefore to enhance

the stability of the algorithm; second, it greatly improves the readability of the solution process.

In order to achieve the strong invariance, Blum and Dorigo [1] have defined a new framework they

named hyper-cube. An hyper-cube version of AS, MMAS, or ACS is effectively a new algorithm

which shares with its originating (non-hyper-cube) version much of the underlying ideas but that is

not functionally equivalent to the latter. The main advantage of the strongly-invariant algorithms

we have proposed in the paper is indeed that they are proved to be functionally equivalent to their

respective original counterpart. The properties of these algorithms do not need therefore to be

studied from scratch: The results reported in the existing literature on ant colony optimization,

which are rather substantial, directly extend to these new algorithms. In particular, AS, MMAS,

and ACS have been successfully applied to a variety of problems and therefore an assessment of



18 IRIDIA – Technical Report Series: TR/IRIDIA/2006-025

the performance of siAS, siMMAS, and siACS under a large number of experimental conditions

is already available.

Anyway, the significance of the introduction of siAS, siMMAS, and siACS is mostly theoretical

and speculative. Indeed, the very possibility of defining a strongly invariant algorithm that is

functionally equivalent to a give ACO algorithm sheds new light on ant colony optimization.
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