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Abstract

In this paper, we study the cooperative transport of a heavy object by a group of robots

towards a goal. We investigate the case in which robots have partial and noisy knowledge of

the goal direction and can not perceive the goal itself. The robots have to coordinate their

motion to apply enough force on the object to move it. Furthermore, the robots should share

knowledge in order to collectively improve their estimate of the goal direction and transport

the object as fast and as accurately as possible towards the goal.

We propose a bio-inspired mechanism of negotiation of direction that is fully distributed.

Four different strategies are implemented and their performances are compared on a group

of four real robots, varying the goal direction and the level of noise. We identify a strategy

that enables efficient coordination of motion of the robots. Moreover, this strategy lets the

robots improve their knowledge of the goal direction. Despite significant noise in the robots’

communication, we achieve effective cooperative transport towards the goal and observe that

the negotiation of direction entails interesting properties of robustness.

Keywords: swarm-robotics, cooperative transport, self-organisation.

1 Introduction

There are several advantages when using a group of robots instead of a single one. Ideally, the
behaviour of a group of robots is more robust, as one robot can repair or replace another one in
case of failure. Furthermore, a group of robots can overcome the limitations of a single robot and
solve complex tasks than can not be solved by a single robot.

Within collective robotics, swarm robotics is a relatively new approach to the coordination of
a system composed of a large number of autonomous robots. The coordination among the robots
is achieved in a self-organised manner: the collective behaviour of the robots emerges from local

interactions among robots, and between the robots and the environment. The concept of locality
refers to a situation in which a robot alone can not perceive the whole system. Each single robot
typically has limited sensing, acting and computing abilities. The strength of swarm robotics lies
in the properties of robustness, adaptivity and scalability of the group [DŞahin04].

Foraging has been outlined as a canonical paradigm by Cao et al. [CFK97] among the different
problems studied in collective robotics and is an important topic in swarm robotics too. In foraging,
a group of robots has to pick up objects that are scattered in the environment. The foraging task
can be decomposed in an exploration subtask followed by a transport subtask. Foraging can be
applied to a wide range of useful tasks. Examples of applications are toxic waste cleanup, search
and rescue, demining and collection of terrain samples.

Central place foraging is an extension of this concept in which robots must gather objects in a
central place. Borrowing the terminology from biology, the central place is also called the nest and
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the objects are called prey. We focus on a specific case in which the transport of a prey requires
the combined effort of several robots. This task is called cooperative transport. Several problems
need to be solved to perform this task successfully. The coordination of the movement of the
robots is one of them. This problem has been investigated by Groß et al. [GMD06], in situations
in which either all or some robots are able to perceive the nest.

In this paper we address the case in which all robots completely lose sight of the nest during
the exploration subtask of foraging. We assume that the robots have partial knowledge of the
goal direction. For instance, they may have perceived the nest earlier and kept track of its
direction by means of odometry [DWHS00]. Odometry is achieved using internal, proprioceptive
information [BF96] (e.g. by measuring the rotation of the wheels of a robot). The information
on the movement of a robot is integrated, thus the error made on localization increases with the
distance covered. In our case, this leads to an erroneous indication about the direction of the
nest. If several robots attempt to transport a heavy prey in different directions they may fail to
move the prey at all. Therefore, we introduce a mechanism to let the robots negotiate the goal
direction. In order to meet the general principles of swarm robotics, this system is fully distributed
and makes use of local communication only.

The mechanism we introduce is strongly inspired by a natural mechanism that has been long
studied by biologists. We rely on a particular property of models designed to explain and reproduce
fish schools and bird flocks [Aok82, Rey87, HW92, CKJ+02]. The models introduced in the
literature are usually composed of three behaviours: an attraction behaviour that makes the
individuals stick together, a repulsion behaviour that prevents collisions among individuals, and
an orientiation behaviour that coordinates the individuals’ motion. It is the last of these three
behaviours that we transfer and implement in our robots. Informally, the orientation behaviour
lets every individual advertise locally its own orientation and update it using the mean orientation
of its neighbours.

We conduct experiments with a group of four real robots that have to transport a prey moving
in a direction about which they have noisy knowledge. We assess quantitatively the performance
of the negotiation mechanism implemented with respect to different levels of noise and different
control strategies.

In Section 2 we detail the task, the hardware, the experimental setup and the different con-
trollers. Section 3 is devoted to the presentation of the experimental results. Section 4 concludes
the paper with a discussion of the results and some ideas for future work.

2 Methods

2.1 The task.

The task is the cooperative transport of a heavy prey by a group of four real robots along the
direction of the nest. The robots are physically connected to the prey using their grippers. The
nest is out of sight and the robots have no means to perceive it. The initial knowledge of each
individual about the goal direction is provided with a given amount of noise.

The mass of the prey is chosen such that a single robot can not transport it. At least three
robots are necessary to move the prey. A high degree of coordination of the robots’ motion is
required to apply enough force to the prey to move it. If the robots lack coordination, that is, if
they pull in different directions, they may not be able to move the prey at all.

The robots can share knowledge using visual communication in order to collectively improve
their estimate of the goal direction and transport the prey as fast and as accurately as possible
towards the goal.

2.2 Hardware.

The robots: We use the s-bot (Figure 1(a)), a robot of 12 cm of diameter, designed and built
within the context of the SWARM-BOTS project [DTG+04, Dor05]. An s-bot moves using a
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combination of two wheels and two tracks, which we call “treels”. This system notably allows
the robot to efficiently turn on the spot. The robots can physically connect to a prey or to
another s-bot using their grippers. They are supplied with a rotational base that lets them move
in an arbitrary direction while maintaining the same physical connection pattern. The robots can
send visual information by means of eight triplets of red, green and blue LEDs. The LEDs are
positioned on a ring around the robot. An s-bot activating its LEDs can be perceived by another
s-bot by means of an omnidirectional camera which provides a 360◦ view.

The prey: The mass of the prey is 1.5 kilograms. At least three robots are necessary to
effectively pull the prey. This weight of the prey makes the transport by a group of robots very
difficult if the robots are not well synchronised.

2.3 Experimental setup.

The experiments take place in an open space. Initially, four robots are connected to the prey in
a regular arrangement, thus forming a cross pattern as shown in Figure 1(c). We test four levels
of noise on the robots’ initial estimate of the goal direction: no noise (0 ), low noise (L), medium

noise (M ) and high noise (H ). In the case of no noise, the initial direction of the robots is the
same and points towards the nest.

The initial imprecise knowledge of the robots about the direction of the nest is modeled by a
random number drawn from a von Mises distribution, which is the equivalent of the Gaussian in
circular statistics [JS01], and well suited for directional data. This distribution is characterised by
two parameters µ and κ. The direction to the nest is indicated by µ, the mean of the distribution.
The level of noise is indicated by κ. The smaller κ, the more the distribution resembles a uniform
distribution in [−π; π]. When κ is large, the distribution resembles a Gaussian of mean µ and
standard deviation σ, when κ → ∞ the relationship σ2 =

√

1/κ holds. The three levels of noise
L, M, H correspond to κ = 3, 2, 1, as displayed in Figure 2(a).

After each trial, the robots are randomly permuted, so that the possible differences among
robots are averaged out and can be neglected in this study. We tested 4 possible goal directions
of 0, 22.5, 45 and 67.5◦. Any direction above 90◦ is redundant as the pattern of connected robots
(a cross) is symmetrical on the two perpendicular axis, and the robots are permuted at each
trial. Finally, we have tested 4 possible strategies for the robots to transport the prey towards
the goal (see next section for more details). In total, we performed 256 replications: we tested 4
goal directions, 4 levels of noise and 4 distinct strategies for transport. Each combination of the
aforementioned parameters was tested 4 times.

To extract the results, we used a camera placed above the initial position of the prey to record
videos of each trial. The experiment is stopped either when the prey has been transported to
a distance of 1 meter from its initial position or after 60 seconds (an average transport takes
approximately 20 seconds). A trial can also be stopped if we judge that the robots are stuck in
a situation that is potentially harmful to their hardware. Indeed, if the robots do not manage to
coordinate their movements, they may pull in opposite directions and thus induce a high torque
to their grippers. One gripper was broken during the experiments reported here, and we wished
to avoid as much as possible any further damage. Any experiment stopped without the prey being
transported for more than 1 meter of distance from the initial position is considered as a transport
failure.

For each trial, we have extracted the position of the prey at each time step (5 pictures per
seconds) using a simple tracking software. Using these data, we have categorized the trials in
transport failure or success, and measured the duration of all trials. Furthermore, we measured
the angular difference between the direction in which the prey has been moved and the goal
direction, as shown in Figure 2(b). Later on, we also use the term deviation to refer to this
angular difference.
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(a) (b) (c)

Figure 1: (a) The s-bot. (b) An s-bot displaying a direction using a triangular LED pattern. (c)
Star-like formation of four s-bots around the prey as used in the experiment.

(a) (b)

Figure 2: (a) The effect of parameter κ on a von Mises distribution. (b) A snapshot describing the
final situation of a successful transport. Note how the deviation of the transport direction from
goal direction is measured.

2.4 Robot’s controller.

Vision software: We employ a specific vision software that allows a robot to perceive the direction
pointed by a neighbour in his visual range. The perception algorithm implemented in the software
is probabilistic and approximates the directions communicated by the local neighbours using a
triangular pattern shown by the LEDs (see Figure 1(b)). In order to assess the quality of the vision
software, we have performed a series of basic tests. We have run in total 8000 times the vision
software on 8 different pictures to obtain a distribution of direction estimates. Figure 3 summarises
the pooled results of the tests for a communicated direction pointing towards direction 0. The
tests show that it is possible to achieve a reliable estimate of the direction pointed by neighbouring
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Figure 3: We used four robots arranged in a circular pattern to display a common direction and a
central robot to take pictures and estimate the direction pointed by the surrounding robots. For
eight distinct directions, the central robot produced 1000 estimates each. The resulting pooled
distribution of errors shows that the vast majority of the estimates matches the direction pointed
by the surrounding robots.

robots. As the mechanism of negotiation of direction should be robust to noise, there is no need
to improve the output of the vision software with any kind of signal filter. We directly feed the
negotiation mechanism with a single estimate.

Negotiation mechanism: The negotiation mechanism is bio-inspired and implemented in a
straightforward manner, following closely the rules used to model the orientation behaviour of fish
schools or bird flocks [CKJ+02]. Let n be the total number of robots. For each robot i ∈ [1, n], let
Ni(t) be the set of robots in the visual range of robot i at time t. This defines the topology of the
communication network. Let di(t) ∈ [−π, π] be the goal direction estimated by robot i at time t.
Let Di

j(t) = dj(t) + εi
j(t) with j ∈ Ni(t) the direction of robot j perceived by robot i assuming

noise εi
j(t).

If robot i communicates and exchanges information with his neighbours, it will calculate what
we call a desired direction di by using Equation 1 that basically computes a mean direction. To
do so, we use the sum of unit vectors, which is a classical method in circular statistics [JS01]:

di(t) = arctan

(

sin (di (t)) +
∑

j∈N (i)

(

sin(Di
j(t))

)

cos (di (t)) +
∑

j∈N (i)

(

cos(Di
j(t))

)

)

. (1)

The estimate of the goal direction of a particular robot is not updated directly. Indeed, the
noise present in perception might induce oscillations if the update of the robots’ estimates is done
too fast. Therefore, we use a damping factor δ to stabilise the system (we chose δ = 0.05 for
our experiments). The update of the estimate of the goal direction for robot i is described by
Equation 2:

di(t + ∆t) = (1 − δ) · di(t) + δ · di(t). (2)

The motion control of each robot is implemented by a simple algorithm [GMD06] that sets the
speed and orientation of the robot’s treels to pull the prey in the estimated direction d of the nest.

Control strategies: We have defined and implemented four distinct strategies. To refer to the
strategies, we employ a notation in which T means transport, N means negotiation, and : marks
the end of an optional and preliminary negotiation phase. If this preliminary phase takes place,
it lasts 30 seconds. The second phase always involves transport and lasts 60 seconds.
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• Transport directly (T): a naive strategy that we use as a yardstick to show the improve-
ment brought by the negotiation mechanism. The robots move along their initial direction.
No communication and no update of the estimated direction is done.

• Negotiate then transport (N:T): robots first negotiate their estimate of the direction of
the goal for 30 seconds without moving. Afterwards, they all start moving without either
communicating or updating their estimates.

• Negotiate then transport and negotiate (N:NT): robots start by negotiating the di-
rection of the goal for 30 seconds without moving. After this preliminary negotiation, they
all start moving and at the same time they keep on negotiating together.

• Negotiate and transport (NT): from the very beginning of the experiment, the robots
start both moving and negotiating.

3 Results

We report here the experimental results of the task of cooperative transport for all the strategies
and levels of noise tested. We examine three different aspects of the system: the ability of the
system to succeed in transporting the prey for a certain distance, the duration of transport and
the accuracy in direction of transport. Data analysis was performed with the R software and the
package circular [R D05].

3.1 Success in transporting.

We first study the ability of the robots to transport the prey. If the robots are not able to move the
prey over a distance of at least 1 meter from the initial position within 60 seconds, we consider the
trial as a transport failure. Figure 4 presents the performances in transport of the four strategies
for the different levels of noise.

First, we observe that in absence of noise (level 0 ), the robots manage very well to transport the
prey without negotiating the direction. Therefore, negotiation is not necessary and it is desirable
that strategies employing the negotiation mechanism do not perform worse. The strategy N:T

yields only 75% of successful transports when there is no noise in the initial direction of the
nest. When this strategy is employed, it is possible that negotiation is stopped while robots are
not perfectly coordinated and no further correction can be done on the direction of the robots.
The two other strategies N:NT and NT do not decrease the capability of the group of robots
to transport the prey with respect to strategy T. We have observed that during motion, the
formation of robots can alter slightly, mainly due to slippage of the grippers on the prey. Strategies
using negotiation during transport allowed robots to quickly correct their direction and remain
coordinated. Conversely, the strategies T and N:T were very sensitive to small defects.

When noise is present, the performance of the group of robots using strategy T decreases. For
medium and high noise it is close to 10%. This result was expected as robots are not able to
coordinate their motion at all and are initialised with different initial directions. We also notice
that, although noise has a non neglectable impact on the transport capability, the performances
stay quite similar for different levels L, M and H of noise considering the strategies N:T, N:NT

and NT. All strategies relying on the negotiation mechanism achieve better performances, and
especially strategy NT is much less sensitive to noise than the others.

3.2 Duration of transport.

We focus now on the duration of the transport. We take into account all the trials, whether
transport is successful or it is not. Figure 5 shows for all strategies and all levels of noise boxplots
of the duration of the 16 transport tasks. Note that we do not take into account the preliminary
negotiation period that lasts 30 seconds when strategies N:T or N:NT are employed.
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Figure 4: The percentage of successful and failed transports grouped by strategy and by level of
noise.
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Figure 5: Box-and-whisker plot [JWBP83] showing the duration of transport of the prey (in
seconds), taking into account successful and failed transports. The distributions are grouped by
strategy and by level of noise.

Once again, the performance of strategy T in absence of noise is the best with respect to any
other pair of strategy and level of noise. Only strategy NT reaches a comparable performance.

When the level of noise increases, the duration of transport of the strategy T increases too, in
a quasi linear manner. Strategies that rely on the negotiation mechanism are much less sensitive
to noise. The duration of transport using those strategies is very similar for the different levels of
noise L, M and H, but strategy N:T has produced more failures. Because robots can not correct
their coordination with this strategy, they easily rotate while transporting the prey. This constant
error produces round or even circular trajectories and prevents the robots to quickly move the prey
away from its initial position. Strategies can be clearly ranked: the slowest (N:T ), the average
(N:NT ) and the fastest (NT ).

3.3 Deviation from direction of the nest.

The last measure we study is the deviation of direction of transport with respect to the direction
of the nest. Again, we take into account all trials. The study of deviation from the direction of
the nest confirms all previous observations (see Figure 6).

In absence of noise, the naive strategy T performs very well, and the only other strategy
with a comparable result is strategy NT. When noise is introduced, the performance of strategy
T decreases. The strategies that make use of negotiation perform better, and show only small
differences for the different levels of noise tested. Among these strategies, the best is NT.

We have fitted von Mises distributions with the distributions of deviations in order to study
strategy NT in further detail. When the group of robots uses strategy T without noise, the fit with
a von Mises distribution yields κ = 11.63 ± 4.01, which corresponds to an error of the transport
direction of 16.8◦ ± 28.6◦ (degrees ± standard error). Initial knowledge of robots is affected by
a noise that corresponds to an individual error of respectively 33.1◦, 40.5◦ and 57.3◦ for levels of
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Figure 6: Box-and-whisker plot [JWBP83] showing the average deviation (in radians) between
direction of transport and direction of the nest. Both successful and failed transports are taken
into account. The distributions are grouped by strategy and by level of noise.

noise L, M and H. The errors of strategy NT for each level of noise 0, L, M, H are respectively
13.0◦ ± 22.1◦, 42.8◦ ± 76.2◦, 42.3◦ ± 75.5◦ and 42.5◦ ± 75.7◦. In absence of noise, strategy NT

performs slightly better than the naive strategy T. When there is noise, strategy NT shows no
discernible difference of the errors. For the level of noise H, the strategy NT improves robots’
estimate of the direction of the nest.

4 Discussion

4.1 Achievements.

We have compared different strategies to achieve efficiently the cooperative transport of a prey
with partial knowledge of the direction of the nest. We performed systematic experiments to
evaluate the characteristics of the different strategies under study for four distinct levels of noise.
The comparison of the strategies has shown that negotiation during transport of a prey improves
the coordination of motion. It has also been shown that negotiation without moving prior to
transport (N:NT ) performs worse than the straightforward strategy NT consisting in negotiating
and transporting the prey at the same time.

It has been observed that the strategy NT is neutral: if negotiation is not mandatory to
achieve efficient transport, making use of this strategy does not alter the transport performances
with respect to the naive strategy T. Hence, it is not necessary to choose which strategy to employ
depending on the level of noise affecting robots’ knowledge of the direction of the nest. The
strategy NT can be used at any time.

Besides the coordination of motion, our experimental results have also shown that the group of
robots could improve their knowledge of the direction of the nest by means of visual negotiation.
Strategy NT improves the robots’ estimate of the direction of the nest and shows no discernible
difference of the errors for the levels of noise L, M, H. The improvement of the accuracy of direction
of transport with respect to their initial knowledge is the most striking when the level of noise is
high.

4.2 Improvements.

With respect to mechanisms of coordination of motion that use a traction sensor [GMD06, TND06],
our system appears to be more flexible, as visual communication is also available when the prey
is not in motion, and it is not distracted if the prey moves in irregular steps. Additionally, visual
communication leaves the door open to collective motion with or without transport or physical
connections. The topology of the network of communications is also likely to be more flexible,
allowing the robots to school in very diverse patterns.
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The negotiation mechanism we have introduced is not only able to supply a group of robots with
collective motion, but also to let each individual improve its own estimate of the goal direction by
sharing knowledge with its neighbours. This mechanism may also be used to correct measures of
odometry in multi-robot experiments, in a fully distributed fashion. This self-organised negotiation
is likely to display properties of scalability besides the robustness shown in this paper.

4.3 Perspectives and future work.

The difference in performance between strategies N:NT and NT is counter-intuitive, as the ne-
gotiation in the first strategy lasts in total longer and thus the robots are expected to achieve a
better performance because they are granted more time to negotiate. However, the preliminary
phase of negotiation without movement negatively affects the performance of the robots. It is
possible that transport is more efficient if there is more initial noise when robots start to move.
We will further investigate the exact reasons for this phenomenon.

We plan to integrate the cooperative transport in a more complex and challenging scenario
of foraging, such as for instance the one used by Nouyan et al. [NGB+06]. This scenario would
include an exploration phase preliminary to transport, in which robots lose sight of the nest before
finding the prey. In this context, robots have a rough estimate of the direction of the nest by means
of odometry. Improvement of this knowledge by means of negotiation is a critical feature of the
scenario, necessary to let the robots transport the prey efficiently to the nest, even in presence of
noisy communications and failed robots.
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