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On the Invariance of Ant System

Mauro Birattari, Paola Pellegrini, and Marco Dorigo

December 2005

The hyper-cube framework [1] has been recently introduced with the aim of implementing ant
colony optimization algorithms [2] that are invariant with respect to a linear rescaling of prob-
lem instances. The need for the introduction of the hyper-cube framework has been explicitly
motivated by the observation that

in standard ACO algorithms the pheromone values and therefore the performance of

the algorithms, strongly depend on the scale of the problem. [1]

In this short paper, we formally show that this statement is only partially correct: Indeed, in
standard ant colony optimization algorithms the pheromone trail (and the heuristic values) depend
on the scale of the problem. Nonetheless, the sequence of solutions they find is independent from
the scaling.

For definiteness, the paper focuses on ant system for the traveling salesman problem. The
theorems we enunciate in the paper are proved for this specific algorithm and for this specific
problem. The conditions under which these results extend to other problems are discussed in the
following.

Moreover, the paper proposes a trivial modification of ant system that, beside being able to
find the same solutions irrespectively of the scaling, has also the property that the pheromone and
the heuristic values do not depend on the scaling itself.

Definition 1 (Random proportional rule). At the generic iteration h, given that ant k is in
node i and that the set of feasible nodes is N k

i , the node j to which ant k moves is selected with
probability:

pk
ij,h =

[τij,h]α[ηij ]
β

∑

l∈Nk

i

[τil,h]α[ηil]β
, (1)

where α and β are parameters, τij,h is the pheromone value associated with arc 〈i, j〉 at iteration
h, and ηij is a piece of heuristic information on the desirability of visiting node j after node i.

Definition 2 (Heuristic information). When solving the traveling salesman problem, the
heuristic information ηij is the inverse of the cost of traveling from city i to city j:

ηij =
1

cij

. (2)

Definition 3 (Pheromone update rule). At the generic iteration h, given that m ants have
generated the solutions T 1

h
, T 2

h
, . . . , T m

h
of cost C1

h
, C2

h
, . . . , Cm

h
, respectively, the pheromone is

updated according to the following rule:

τij,h+1 = (1 − ρ)τij,h +
m
∑

k=1

∆k
ij,h, (3)

where ρ is a parameter called evaporation rate and

∆k
ij,h =

{

1/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise.
(4)

1
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Definition 4 (Ant system). Ant system is an ant colony optimization algorithm in which the
solutions are constructed according to the random proportional rule given in Definition 1, and the
pheromone is updated according to the rule given in Definition 3. The evaporation rate ρ, the
number of ants m, and the exponents α and β are parameters of the algorithm.

When ant system is used for solving the traveling salesman problem, it is customary to initialize
the pheromone as follows.

Definition 5 (Nearest-neighbor pheromone initialization). The pheromone on all arcs 〈i, j〉
is initialized to the same value:

τij,0 =
m

Cnn

, (5)

where m is the number of ants generated at each iteration and Cnn is the cost of the solution T nn

obtained by the nearest-neighbor heuristic.

The following theorems hold true.

Lemma 1. The random proportional rule is invariant to linear transformations of the pheromone.

Formally:

τ̄ij,h = gτij,h =⇒ p̄k
ij,h = pk

ij,h, (6)

where p̄k
ij,h is obtained on the basis of τ̄ij,h, according to Definition 1.

Proof. According to Definition 1:

p̄k
ij,h =

[τ̄ij,h]α[ηij ]
β

∑

l∈Nk

i

[τ̄il,h]α[ηil]β
=

[gτij,h]α[ηij ]
β

∑

l∈Nk

i

[gτil,h]α[ηil]β
=

[g]α[τij,h]α[ηij ]
β

∑

l∈Nk

i

[g]α[τil,h]α[ηil]β

=
[g]α[τij,h]α[ηij ]

β

[g]α
∑

l∈Nk

i

[τil,h]α[ηil]β
=

[τij,h]α[ηij ]
β

∑

l∈Nk

i

[τil,h]α[ηil]β
= pk

ij,h.

(7)

Lemma 2. The random proportional rule is invariant to linear transformations of the heuristic

information. Formally:

η̄ij = gηij =⇒ p̄k
ij,h = pk

ij,h, (8)

where p̄k
ij,h is obtained on the basis of η̄ij , according to Definition 1.

Proof. The proof follows closely the one given for Lemma 1:

p̄k
ij,h =

[τij,h]α[η̄ij ]
β

∑

l∈Nk

i

[τil,h]α[η̄il]β
=

[τij,h]α[gηij ]
β

∑

l∈Nk

i

[τil,h]α[gηil]β
=

[g]β[τij,h]α[ηij ]
β

∑

l∈Nk

i

[g]β[τil,h]α[ηil]β

=
[g]β[τij,h]α[ηij ]

β

[g]β
∑

l∈Nk

i

[τil,h]α[ηil]β
=

[τij,h]α[ηij ]
β

∑

l∈Nk

i

[τil,h]α[ηil]β
= pk

ij,h.

(9)

Lemma 3. The random proportional rule is invariant to concurrent linear transformations of the

pheromone and of the heuristic information. Formally:

τ̄ij,h = g1τij,h ∧ η̄ij = g2ηij =⇒ p̄k
ij,h = pk

ij,h. (10)

where p̄k
ij,h is obtained on the basis of τ̄ij,h and η̄ij , according to Definition 1.
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Proof. Similarly to the proofs of Lemmas 1 and 2:

p̄k
ij,h =

[τ̄ij,h]α[η̄ij ]
β

∑

l∈Nk

i

[τ̄il,h]α[η̄il]β
=

[g1τij,h]α[g2ηij ]
β

∑

l∈Nk

i

[g1τil,h]α[g2ηil]β
=

[g1]
α[g2]

β [τij,h]α[ηij ]
β

∑

l∈Nk

i

[g1]α[g2]β[τil,h]α[ηil]β

=
[g1]

α[g2]
β [τij,h]α[ηij ]

β

[g1]α[g2]β
∑

l∈Nk

i

[τil,h]α[ηil]β
=

[τij,h]α[ηij ]
β

∑

l∈Nk

i

[τil,h]α[ηil]β
= pk

ij,h.

(11)

Definition 6 (Linear transformation of a TSP instance). With Ī = fI we indicate that the
instance Ī is a linear transformation of the instance I : The two instances have the same number
of cities and the cost c̄ij of traveling from city i to city j in Ī is f times the corresponding cost in
instance I . Formally:

c̄ij = fcij , for all arcs 〈i, j〉. (12)

Remark 1. The cost C̄ of a solution T̄ of instance Ī is f times the cost C of the corresponding
solution T of instance I . Formally:

Ī = fI ∧ T̄ = T =⇒ C̄ = fC. (13)

Definition 7 (Invariance). An ant colony optimization algorithm is invariant to linear trans-
formations if the sequence of solutions SI generated when solving an instance I and the sequence
of solutions SĪ generated when solving an instance Ī are the same whenever Ī is a linear transfor-
mation of I .

Definition 8 (Strong and weak invariance). An ant colony optimization algorithm is said
to be strongly-invariant if, beside generating the same solutions on any two linearly related
instances I and Ī , it also enjoys the property that the heuristic information and the pheromone at
each iteration are the same when solving I and Ī . Conversely, the algorithm is weakly-invariant
if it obtains the same solutions on linearly related instances but the heuristic information and the
pheromone assume different values.

Hypothesis 1 (Pseudo-random number generator). When solving two instances I and
Ī , the stochastic decisions taken while constructing solutions are made on the basis of random
experiments based on pseudo-random numbers produced by the same random number generator.
We assume that this generator is initialized with the same seed when solving the two instances so
that the two sequences of random numbers that are generated are the same in the two cases.

Theorem 1. Ant system is weakly-invariant.1

Proof. Let us consider two generic instances I and Ī such that

Ī = fI. (14)

According to Definition 2, and taking into account Equation 12, it results:

η̄ij =
1

f
ηij . (15)

According to Lemma 3, if τ̄ij,h = 1

f
τij,h, at the generic iteration h, then p̄k

ij,h = pk
ij,h. Under

Hypothesis 1,
T̄ k

h
= T k

h
, for all k = 1, . . . , m, (16)

and therefore, according to Equation 13,

C̄k
h

= fCk
h
, for all k = 1, . . . , m. (17)

1We insist that, for definiteness, we refer here to the application of ant system to the traveling salesman problem

and we consider the case in which the pheromone is initialized as prescribed by Definition 5.
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According to Equation 4:

∆̄k
ij,h =

{

1/C̄k
h
, if 〈i, j〉 ∈ T̄ k

h
;

0, otherwise
=

{

1/fCk
h
, if 〈i, j〉 ∈ T̄ k

h
= T k

h
;

0/f, otherwise

=
1

f

{

1/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise
=

1

f
∆k

ij,h,

(18)

and therefore:

τ̄ij,h+1 = (1 − ρ)τ̄ij,h +
m
∑

k=1

∆̄k
ij,h = (1 − ρ)

1

f
τij,h +

m
∑

k=1

1

f
∆k

ij,h

= (1 − ρ)
1

f
τij,h +

1

f

m
∑

k=1

∆k
ij,h =

1

f

(

(1 − ρ)τij,h +

m
∑

k=1

∆k
ij,h

)

=
1

f
τij,h+1.

(19)

In order to provide a basis for the above defined recursion and therefore to conclude the proof, it
is sufficient to observe that at h = 0 the pheromone is initialized as:

τ̄ij,0 = τ̄0 =
m

C̄nn

=
m

fCnn

=
1

f
τij,0. (20)

Remark 2. Theorem 1 holds true for any way of initializing the pheromone, provided that for any
two instances Ī and I such that Ī = fI , τ̄ij,0 = 1

f
τij,0, for all arcs 〈i, j〉.

Remark 3. Theorem 1 extends to the application of ant system to problems other than the traveling
salesman problem, provided that the initialization of the pheromone is performed as prescribed
in Remark 2 and for any two instances Ī and I such that Ī = fI , there exists a coefficient g 6= 0
such that η̄ij = gηij , for all arcs 〈i, j〉. In particular, it is worth noting here that one notable case
in which this last condition is satisfied is when η̄ij = ηij = 0, for all arcs 〈i, j〉, that is, when no
heuristic information is used.

Strongly-Invariant Ant System

A strongly invariant version of ant system (siAS) can be easily defined. For definiteness, we present
here a version of siAS for the traveling salesman problem.

Definition 9 (Strongly-invariant heuristic information). When solving the traveling sales-
man problem, the heuristic information ηij is

ηij =
Cnn

cij

, (21)

where cij is the cost of traveling from city i to city j and Cnn is the cost of the solution T nn

obtained by the nearest-neighbor heuristic.

Definition 10 (Strongly-invariant pheromone update rule). The pheromone is updated
using the same rule given in Definition 3, with the only difference that ∆k

ij,h is given by:

∆k
ij,h =

{

Cnn/Ck
h
, if 〈i, j〉 ∈ T k

h
;

0, otherwise;
(22)

where Cnn is the cost of the solution T nn obtained by the nearest-neighbor heuristic.

Definition 11 (Strongly-invariant pheromone initialization). The pheromone on all arcs
〈i, j〉 is initialized to the same value:

τij,0 = m, (23)

where m is the number of ants generated at each iteration.
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Definition 12 (Strongly-invariant ant system). The strongly-invariant ant system (siAS) is
a minor variation of ant system. It shares with ant system the random proportional rule for the
construction of solutions, but in siAS the heuristic values are set as in Definition 9, the pheromone
is initialized according to Definition 11 and the update is performed according to Definition 10.

Remark 4. In the definition of siAS given above, the nearest-neighbor heuristic has been adopted
for generating a reference solution, the cost of which is then used for normalizing the cost of the
solutions found by the algorithm. Any other mechanism could be used instead of the nearest-
neighbor heuristic, provided that the solution this algorithm returns does not depend on the scale
of the problem.
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