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Abstract

Metaheuristics are a class of promising algorithms for combinatorial optimization. A basic
implementation of a metaheuristic typically requires rather little development effort. With a
significantly larger investment in the design, implementation, and fine-tuning, metaheuristics
can often produce state-of-the-art results. We say that, according to the specific context of
applications, either a metaheuristic can be used out-of-the-box, or a custom implementation
can be developed. This flexibility is one of the major strengths of metaheuristics but it also
hides some possible catches. In particular, it should be noticed that results obtained with
out-of-the-box implementations cannot be always generalized to custom ones, and vice versa.

As a case study, this paper focuses on the vehicle routing problem with stochastic demand
and on five among the most successful metaheuristics—namely, tabu search, simulated anneal-
ing, genetic algorithm, iterated local search and ant colony optimization. We show that the
relative performance of these algorithms strongly varies whether one considers out-of-the-box

implementations or custom ones, in which the parameters are accurately fine-tuned.

1 Introduction

The term metaheuristics [1] recently became widely adopted for designating a class of stochastic
approaches to combinatorial optimization.

A metaheuristic is a set of algorithmic concepts that can be used to define heuristic
methods applicable to a wide set of different problems.

Dorigo and Stützle, 2004 [2, p. 25]

The generality of metaheuristics and the ease with which they can be applied to the most di-
verse combinatorial optimization problems is definitely the main reason for their success. Indeed,
compared to exact algorithms and problem-specific heuristics, they typically require a much lower
design and implementation effort. This is particularly true if one does not necessarily aim at state-
of-the-art results but has the main goal of obtaining a fairly good performance, while minimizing
the development costs. In these cases, an out-of-the-box implementation of a metaheuristic is
typically the solution of choice for many practitioners. On the other hand, in a number of applica-
tions it has been shown that state-of-the-art performance can be obtained through metaheuristics,
provided that a custom version is developed by taking extra care in the design, implementation,
and fine-tuning. This, quite naturally, implies higher development costs.

1



2 IRIDIA – Technical Report Series: TR/IRIDIA/2006-008

This flexibility of metaheuristics is definitely one of their appealing traits: In practical appli-
cations, one can start with an out-of-the-box version of a metaheuristic for quickly having some
preliminary results and for gaining a deeper understanding of the problem at hand. Then one
can move to a custom version for obtaining a better performance without having to switch to a
completely different technology.

Nonetheless, the fact that metaheuristics can be flexibly used either in their out-of-the-box or
custom versions, can be reason of misunderstanding. Indeed, results obtained with out-of-the-
box implementations do not always generalize to custom ones, and vice versa. In particular, it
could well happen that, as we show in the case study proposed in this paper, a metaheuristic M1

performs better than a metaheuristic M2 on a given problem when out-of-the-box versions of M1

and M2 are considered; whereas M2 performs better that M1 on the very same problem when
custom versions are concerned.

This issue is unfortunately overlooked in the literature: Many research papers propose com-
parisons of metaheuristics without providing any measure of the development effort devoted to
the algorithms under analysis, or in other words, without clearly stating if the versions consid-
ered are out-of-the-box or custom ones. Without this piece of information, the usefulness of these
comparisons is somehow impaired.

The main goal of this paper is to illustrate this issue. We consider as a case study the vehicle
routing problem with stochastic demand and five of the most successful metaheuristics—namely,
tabu search, simulated annealing, genetic algorithm, iterated local search, and ant colony opti-
mization. In particular, we wish to show that the relative performance of the above metaheuristics
depends on whether out-of-the-box or custom implementations are considered. With this work,
we wish to draw the attention of the research community on this issue and contribute to establish
a better practice for the empirical analysis and comparison of metaheuristics.

In the current literature, the lack of information on the specific context in which empirical
studies are performed can be partially justified by the fact that, admittedly, measuring the amount
of development effort is not a simple and well-defined task. Much of the ambiguity comes from
the fact that there is no such thing as the standard developer : What costs a great effort to
somebody with limited experience in the domain, might be effortless for a seasoned practitioner.
The issue is further complicated by the fact that researchers and practitioners often specialize on
one metaheuristic (or on few). For example, if an expert in genetic algorithms devotes the same
time and attentions to the development of a genetic algorithm and of a tabu search, the resulting
algorithms will have a relative performance that is expectedly much different from the one that
would be obtained if the algorithms had been developed by a tabu search expert.

In this paper, in order to attenuate the above problems, we consider the five aforementioned
metaheuristics in the implementations produced within the Metaheuristics Network,1 a EU funded
research project started in 2000 and accomplished in 2004. In the Metaheuristics Network, five
academic groups and two companies, each specialized in the development and application of one
or more of the above metaheuristics, joined their research efforts with the aim of gathering a
deeper insight into the theory and practice of metaheuristics. For a detailed description of the
metaheuristics developed by the Metaheuristics Network for the vehicle routing problem with
stochastic demand, we refer the reader to Bianchi et al. [3].

In our analysis, these implementations play the role of black-box metaheuristics. Starting
from them, we obtain the out-of-the-box and the custom versions. The former are obtained
randomly drawing the parameters from a defined range. The latter are obtained by fine-tuning
the parameters through an automatic process based on the F-Race algorithm [4, 5]. This removes
some of the ambiguity connected with the measure of the development effort and guarantees that
equal attention is devoted to all metaheuristics under analysis.

The fact of reducing the difference between the out-of-the-box and the custom version of meta-
heuristics to the fine-tuning of the parameters is not free of implications and needs to be further
justified. The following two arguments in favor of the validity and significance of our analysis
should be sufficient in order to convince our reader. First, although many research papers fail

1http://www.metaheuristics.net/
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to provide an exhaustive account on how the parameters of the algorithms under analysis are
obtained, it is widely recognized that an accurate fine-tuning has a major impact on the perfor-
mance of algorithms [6, 7, 5, 8]. Second, an accurate fine-tuning is indeed just one of the element
that characterize a custom implementation of a metaheuristic. Other elements, as for example
an advanced design and implementation of critical data structures, definitely play a major role.
Nonetheless, the goal of the paper is to show that an analysis based on custom implementations
might produce radically different results from one based on out-of-the-box implementations. If we
succeed to show this fact when even one single element characterizing custom implementations is
considered, namely the fine-tuning of parameters, we have nevertheless reached our goal.

The rest of the paper is organized as follows. Section 2 presents a panoramic view of the
literature concerning the vehicle routing problem with stochastic demand, the metaheuristics con-
sidered, and the tuning problem. Section 3 describes the specific characteristics of these elements
as they appear in our analysis. In Section 4 the experimental study is reported. Finally, Section 5
concludes the paper.

2 Overview

In this section, we provide the reader with a general overview of the available literature concerning
the three main topics of interest of our analysis: i) the vehicle routing problem with stochastic
demand, ii) the five metaheuristics we consider in our analysis, and iii) the problem of fine-tuning
metaheuristics.

2.1 The problem

The vehicle routing problem with stochastic demand (VRPSD) can be described as follows: Given
a fleet of vehicles with finite capacity, a set of customers has to be served at minimum cost. The
peculiarity of this variant of the vehicle routing problem is that the demand of each customer is a
priori unknown and only its probability distribution is available. The actual demand is revealed
only when the customer is reached. In this probabilistic setting, the objective of the VRPSD is
the minimization of the total expected traveling cost.

Optimal methods, heuristics, and metaheuristics have been proposed in the literature for tack-
ling this problem. In particular, the problem is first addressed by Tillman [9] in 1969. Stewart
and Golden [10], Dror and Trudeau [11], Laporte and Louveau [12] and Laporte et al. [13] use
techniques from stochastic programming to solve optimally small instances. Bertsimas [14] and
Bertsimas and Simchi-Levi [15] propose different heuristics for solving the VRPSD. They consider
the construction of an a priori TSP-wise tour. This tour is then split according to precise rules.
Yang et al. [16] propose a strategy for splitting the a priori tour allowing the restocking before
a stockout, when this is profitable. Secomandi [17, 18, 19] analyzes different possibilities for ap-
plying dynamic programming to this problem. Teodorović and Pavković [20] and Gendreau et al.
[21] tackle the VRPSD using metaheuristic approaches. In particular, Teodorović and Pavković
[20] adopt simulated annealing while Gendreau et al. [21] use tabu search. Finally, an extended
analysis on the behavior of different metaheuristics is proposed by Bianchi et al. [3].

Two classical local search algorithms have been used for the VRPSD: the Or-opt and the 3-opt
procedures. The first is proposed by Or [22] in 1976. It consists in the extraction of a string
of consecutive nodes from the starting sequence representing a solution, and in its insertion at a
different position. Yang et al. [16] present an approximated way for computing the value of each
move. This method is adopted also by Bianchi et al. [3], who propose also another approximation
which is based on delta values calculated in a TSP-wise fashion, that is, considering the variation
of the length of the a priori tour. Moreover, they extend this TSP-wise approximation also to the
3-opt local search [23].
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2.2 Metaheuristics

Following Bianchi et al. [3], we focus on five of the most popular metaheuristics: tabu search
(TS), simulated annealing (SA), genetic algorithm (GA), iterated local search (ILS), and ant
colony optimization (ACO).

Tabu search

Tabu search has been introduced by Glover [1] in 1986, on the basis of early ideas formulated a
decade before [24]. It consists in the exploration of the solution space via a local search procedure.
Tabu search accepts non-improving moves and uses a short term memory. The latter expedient is
introduced to avoid sequences of moves that constantly repeat themselves [25]. The combination
of the two elements prevents the search from tracing back its steps when moving away from
local optima. The short term memory is represented by the tabu list, a first-in first-out queue of
previously visited solutions.

Simulated annealing

Simulated annealing takes inspiration from the annealing process in crystals, which assume a
low energy configuration when cooled with an appropriate cooling schedule [26, 27, 28, 29, 30].
The principal idea is the exploration of the search space via a local search procedure. Simulated
annealing escapes from local minima by allowing moves to worsening solutions. The parameter
that controls this mechanism is the temperature. It is slowly decreased during the search with
the consequence that at the beginning the probability of accepting non-improving solutions is
higher, and then it decreases over time. This technique helps in quitting the basin of attraction
of high-cost local minima that might be encountered in the early stages of the search.

Genetic algorithm

Genetic computation is inspired by the ability shown by populations of living beings to evolve and
adapt to changing conditions, under the pressure of natural selection [31]. This metaheuristic is
based on the selection of individuals representing candidate solutions. Each individual is described
by a chromosome which is a collection of genes, that is, a string of symbols. The fitness of an
individual is a decreasing function of its cost. The procedure consists in allowing the evolution
of the individuals, going from a generation to another through recombination and crossover, and
using mutation or modification operators which lead to self-adaptation. Individuals with a higher
fitness have a higher probability to be chosen as members of the population of the next iteration
[32, 33, 34, 35, 36, 37].

Iterated local search

Iterated local search is one of the simplest metaheuristics, based on the reiteration of a local
search procedure. It explores the neighborhoods of different solutions obtained via successive
perturbations [38]. In order for this mechanism to be effective, the perturbation should not move
the position of the new starting point too far from the previous local optimum, otherwise the search
will loose the focus from the current explored area. At the same time, the perturbation should
not be too feeble, otherwise the local search risks to converge back to the same local optimum
already reached by the previous descent.

Ant colony optimization

Ant colony optimization is a metaheuristic based on the foraging behavior of ants. Ants randomly
explore the area surrounding their nest. Once a food source is found, the ant evaluates the
quantity and the quality of the food. Carrying some of it back to the nest, the ant deposits a
pheromone trail on the ground. The amount of pheromone deposited may depend on the previous
evaluation and will guide other ants to the food source. This indirect communication allows the
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ants to find the shortest path between the two points. The ant colony optimization metaheuristic
takes inspiration from this process. It constructs solutions using a pheromone model, that is, a
parameterized probability distribution over the solution space. The solutions found are used to
modify the pheromone values biasing the search toward high quality solutions [2].

2.3 The tuning process

A metaheuristic is a general algorithmic framework which can be applied to different optimization
problems. It can be seen as a modular structure coming with a set of components, each typically
provided with a set of free parameters. The tuning problem is the problem of properly instantiating
this algorithmic template by choosing the best among the set of possible components and by
assigning specific values to all free parameters [5]. Although this problem is generally recognized
to be very important when dealing with metaheuristics, only in recent years it has been the object
of extensive studies [6, 7, 39, 40, 5, 8]. Some authors adopt a methodology based on factorial design,
which is characteristic of a descriptive analysis. Therefore, rather than solving directly the tuning
problem, they pass through the possibly more complex intermediate problem of understanding the
relative importance of each parameter of the algorithm. For example, Xu and Kelly [41] try to
identify the relative contribution of five different components of a tabu-search. Furthermore, the
authors consider different values of the parameters of the most effective components and select the
best one. Parson and Johnson [42] and Breedam [43] use a similar approach. Xu et al. [44] describe
a more general technique which is nonetheless based on factorial analysis. Another approach to
tuning that has been adopted for example by Coy et al. [8] and by Adenso-Dı́az and Laguna [6] is
based on the method that in the statistical literature is known as response surface methodology.
Bartz-Beielstein and Markon [40] propose a method to determine relevant parameter settings. It is
based on statistical design of experiments, classical regression analysis, tree based regression and
design and analysis of computer experiments (a.k.a. DACE) models. Some procedures for tackling
the tuning problem have been proposed by Birattari [5]. Among them, the F-Race method is the
best performing one and has been used in a number of works on metaheuristics [45, 46, 47, 48, 49].

For the sake of completeness, we mention here another approach to tuning which goes under
the name of on-line tuning. The key idea behind this second family of techniques is to modify some
parameters of the search algorithm while performing the search itself. This approach is particularly
appealing when one is supposed to solve one single instance, typically large and complex. One of
the first influential descriptions of on-line adjustment of the parameters of an algorithm is given
by Battiti and Tecchioli [50]. The authors introduce a tabu search where the length of the tabu
list is optimized on-line.

3 Main elements of the analysis

This section provides details on the three main elements of the case study considered in the paper.
In particular, Section 3.1 describes the specific vehicle routing problem with stochastic demand
that we consider. Moreover, it introduces the local search procedures and the approximations of
the objective function that we adopt. Finally, a description of the class of instances considered in
the study and of the instance generator is given. Section 3.2 describes the specific implementations
we consider of the five metaheuristics under analysis. Section 3.3 describes F-Race, that is, the
tuning algorithm that is adopted for fine-tuning the metaheuristics in our study.

3.1 The problem

As in most of the previously published works on VRPSD [14, 15, 3, 16], in this paper the problem
is addressed by considering only one vehicle. This element was proved to give the best solution
in absence of additional constraints [16]. The solution technique consists in constructing an a
priori TSP-wise tour. This tour is then split according to the specific realizations of the random
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variables representing the demand of the customers. The objective is finding the a priori tour
with minimum expected cost.

The computation of the expected cost of the solutions follows Yang et al. [16] and Bianchi et al.
[3]. In particular, it is based on a dynamic programming recursion which moves backward from
the last node of the sequence. At each node, the decision of restocking or proceeding is based on
the expected cost-to-go in the two cases.

In this analysis, we consider the two local search procedures that can be found in the VRPSD
literature: Or-Opt and 3-opt. In the literature, when considering local search procedures, it is
quite common to try to limit the cost for evaluating each move. This is done by calculating
the difference of the value of two solutions (before and after a move) in an approximated way.
Following this trend, for both Or-Opt and 3-opt, we have considered different ways of calculating
the cost of a move:

• TSP-cost: only the variation in the cost of the a priori tour is considered [3]. This technique
is known in the literature as delta evaluation;

• VRPSD-cost: only few steps of the dynamic programming recursion are calculated and
compared with the original values [16, 3]. These steps are those that include the nodes that
have been moved;

• EXACT-cost: the complete dynamic programming recursion is computed.

For the Or-Opt local search, all these variants are considered. For the 3-opt only the TSP-cost
and the EXACT-cost are implemented. Since it is not evident which of these methods is the best
performing for each metaheuristic, we consider the local search to be used as a parameter of the
algorithms.

In order to reach some significant conclusion with our empirical analysis, a rather large set of
instances is needed. The instances considered in Bianchi et al. [3] have been generated starting
form standard benchmark instances for the TSP. Then, a demand distribution has been attached
to each customer. The set obtained in this way by Bianchi et al. [3] is too small for the aim of our
research. To the best of our knowledge, these are the only benchmark instances available for the
vehicle routing problem with stochastic demand. For our experiments, we use instances created
with the instance generator described in Pellegrini and Birattari [51].

The created instances consist in nodes grouped in clusters. Each cluster represents a European
city randomly selected in an available database. A city is represented as a set of concentric circles.
The number of the circles depends on the population of the city considered: The higher the
population, the higher the number of circles. We will refer to the areas obtained in this way as
to zones. The nodes are uniformly distributed in each zone. The depot is located in the most
external zone of a randomly selected city [51].

The traveling costs between nodes are functions of the travel time. A coefficient is associated
to each zone. These values represent the allowed speed for going from one point to another.
The Euclidean distance is multiplied for these coefficients for obtaining the traveling cost between
nodes. The coefficient becomes smaller while moving from a zone to a more internal one. This
models the characteristics of most European cities, where the actual speed decreases while one
approaches the center. The velocities considered in order to compute the coefficients are 15 km/h
for the most internal circle of each city and 40 km/h for the most external one. Proportional
values are associated to the zones in between. The speed on the route connecting two cities is 80
km/h.

In this paper, we consider instances with either 50 or 60 nodes. They comprise three clusters
representing three randomly selected Italian cities. Nine databases of this kind are used in order
to represent different geographical structures.

Following [3], we consider instances in which the average demand and the spread are obtained
as in Table 1.

The capacity of the vehicle is 80. In this way the average number of customers that can be
served before returning to the depot is about three. Analysis of cases with such a low ratio between
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Table 1. Parameters used for generating the instances. U(min,max ) means that the value is
randomly extracted from a uniform distribution in the range between min to max .

Instance class average demand spread
I U(20, 30) U(5, 10)
II U(20, 30) U(5, 15)
III U(20, 35) U(5, 10)
IV U(20, 35) U(5, 15)

Table 2. Structure of the tabu search algorithm.

Determine initial candidate solution s
Initialize temperature T
While stopping criterion is not satisfied

s′ =local search(s) #A variable neighborhood is considered

If s′ is non-tabu or if it satisfies the aspiration criterion

then s = s′

Update tabu-list based on s′

capacity of the vehicle and average customer demand are not very frequent in literature. On the
other hand it is a situation that can be easily encountered in reality. A previous study of the
performance of algorithms when tackling instances with this peculiarity can be found in Bianchi
et al. [3].

3.2 Metaheuristics

The implementation of the metaheuristics we consider is based on the code written by Bianchi
et al. [3], which is available at http://iridia.ulb.ac.be/vrpsd.ppsn8. In the following, we
give a short description of each algorithm. In Tables 2, 3, 4, 5, and 6, the different structures
are presented. The function local search(s) is used to indicate the application of the local search
procedure to solution s. The parameters of the algorithms are briefly explained. As reference
algorithm, following Bianchi et al. [3], we considered a random restart local search (RR). It uses
the randomized furthest insertion heuristic plus local search. It restarts every time a local optimum
is found until the stopping criterion is met—in our case, the elapsing of a fixed computational
time.

Tabu search

The implementation of the tabu search algorithm follows the schema reported in Table 2. The
tabu-list represents the short term memory and includes partial solutions. This results in a
particularly efficient algorithm. Nonetheless, this approach has the drawback that good quality
solutions might be forbidden for being partially equal to a recently visited solution. To avoid this
counter effect, an aspiration criterion is used: forbidden moves are allowed if the new solution is
the new best one. The solution components that would re-establish the partial order of two just
modified nodes are forbidden. The tabu tenure, that is, the length of the tabu list, is variable [3]:
At each step it assumes a random value between t(m−1) and m−1, where 0 ≤ t ≤ 1 is a parameter
of the algorithm. When 3-opt is used, m is equal to the number of customers. When Or-opt is
used, m is equal to the number of customers minus the length of the string to move. During the
exploration of the neighborhood, the solutions that include forbidden components are evaluated
with probability pf and the others with probability pa. The difference between the EXACT-cost,
the VRPSD-cost, and the TSP-cost implementations concerns only to the local search procedure.
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Table 3. Structure of the simulated annealing algorithm.

Determine initial candidate solution s
Initialize temperature T
While stopping criterion is not satisfied

s′ =local search(s)

If s′ satisfies the probabilistic acceptance criterion based on T
then s = s′

Update temperature T

Table 4. Structure of the genetic algorithm.

Determine an initial population SP of solutions

While stopping criterion is not satisfied

Generate a set of solutions SPr by edge recombination

Generate a set of solutions SPm from SPr by mutation

For each si ∈ SPm, s′i =local search (si)
If Cost(s′i) < Cost(si)

then si = s′i
Select population SP from solutions in SP, SPr, SPm

Simulated annealing

The implementation of the simulated annealing algorithm is presented in Table 3. The probabilistic
acceptance criterion consists in accepting a solution s′ either if it has a lower cost than the current
solution s or, independently of its cost, with probability

p(s′|Tk, s) = exp

(

−
Cost(s′)Cost(s)

Tk

)

. (1)

The relevant parameters of the algorithm are related to the initial level of the temperature and to
its evolution. The starting value T0 is determined by considering one hundred solutions randomly
chosen in the neighborhood of the first one, by computing the variation of the cost in this set, and
by multiplying this result for the parameter f . At every iteration k the temperature is decreased
according to the formula Tk = αTk−1, where the parameter α, usually called cooling rate, is such
that 0 < α < 1. If after n · q · r iterations the quality of the best solution is not improved,
the process known as re-heating [26] is applied: the temperature is increased by adding T0 to
the current temperature. Besides the local search procedure adopted, the difference between the
EXACT-cost, the VRPSD-cost and the TSP-cost implementations consists in the way Cost(s′)
and Cost(s) in Equation 1 are computed. In the TSP-cost, only the length of the a priori tour is
considered.

Genetic algorithm

The genetic algorithm is implemented according to the framework reported in Table 4. Edge
recombination [52] consists in generating a tour starting from two solutions using edges present
in both of them, whenever possible. Mutation swaps adjacent customers with probability pm.
If mutation is adaptive, pm is equal to the product of the parameter mr (mutation-rate) and a
similarity factor. The latter depends on the number of times the n-th element of the first parent is
equal to the n-th element of the second one. If the mutation is not adaptive, pm is simply equal to
mr. The difference between the EXACT-cost, the VRPSD-cost and the TSP-cost implementations
concerns only to the local search procedure adopted.
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Table 5. Structure of the iterated local search algorithm.

Determine initial candidate solution s
Perform local search on s
While stopping criterion is not satisfied

s′ =perturbation(s)

s′ =local search (s′)
If Cost(s′) < Cost(s)

then s = s′

Table 6. Structure of the ant colony optimization algorithm.

Initialize pheromone trails

While stopping criterion is not satisfied

Generate a population P of p solutions

For each si ∈ P
s′i =local search (si)
If Cost(s′i) < Cost(si)

then si = s′i
Adapt pheromone trails based on P

Iterated local search

The implementation of the iterated local search algorithm follows the schema described in Table 5.
The function perturbation(s) performs a perturbation on s. It returns a new solution obtained after
a loop of n random moves (with n number of nodes of the graph) of a 2-exchange neighborhood.
They consist in subtour inversions between two randomly chosen nodes. The loop is broken if a
solution with quality comparable to the current one is found. We say that the quality of a solution
is comparable to the quality of the current one if its objective function value is not greater than
the objective function value of the current solution plus a certain value ε. The difference between
the EXACT-cost, the VRPSD-cost and the TSP-cost implementations concerns only to the local
search procedure adopted.

Ant colony optimization

The ant colony optimization algorithm considered is described in Table 6. The pheromone trail
is initialized to τ0 = 0.5 on every arc. The first population of solutions is generated and refined
via the local search. Then, a global pheromone update is performed r times. At each following
iteration, p new solutions are constructed by p artificial ants on the basis of the information stored
in the pheromone matrix. After each step, the local pheromone update is performed on the arc
just included in the route. Finally, the local search is applied to the p solutions and the global
pheromone update is executed.

local pheromone update: the pheromone trail on the arc (i, j) is modified according to the
following formula:

τij = (1 − ψ)τij + ψτ0,

with ψ parameter such that 0 < ψ < 1.
global pheromone update: the pheromone trail on each arc (i, j) is modified according to the

following formula:
τij = (1 − ρ)τ + ρ∆τ bs

ij

where

∆τ bs
ij =

{

Q/Cost Solution bs if arc (i, j) ∈ Solution bs
0 otherwise,
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Figure 1. Graphical representation of computation performed by the racing approach. As
the evaluation proceeds, the racing algorithm focuses more and more on the most promising
candidates, discarding a configuration, as soon as sufficient evidence is gathered that it is
suboptimal [5].

ρ is a parameter such that 0 < ρ < 1 and Solution bs is the best solution found so far.

3.3 The tuning process

The parameters of all algorithms considered in the paper are tuned through the F-Race procedure
[5, 4]. F-Race is a racing algorithm for choosing a candidate configuration, that is, a combination
of values of the parameters, out of predefined ranges. A racing algorithm consists in generating a
sequence of nested sets of candidate configurations to be considered at each step (Figure 1). The
set considered at a specific step h is obtained by possibly discarding from the set considered at step
h− 1, some configurations that appear to be suboptimal on the basis of the available information.
This cumulated knowledge is represented by the behavior of the algorithm for which the tuning is
performed, when using different candidates configurations. For each instance (each representing
one step of the race) the ranking of the results obtained using the different configurations is
computed and a statistical test is performed for deciding whether to discard some candidates
from the following experiments (in case they appear suboptimal) or not. F-Race is based on the
Friedman two-way analysis of variance by ranks [53]. An important advantage offered by this
statistical test is connected with the nonparametric nature of a test based on ranking, which does
not require to formulate hypothesis on the distribution of the observations.

4 Experimental analysis

The goal of the computational experiments proposed in this section is to show that a remarkable
difference exists between the results obtained by out-of-the-box and custom versions of metaheuris-
tics. What characterizes the custom versions in our analysis is the fact that the parameters are
accurately fine-tuned with the automatic procedure known as F-Race. This algorithm, as men-
tioned in Section 3.3, selects the best values of the parameters out of a given set of candidate ones.
On the other hand, for the out-of-the-box versions, the values of the parameters are randomly
drawn from the same set of candidate values that is considered by F-Race. Equal probability has
been associated to each configuration and, for each instance considered in the analysis, a random
selection has been performed. Beside the out-of-the-box and the custom versions, our analysis also
comprises the versions studied by Bianchi et al. [3]. For convenience, we will refer to these versions
as literature versions. They differ from the out-of-the-box and the custom versions solely in the
fact that the parameters of the literature versions have been set mostly on the basis of the experi-
ence of the researchers that have implemented the algorithms [3]. For each of the metaheuristics,
beside the methods adopted for setting the parameters, the implementations considered in the
out-of-the-box, custom, and literature versions are identical. All experiments are run on a cluster

of AMD OpteronTM 244, and 1000 instances are considered. The computation time is used as a



IRIDIA – Technical Report Series: TR/IRIDIA/2006-008 11

Table 7. Parameters for tabu search.
parameter range selected value
pf 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 0.2
pa 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9 0.6
t 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1 0.3
local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), 3-Opt(EXACT-cost)

3-Opt(TSP-cost), 3-Opt(EXACT-cost)
total number of candidates = 1460

Table 8. Parameters for simulated annealing.
parameter range selected value
α 0.3, 0.5, 0.7, 0.9, 0.98 0.3
q 1, 5, 10 1
r 10, 20, 30, 40 40
f 0.01, 0.03, 0.05, 0.07 0.03
local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), Or-Opt(TSP-cost)

3-Opt(TSP-cost), 3-Opt(EXACT-cost)
total number of candidates = 1200

stopping criterion for all the algorithms and it is set to 30 seconds.

In order to obtain the custom versions of the metaheuristics through F-Race, a number of
different configurations ranging from 1200 to about 1600 were considered for each of them. A set
of 500 instances of the vehicle routing problem with stochastic demand was available for the tuning.
These instances have the same characteristics of the ones used for running the experiments, but
the two sets of instances are disjoint [54]. While tuning a metaheuristic, the F-Race procedure was
allowed to run the metaheuristic under consideration for a maximum number of times equal to 15
times the number of configurations considered for that metaheuristic. Also for the random restart
local search, a custom version has been considered. It has been obtained by selecting, through
the F-Race procedure, the best performing local search. In other words, the parameter that has
been optimized in this case is the underlying local search. Tables 7, 8, 9, 10, 11, and 12 report,
for each metaheuristic, the parameters that have been considered for optimization, the possible
values, and those that have been selected.

The results of the experiments with custom, out-of-the-box, and literature versions are reported
in Figures 2, 3, and 5, respectively. These graphics report the ranking obtained by the metaheuris-
tics under analysis. On the left of each graph, the names of the algorithms are given. The order
in which they appear reflects the average ranking: The lower the average ranking, the better the
general behavior, and the higher the metaheuristic appears in the list. On the far right, the box-
plots represent the distributions of the ranks over the 1000 instances. Between the names and the
boxplots, vertical lines indicate if the difference in the behavior of the metaheuristics is significant
according to the Friedman test: If two metaheuristics are not comprised by a same vertical line,
their behavior is significantly different according to the statistical test considered, with a confi-
dence of 95%. The difference in the denomination of the algorithms between the first two figures
and the third one depends on the fact that in Bianchi et al. [3], the local search procedure is not
considered as a parameter of the algorithms. For this reason, the metaheuristics are presented in

Table 9. Parameters for genetic algorithm.
parameter range selected value
pop. size 10, 12, 14, 16, 18, 20, 22, 24 20
mr 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7

0.7, 0.75, 0.8, 0.85, 0.9
adaptive Yes, No Yes
local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), Or-Opt(TSP-cost)

3-Opt(TSP-cost), 3-Opt(EXACT-cost)
total number of candidates = 1360
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Table 10. Parameters for iterated local search.
parameter range selected value
ε n

x
, x ∈ {0.005,0.01,0.05,0.1, multiples of 0.5 up to 150.0} n

1.5
local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), Or-Opt(TSP-cost)

3-Opt(TSP-cost), 3-Opt(EXACT-cost)
total number of candidates = 1520

Table 11. Parameters for ant colony optimization.
parameter range selected value
p 5,10, 20 5
ρ 0.1, 0.5, 0.7 0.7
r 100, 150, 200 150
Q 105, 106, 107, 108, 109 108

local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), 3-Opt(TSP-cost)
3-Opt(TSP-cost), 3-Opt(EXACT-cost)

total number of candidates = 1620

Figure 5 with the name of the metaheuristic paired with the one of the variant of the local search
used. In Bianchi et al. [3], the 3-opt local search has been used only in association with iterated
local search and genetic algorithms.

The first issue on which we wish to focus is a comparison between the results achieved by the
custom and by the out-of-the-box versions, as displayed in Figures 2 and 3, respectively. It is worth
noticing immediately that all the custom versions behave significantly better than the random
restart local search. On the contrary, this is not the case for the out-of-the-box versions. The
case of a metaheuristic performing worse than the random restart local search is to be considered
as a major failure for the metaheuristic itself. Another element to be noticed in this comparison
between custom and out-of-the-box versions, is that the ranking is visibly different in the two
contexts. This shows that different metaheuristics are influenced in a different measure by their
parameters.

The boxplots given in Figure 4 represent the difference between the costs of the solutions
obtained in the two contexts by the metaheuristics. To be precise, we report the distribution
of the cost of the solutions found by each custom version minus the one of its out-of-the-box
counterpart. This figure is proposed in order to allow the evaluation of the impact of the tuning
procedure in absolute terms. In Figure 4(a), the whole distributions are shown. In Figure 4(b),
the detail of the area around zero is reported. We can observe that, even if the tails of the
distributions are sometimes very long, almost 75% of the observations fall below the zero line for
all metaheuristics. This means that, in the strong majority of the cases, the difference is in favor
of the custom version. Again, we can observe that some metaheuristics are more sensitive to the
value of their parameters and therefore benefit more than others from an accurate fine-tuning.

Figure 5 shows the ranking of the algorithms obtained in the third set of experiments in which
the literature versions are considered [3]. As it can be noted by comparing this graph with Figures
2 and 3, the general trend is very similar to the one obtained in the out-of-the-box context.

In order to provide a more precise picture of the sensitivity of each metaheuristics to its
parameters, Figure 6 reports, for each metaheuristic, the comparison of the results obtained in
the three sets of experiments. What clearly emerges is that all metaheuristics achieve the best
results in their custom version. The difference is always statistically significant according to the

Table 12. Parameters for random restart.
parameter range selected value
local search Or-Opt(TSP-cost), Or-Opt(VRPSD-cost), Or-Opt(EXACT-cost), 3-Opt(EXACT-cost)

3-Opt(TSP-cost), 3-Opt(EXACT-cost)
total number of candidates = 5
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Figure 2. Custom versions: Results over 1000 instances of the metaheuristics when the values
of the parameters are chosen through the F-Race procedure.
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Figure 3. Out-of-the-box versions: Results over 1000 instances of all the metaheuristics when
the values of the parameters are randomly chosen.

Friedman test. Moreover, it can be observed that literature versions, that is, those in which the
parameters are set according to Bianchi et al. [3], obtain results that are comparable with those of
the out-of-the-box versions. In particular, while for iterated local search and tabu search the values
reported in the literature appear to be better than those drawn at random, for genetic algorithms
and simulated annealing this is not always the case. Even more striking, in the case of ant colony
optimization, the parameters adopted in Bianchi et al. [3] yield results that are significantly worse
than those drawn at random. These results suggest that, by adopting the parameters that can be
found in the literature, one should expect a performance comparable with what would be obtained
by assigning random values to the parameters. A metaheuristic in which the parameters are set
as reported in the literature should be a priori regarded as an out-of-the-box implementation.

5 Conclusions

In the paper, five of the most successful metaheuristics, namely tabu search, simulated annealing,
genetic algorithm, iterated local search, and ant colony optimization, have been compared on
the vehicle routing problem with stochastic demand. These five metaheuristics and this same
optimization problem have been the focus also of a research recently published by Bianchi et al.
[3]. In Bianchi et al. [3], the main goal was to study the impact of different ways of approximating
the objective function, which in the vehicle routing problem with stochastic demand is rather
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Figure 4. Difference between the costs of the solutions obtained by the custom and the out-

of-the-box versions of the metaheuristics under analysis. In Figure 4(a), the entire distribution
is shown for each metaheuristic. Since the distributions are characterized by long tails, in
Figure 4(b) the detail of the more interesting central area is given. For all metaheuristics, the
median of the distribution is below the zero, which means that the results obtained by the
custom versions are in general better than those obtained by their out-of-the-box counterpart.
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Ranks

ACO.Or−opt.VRPSD−cost
SA.Or−opt.VRPSD−cost

ACO.Or−opt.TSP−cost
RR.Or−opt.VRPSD−cost

SA.Or−opt.TSP−cost
RR.Or−opt.TSP−cost
TS.Or−opt.TSP−cost

TS.Or−opt.VRPSD−cost
GA.Or−opt.VRPSD−cost

GA.3−opt.TSP−cost
GA.Or−opt.TSP−cost

ILS.Or−opt.VRPSD−cost
ILS.Or−opt.TSP−cost
ILS.3−opt.TSP−cost

Figure 5. Literature versions: Results over 1000 instances of all the metaheuristics when the
values of the parameters are set as in Bianchi et al. [3].

expensive to be computed. An accurate fine-tuning of the parameters of the metaheuristics under
analysis has been considered out of the scope of the above research.

On the contrary, in this paper the fine-tuning of the metaheuristics under analysis plays a
central role. Here, the goal is to highlight the fact that results obtained with out-of-the-box
versions of metaheuristics might differ from those obtained with custom versions. The central role
played by the fine-tuning derives from the fact that, in our analysis, what differentiates a custom
version of a metaheuristic from the corresponding out-of-the-box one, is that the parameters of
the former are fine-tuned through the F-Race algorithm, while those of the latter are drawn at
random.

As it could be expected, the empirical results show that the custom version of each meta-
heuristic achieves better results than the corresponding out-of-the-box one. The difference is
always statistically significant according to the Friedman test. A possibly less expected result is
that, when out-of-the-box implementations are considered, three metaheuristics out of five perform
worse than the random restart local search, which is taken as a yardstick in our analysis. Only
iterated local search and genetic algorithms perform better than the random restart local search.
This is to be considered as a major failure for the other three algorithms. On the contrary, when
custom versions are considered, all metaheuristics outperform the random restart local search. By
itself, this result should be regarded as a strong point in favor of the systematic adoption of a
fine-tuning algorithm like, for example, the F-Race algorithm considered in this study.

A second important element that emerges from the empirical analysis is an evidence that
results obtained with out-of-the-box versions of metaheuristics should not be extended to custom
versions. In particular, the relative performance of algorithms differs greatly in the two contexts.
This can be ascribed to the fact that different metaheuristics might be more or less sensitive to
variations of their parameters. For example, our results show that ant colony optimization, which
in the out-of-the-box version ranked fourth out of five, ranked first in the custom version, together
with iterated local search.

Finally, our analysis shows that, in average, by adopting the parameters that have been used
in Bianchi et al. [3], the metaheuristics do not achieve performances that are significantly better
than those obtained by our out-of-the-box versions. In Bianchi et al. [3], the parameters had been
set on the basis of few non-systematic tests and mostly on the basis of previous experience of the
researchers that implemented the different metaheuristics. Our analysis shows that, at least in
this case study, setting the parameters on the basis of previous experience or, equivalently, on the
basis of what published in the literature, is not significantly better than drawing them at random.
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Figure 6. Comparison of the results obtained in the three sets of experiments. As it can be
observed, the custom versions are always significantly better than all the others. For iterated
local search and tabu search, literature versions are better that their out-of-the-box counterparts,
that is, the values chosen by Bianchi et al. [3] behave better than the random ones. On the
contrary, the out-of-the-box ant colony optimization works better that the literature version.
Finally, in genetic algorithms and simulated annealing the results are mixed: the out-of-the-box

versions is better that one of the two literature versions and worse that the other one, or of the
other two in the case of genetic algorithms for which three versions where proposed in Bianchi
et al. [3].
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This is indeed another strong argument in favor of a systematic fine-tuning of metaheuristics.
To sum up, the results presented in the paper show that the behavior of metaheuristics in

their out-of-the-box version does not necessarily generalize to the custom versions, and vice versa.
The impact of a proper customization—the fine-tuning of the parameters in this specific case—is
detectable both when considering the performance of metaheuristics with respect to each other,
and when comparing their behavior with some reference algorithm such as a random restart local
search.

The fact that the results achieved by the out-of-the-box versions of the metaheuristics under
analysis mimic so closely those obtained by using the values proposed by the literature, confirms
the relevance of our research. In this precise sense, the analysis presented in this paper is strongly
related to a subject which has an actual impact on the current research in the field of metaheuris-
tics. In particular, this paper should convince that, when publishing the results of an empirical
analysis, one should always be very clear about the specific context in which the study is per-
formed. Namely, one should provide some measure of the development effort needed for obtaining
the specific implementations under analysis. In general, the results obtained cannot be safely
extended to other contexts. Clearly, if the information on the experimental context is missing, the
results are of little value and can be greatly misleading.
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[38] H.R. Laurenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[39] T. Bartz-Beielstein, M. Preuss, and A. Reinholz. Evolutionary algorithms for optimization
practitioners. Technical Report CI-151/03, Interner Bericht des Sonderforschungsbereichs 531
Computational Intelligence, Universität Dortmund, Dortmund, Germany, 2003.

[40] T. Bartz-Beielstein and S. Markon. Tuning search algorithms for real-world applications:
A regression tree based approach. In G.W. Greenwood, editor, Proc. 2004 Congress on
Evolutionary Computation (CEC’04), pages 1111–1118, Piscataway, NJ, USA, 2004. IEEE
Press.

[41] J. Xu and J. Kelly. A network flow-based tabu search heuristic for the vehicle routing problem.
Transportation Science, 30:379–393, 1996.

[42] R. Parson and M. Johnson. A case study in experimental design applied to genetic algo-
rithms with applications to dna sequence assembly. American Journal of Mathematical and
Management Sciences, 17:369–396, 1997.

[43] A. Van Breedam. An analysis od the effect of local improvement operators in genetic algo-
rithms and simulated annealing for the vehicle routing problem. Technical Report TR 96/14,
Faculty of Applied Economics, University of Antwerp, Antwerp, Belgium, 1996.

[44] J. Xu, S.Y. Chiu, and F. Glover. Fine-tuning a tabu search algorithm with statistical tests.
International Transactions on Operational Research, 5(3):233–244, 1998.

[45] M. Chiarandini. Stochastic local search for overconstrained problems. PhD thesis, Technische
Universität Darmstadt, Darmstadt, Germany, 2005.
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