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Université Libre de Bruxelles

Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2004-001

Revision history:

TR/IRIDIA/2004-001.004 May 2005
TR/IRIDIA/2004-001.003 April 2005
TR/IRIDIA/2004-001.002 October 2004
TR/IRIDIA/2004-001.001 April 2004

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.



On the Estimation of the Expected Performance

of a Metaheuristic on a Class of Instances

How many instances, how many runs?

Mauro Birattari mbiro@ulb.ac.be
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Abstract

This paper discusses the problem of estimating, on the basis of a given number of say N

experiments, the expected performance of a metaheuristic on a class I of benchmark problem
instances. The problem of the empirical estimation of the expected behavior of a stochastic
optimization algorithm has great relevance both in academic studies and in practical applica-
tions. This is particularly true for metaheuristics, a class of stochastic optimization algorithms
for which gaining an analytical insight appears rather problematic.

In the paper, the estimation problem is formally posed in a probabilistic framework and the
main theorems on the empirical estimation of the expected performance of a metaheuristic are
enunciated and proved. In particular, the paper proves that the widely adopted methodology
consisting in considering K instances and running the metaheuristic n times on each (with
K × n = N) is a suboptimal choice. Indeed, contrary to popular belief, one single run on
each of N independently selected instances provides the most reliable estimation.

1 Introduction

Metaheuristics (Glover, 1986) are a class of promising algorithms for tackling hard combinatorial
optimization problems. First introduced by Glover (1986) on the basis of early ideas formulated
a decade before (Glover, 1977), tabu search is nowadays among the most cited metaheuristics.
Other prominent examples of metaheuristics are simulated annealing (Kirkpatrick et al., 1983;
Cerny, 1985), genetic algorithms (Fogel, 1962; Fogel et al., 1966; Rechenberg, 1973; Holland, 1975;
Goldberg, 1989), iterated local search (Lourenço et al., 2002), and ant colony optimization (Dorigo,
1992; Dorigo et al., 1996, 1999; Dorigo & Stützle, 2004). Much research has been devoted to
metaheuristics in the last two decades and a number of successful algorithms belonging to this
class have been proposed. The following, is just a sample of research works that have been recently
published by IEEE Transactions on Systems, Man, and Cybernetics—Part B: Pierre & Houéto
(2002) discuss an application of tabu search, Blum & Dorigo (2004) propose an original problem-
independent improvement of ant colony optimization, while Kato & Sakawa (2003), Guanqi &
Shouyi (2003), Jin et al. (2003) Balakrishnan et al. (2004), and Tsai et al. (2004) profitably adopt
various flavors of genetic algorithms, and more in general of evolutionary algorithms, for tackling
different optimization problems. For recent surveys on metaheuristics, we refer the reader to Blum
& Roli (2003) or Dréo et al. (2003).

Metaheuristics are particularly complex algorithms and, so far, relatively little insight could
be gained on their behavior through analytical tools. For this reason, much of the research on
metaheuristics is of an empirical nature.

A number of good articles have been published which prescribe some useful experimental guide-
lines and discuss the problem of defining an appropriate experimental methodology for studying
metaheuristics—see, for example, Barr et al. (1995), Hooker (1995), and Rardin & Uzsoy (2001).
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Nonetheless, a number of issues are still open and the need for an improvement of the quality stan-
dards of empirical analyses is still felt by a large share of the metaheuristics community. With this
paper, we wish to contribute to the definition of a correct practice in the design of an experimental
setting.

A typical problem faced by practitioners when conducting an empirical analysis of a meta-
heuristic consists in estimating its expected behavior on some given class I of instances, in terms
of the quality of the best solution found in some given amount of time.1 The basic ability of
estimating the expected behavior of a metaheuristic, or more in general of any stochastic algo-
rithm, is apparently of fundamental importance. Beside being extremely relevant in the empirical
evaluation, assessment, and comparison of algorithms, it is the key issue in fine-tuning metaheuris-
tics, when the task is selecting, among a set of candidate configurations of the parameters of the
metaheuristic, the one which is expected to yield the best performance over a class of problem
instances.

In order to give a precise meaning to the very concept of expected performance, we need to refer
to a probabilistic model of the class I. Such idea, although already present in Wolpert & Macready
(1997), does not seem to be widely accepted and exploited in the combinatorial optimization
community. To the best of our knowledge, Birattari et al. (2002) is the only work that adopted
a probabilistic model of the class of instances in the context of the definition and solution of the
problem of tuning metaheuristics. The idea, which is further discussed and developed in Zlochin
et al. (2004) and Birattari (2004), proves to be extremely convenient both in the theoretical
analysis and in practical applications.

When it comes to defining an experimental setting for estimating the expected performance of
a metaheuristic given that we can perform a maximum number N of runs, practitioners are often
embarrassed. The question is invariably: How many instances, how many runs? The answers
typically cover a wide range. Often it is believed that some sort of trade-off is involved in the
choice: If, given an instance, the metaheuristic tends to be quite erratic and produces rather
different results on subsequent runs, practitioners typically feel the need to perform more runs on
each instance and are therefore inclined to trade instances for runs. On the other hand, if the
metaheuristic shows a quite stable behavior on each instance, they feel like considering less runs
and more instances. In any case, most of them would be quite unhappy at the idea of performing
only one single run on each instance: They would argue that a metaheuristic is in any case a
stochastic algorithm and that if you want your conclusions to be somehow meaningful, you need
to average the results of more runs. They would probably add that it is pointless to average across
more instances if the results you average, each concerning a different instance, are spoiled by a
large margin of uncertainty . . . The theorems presented in this paper prove them wrong on the
issue. Indeed, contrary to popular belief, there is no trade-off involved in the definition of the
experimental setting when the total number of runs N is fixed: The setting “N instances, one
single run per instance” dominates all other choices.

The rest of the paper is structured as follows: Section 2 formally poses the estimation problem
in a probabilistic framework and defines a class of estimators of the expected behavior of a meta-
heuristic. The estimators belonging to the class differ in the experimental setting they implement,
that is, in the number of instances and number of runs. Section 3 proposes a first order analysis
of the given estimators. In particular, we prove that, irrespectively of the ratio instances/runs, all
estimators in the considered class are unbiased. On the other hand, Section 4 proposes a second
order analysis which shows that the possible estimator are not equivalent with respect to their
variance. Section 5 analyzes another classes of estimators that are slightly different from those
introduced in Section 2. Section 6 concludes the paper.

1Alternatively, one could measure the performance of a metaheuristic in terms of the time needed to find a
solution whose cost is below a given threshold. The results presented in the paper can be easily reformulated for
the time-to-threshold case.
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2 Formal position of the estimation problem

The framework we consider is based on the concept of a stream of instances: Every T seconds
an instance i is selected from a class I of instances. The given metaheuristic m is supposed to
run for T seconds on i and return the best solution s found during the run; that is, the solution
whose cost c is not larger than the cost associated to any other solution s′ visited during the run.
The process is then iterated ad libitum. In this paper, we consider the case in which instances
belonging to I are a priori indistinguishable: if we are given 3 instances—say ia, ib, and ic—prior
to running the metaheuristic on them we are not able to predict if the cost of the best solution we
will obtain for ia will be closer to the one we will obtain for ib or the one we will obtain for ic.

2

Further, we consider the case in which the instances are selected independently from a fixed but
unknown probability measure PI defined on I. Instance i is therefore selected with probability
PI(i). Similarly, given the instance i, the cost c of the best solution found by the metaheuristic in
the given amount of time, is a stochastic quantity arising with probability PC(c|i).3

Definition 1. We call a scenario for the estimation of the expected behavior of a metaheuristic,
the joint probability measure P (c, i) = PC(c|i)PI(i).

The Estimation Problem. Estimate on the basis of N runs of a given metaheuristic, its average
behavior on the class I, that is, the expected value of the cost c with respect to the scenario
P (c, i) = PC(c|i)PI(i):

µ = E[c] =

∫

cdPC(c|i) dPI(i), (1)

where the operator E denotes the expectation taken with respect to the joint probability P (c, i).

To this aim, we run a set J of experiments, with |J | = N . For each experiment j ∈ {1, 2, . . . , N}
we observe a cost cj . The quantity µ can be estimated by the estimator µ̂:

µ̂ =
1

N

N
∑

j=1

cj .

To be more precise, let us suppose we sample K distinct instances i1, i2, . . . , iK , with K ≤ N , and
we run the given metaheuristic for n1 times on instance i1, for n2 times on instance i2, and so on.
This amounts to considering a set of experiments J which is partitioned in subsets J1, J2, . . . , JK ,
where |Jk| = nk and

∑

k nk = N : each experiment j in the subset Jk consisting in running once
the metaheuristic on instance ik for observing the cost ckj .

Definition 2. We call an experimental setting, or more simply a setting, the sequence of natural
numbers SN = (K,n1, n2, . . . , nK), that is, the specification of how many instances have to be
considered, together with the number of runs to perform on each of them.

For convenience, we also introduce the following notation:

Definition 3. If K divides N , we denote with HK|N/K the homogeneous setting, that is, SN =
(K,n1, n2, . . . , nK), where nk = N/K for all k. In particular, HN |1 = (N,n1, n2, . . . , nN ), with
nk = 1 for all k, is the setting “N instances, one run per instance.” Similarly, H1|N = (1, N) is
the setting “one instance, N runs.”

2Such hypothesis is not too restrictive: In the case we are able to a priori distinguish among instances, we can
consider a partition of I into disjoint subsets I1, I2, . . . , ID. The discussion we present in the paper holds within
each of the sets I1, I2, . . . , ID. The partition of the original set and the decomposition of the original estimation
problem into subproblems is connected to the notion of stratified sampling which is a well known variance reduction

technique adopted in Monte Carlo estimation—See for example Rubinstein (1981). A discussion of this issue goes
beyond the aims of this paper.

3In the following, integration is taken in the sense of Lebesgue in order to transparently account for both discrete
and continuous quantities (Billingsley, 1986; Khuri, 2003). We adopt the notation PI(i) as a shorthand for the
more correct PI({i}), that is, the measure of the singleton {i}. This remark is rather technical and does not have
any major impact on the following discussion. It can be safely skipped if the reader is not particularly familiar
with integration theory.
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Definition 4. In a given scenario P (c, i) = PC(c|i)PI(i), and for a given experimental setting
SN = (K,n1, n2, . . . , nK), the estimator µ̂SN

of the expected value µ of the cost c is given by:

µ̂SN
=

1

N

K
∑

k=1

nk
∑

j=1

ckj , (2)

where N =
∑K

k=1
|Jk|, nk = |Jk|, and instances ik and costs ckj are extracted according to P (c, i).

The following quantities are used in the following:

Definition 5. The expected value of the cost c within instance i is given by:

µi = E[c|i] =

∫

cdPC(c|i).

Definition 6. The variance of the cost c within instance i is given by:

σ2

i = E
[

(c − µi)
2|i

]

=

∫

(c − µi)
2 dPC(c|i).

Definition 7. The expected within-instance variance is:

σ̄2

WI =

∫

σ2

i dPI(i),

that is, the expected value with respect to the distribution of the instances of the variance of c
within a same instance.

Definition 8. The across-instance variance is:

σ2

AI =

∫

(µi − µ)2 dPI(i),

that is, the variance across the instances of the expected value of the cost for each instance.

3 First order analysis of the estimator µ̂SN

Lemma 1. In a given scenario P (c, i) = PC(c|, i)PI(i), and for a given experimental setting
SN = (K,n1, n2, . . . , nK), the probability of obtaining the specific instances i1, i2, . . . , iK and the
specific results c11, c12, . . . , c1n1

, c21, c22, . . . , c2n2
, . . . , cK1, cK2, . . . , cKnK

, on which µ̂SN
is based,

is given by:

P (i1, i2, . . . , iK , c11, . . . , c1n1
, c21, . . . , c2n2

, . . . , cK1, . . . , cKnK
) =

K
∏

k=1

PI(ik)

nk
∏

j=1

PC(ckj |ik),

where PI(ik) is the probability of sampling instance ik, and PC(ckj |ik) is the probability of obtaining
the cost ckj as best result in a run of the metaheuristic on instance ik.

Proof. The K instances are sampled independently according to the probability measure PI(i).
Similarly, the costs c obtained on a given instance i are sampled independently according to
PC(c|i). The joint probability is therefore the product of the terms.

Theorem 1. In all scenarios, irrespectively of the setting SN , that is, of how K and nk with
k = 1 . . . K are selected, µ̂SN

is an unbiased estimator of µ.
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Proof. The proof is immediate and is given only for the sake of completeness:4

∫

µ̂SN
dP (µ̂SN

) =

∫

1

N

K
∑

k=1

nk
∑

j=1

ckj

K
⊙

k=1

dPI(ik)

nk
⊙

j=1

dPC(ckj |ik)

=
1

N

K
∑

k=1

nk
∑

j=1

∫

ckj dPC(ckj |ik) dPI(ik) = µ.

In particular, µ̂H1|1
, based on a single run on a single instance, is an unbiased estimator of µ,

irrespectively of which instance is considered, provided it is selected from I according to the
unknown probability PI(i).

5 Similarly, the estimator µ̂H1|N
based on N runs on one single instance

is unbiased as well as µ̂HN/10|10
which considers N/10 instances, 10 runs per instance.

4 Second order analysis of the estimator µ̂SN

All possible estimators that can be written in the form given in Equation 2 are therefore equivalent
for what concerns their expected behavior. Nonetheless, they differ for what concerns second order
statistics. We are therefore interested here in finding the best minimum-variance estimator when
the total number N of experiments is fixed. In simple words, we want to answer the question:

If I can run N = 100 experiments, should I consider (i) 1 instance and 100 runs;
(ii) 10 instances and 10 runs on each; (iii) 100 instance and 1 single run on each; or
what else?

Lemma 2. In a given scenario P (c, i) = PC(c|i)PI(i), and for a given experimental setting
SN = (K,n1, n2, . . . , nK), the variance of the estimator µ̂SN

is given by:

∫

(µ̂SN
− µ)2 dP (µ̂SN

) =
1

N
σ̄2

WI +

∑K
k=1

n2

k

N2
σ2

AI.

Proof. It results:

Z

(µ̂SN − µ)2 dP (µ̂SN ) =

∫

 

1

N

K
X

k=1

nk
X

j=1

ckj − µ

!2 K
K

k=1

dPI(ik)

nk
K

j=1

dPC(ckj |ik) =

=

∫

 

1

N

K
X

k=1

nk
X

j=1

(ckj − µik + µik − µ)

!2 K
K

k=1

dPI(ik)

nk
K

j=1

dPC(ckj |ik),

4In the following, with the notation:
R

f(x1, x2, . . . , xL)
JL

l=1
dP (xl), we denote the sequence of nested integrals

RR

· · ·
R

f(x1, x2, . . . , xL) dP (x1) dP (x2) . . . dP (xL).
5The fact that PI(i) is unknown does not pose here any problem: in order to obtain an instance i extracted

from I according to the unknown PI(i) it is sufficient to take randomly any of the instances that appear in the
above described stream of instances: let’s say the next one!
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It follows that:
Z

(µ̂SN − µ)2 dP (µ̂SN ) =

=
1

N2

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

Z

(ckj − µik)(ck′j′ − µik′ ) dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′)+ (3a)

+
1

N2

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′)+ (3b)

+
1

N2

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

2

Z

(ckj − µik)(µik′ − µ) dPC(ckj |ik) dPI(ik) dPI(ik′). (3c)

Let us now consider one by one the three addends given in 3a, 3b, and 3c.

Addend 3a: Concerning the terms for which k 6= k′, it results:6

Z

(ckj − µik)(ck′j′ − µik′ ) dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

Z

(ckj − µik)

0

dPC(ckj |ik) dPI(ik)

Z

(ck′j′ − µik′ )

0

dPC(ck′j′ |ik′) dPI(ik′) = 0.

Similarly, if k = k′ but j 6= j′, it results:

Z

(ckj − µik)(ck′j′ − µik′ ) dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

∫

„
Z

(ckj − µik)

0

dPC(ckj |ik)

Z

(ckj′ − µik )

0

dPC(ckj′ |ik)

«

dP (ik) = 0.

On the other hand, if k = k′ and j = j′, it results:

Z

(ckj − µik)(ck′j′ − µik′ ) dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

Z

(ckj − µik)2 dPC(ckj |ik) dPI(ik).

Thus, addend 3a amounts to:

1

N2

K
X

k=1

nk
X

j=1

Z

(ckj − µik)2 dPC(ckj |ik) dPI(ik).

Addend 3b: since the integrand is independent from j and j′, it results:

1

N2

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′) =

=
1

N2

K
X

k=1

K
X

k′=1

nknk′

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′).

6In the following, with the notation
Z

g(y)
0

dy,

we graphically indicate that the integral is null. This will help visualizing which terms of an equations are null.
For example, in

Z

 

f(x)

Z

g(y)
0

dy

!

dx = 0,

the adopted notation helps showing that the reason why the overall double integral is null is because
R

g(y) dy = 0.
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If k 6= k′, it results:

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′) =

Z

(µik − µ)

0

dPI(ik)

Z

(µik′ − µ)

0

dPI(ik′) = 0.

Otherwise, if k = k′, it results:

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′) =

Z

(µik − µ)2 dPI(ik).

Thus, addend 3b amounts to:

1

N2

K
X

k=1

n
2

k

Z

(µik − µ)2 dPI(ik).

Addend 3c: it results:

Z

(ckj − µik)(µik′ − µ) dPC(ckj |ik) dPI(ik) dPI(ik′) =

=

∫

„

(µik′ − µ)

Z

(ckj − µik)

0

dPC(ckj |ik)

«

dPI(ik) dPI(ik′) = 0,

Thus, addend 3c is identically null.

It results therefore:

∫

(µ̂SN
− µ)2 dP (µ̂SN

) =

=
1

N2

K
∑

k=1

nk
∑

j=1

∫

(ckj − µik
)2 dPC(ckj |ik) dPI(ik) +

1

N2

K
∑

k=1

n2

k

∫

(µik
− µ)2 dPI(ik).

On the basis of Definitions 7 and 8 we can write:

∫

(µ̂SN
− µ)2 dP (µ̂SN

) =
1

N2

K
∑

k=1

nk σ̄2

WI +
1

N2

K
∑

k=1

n2

k σ2

AI.

Remembering that
∑K

k=1
nk = N , it results:

∫

(µ̂SN
− µ)2 dP (µ̂SN

) =
1

N
σ̄2

WI +

∑K
k=1

n2

k

N2
σ2

AI.

Let us go back to our original question: With the constraint that the total number of runs must
be N , what is the optimal number of instances to consider and how many runs to perform on
each?

Theorem 2. The variance of µ̂SN
is minimized by the experimental setting S̄N = HN |1, that is,

by the setting “N instances, one run per instance.”

Proof. According to Lemma 2, the variance of µ̂SN
is:

∫

(µ̂SN
− µ)2 dP (µ̂SN

) =
1

N
σ̄2

WI +

∑K
k=1

n2

k

N2
σ2

AI.
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Since the first addend does not depend on SN = (K,n1, . . . , nK), we can focus on the minimization
of the second. Moreover, since N is fixed and σ2

AI
is out of our control, we focus on the minimization

of:

C(SN ) =

K
∑

k=1

n2

k, under the constraint:

K
∑

k=1

nk = N.

Let us assume now, by way of contradiction, that an experimental setting SN = (K,n1, . . . , nK)
exists which is different form S̄N = HN |1, satisfies the constraint, and which minimizes C; that is,
SN is such that C(SN ) ≤ C(S ′

N ), for all S ′
N . Clearly, it must be K ≤ N—otherwise the constraint

would not be satisfied. Indeed, more precisely, it must be K < N because otherwise it would be
mandatory, in order to satisfy the constraint, to set nk = 1 for all k and, in this case, we would
fall back to the original statement to be proved. If K < N , in order to satisfy the constraint, there
must exist at least an index q for which nq > 1.

On the basis of the setting SN , we can construct another setting S ′
N = (K ′, n′

1, . . . , n
′
K′) where

K ′ = K + 1, n′
q = nq − 1, n′

K′ = 1, and n′
j = nj otherwise. It is immediate to check that this

second sequence satisfies the constraint if SN does. Moreover, it results:

C(S ′

N ) =

K′
X

k=1

n
′2

k =

K
X

k=1

n
2

k − n
2

q + n
′2

q + 1 = C(SN ) − n
2

q + (nq − 1)2 + 1 = C(SN ) − 2(nq − 1).

Since nq > 1, the term 2(nq −1) is strictly positive and the experimental setting S ′
N is thus better

that SN , which is a contradiction.

Corollary 1. The variance of the best estimator µ̂HN|1
is:

E
[

(µ̂HN|1
− µ)2

]

=
1

N

(

σ̄2

WI + σ2

AI

)

.

Proof. It follows trivially from Lemma 2.

Corollary 2. µ̂HN|1
is a consistent estimator of µ, that is, it converges in probability to µ:

lim
N→∞

Prob
{

|µ̂HN|1
− µ| > ǫ

}

= 0, ∀ǫ > 0

Proof. The proof descends directly from Corollary 1. Indeed, µ̂HN|1
converges to µ in the mean

square sense: Provided that σ̄2
WI

and σ2
AI

are finite, as N tends to infinity, E
[

(µ̂
N|1

− µ)2
]

con-
verges to zero. The statement follows, since convergence in mean square implies convergence in
probability (Papoulis, 1991).

It is interesting to consider here a numerical example that compares the best estimator µ̂HN|1

with other possible estimators of µ. For definiteness, let us assume in this example that the total
number of runs is fixed to N = 100, and let us study the variance of the estimators that are
obtained under the following three different experimental settings: (i) N instances, one run per
instance, (ii) 10 instances, 10 runs per instance and, finally, (iii) one single instance, 100 runs.
From Lemma 2 it results:

Setting 1: 100 instances, 1 run per instance—best estimator according to Theorem 2.

E
[

(µ̂H100|1
− µ)2

]

=
1

100
σ̄2

WI +
1

100
σ2

AI.

Setting 2: 10 instances, 10 runs per instance.

E
[

(µ̂H10|10
− µ)2

]

=
1

100
σ̄2

WI +
1

10
σ2

AI.

Setting 3: 1 instance, 100 runs.

E
[

(µ̂H1|100
− µ)2

]

=
1

100
σ̄2

WI + σ2

AI.
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While the three settings act in the same way on the coefficient of the first term, a difference emerges
for what concerns the coefficient of the second term: Settings 2 and 3 fail to efficiently reduce the
contribution of the across-instance variance. The variance yielded by the three settings is equal
only in the trivial case in which the across-instance variance is null, that is, when all instances
share the same expected cost µ = µi, for all i ∈ I.

Remark 1. Although the estimator µ̂H10|10
considered in Setting 2 is less data-efficient than the

best µ̂H100|1
considered in Setting 1, it is nonetheless consistent. On the other hand, the estimator

µ̂H1|100
given in Setting 3 is not consistent—apart for the trivial case in which σ2

AI
= 0.

Remark 2. It should be noticed that no scenario exists in which the estimator µ̂HN|1
yields a higher

variance than any other estimator µ̂SN
. That is, no better setting exists than “N instances, one

run per instance,” irrespectively of the measures PI and PC .

Corollary 3. The variance of the cost c obtained by the given metaheuristic on the whole class
I of instances can be decomposed in two terms, the expected within-instance variance and the
across-instance variance:

σ2 = E
[

(c − µ)2
]

= σ̄2

WI + σ2

AI.

Proof. The result follows immediately Corollary 1 if we notice that the variance of the cost c is
equal to the variance of an estimator µ̂H1|1

= c based on a single sample.

The expected within-instance variance σ̄2
WI

measures how different can be the costs c obtained by
the metaheuristic in different runs on the same instance; this quantity is averaged over all instance
in I. On the other hand, the across-instance variance σ2

AI
measures how different the instances

are one from the other for what concerns the expected value of the cost obtained by the given
metaheuristic.

Remark 3. Taken together, Corollaries 1 and 3 are just the statement, in a multivariate setting,
of a basic and well known property of the variance of empirical estimates of univariate quantities:
Given an univariate stochastic variable x with E[x] = µ and E

[

(x − µ)2
]

= σ2, the variance of

µ̂N = 1/N
∑N

j=1
xj , where xj are independently realizations of x, is given by E

[

(µ̂N−µ)2
]

= σ2/N .

5 Yet another possible estimator

Somebody might wish to consider the average across different instances of the averages of the
results obtained for each of the considered instances. Formally, this estimator is:

Definition 9. The estimator µ̃SN
is given by:

µ̃SN
=

1

K

K
∑

k=1





1

nk

nk
∑

j=1

ckj



 .

Remark 4. It can be immediately verified that if the experimental setting is homogeneous, that
is, if SN = HK|N/K , then µ̃HK|N/K

= µ̂HK|N/K
.

Theorem 3. µ̃SN
is an unbiased estimator of µ.

Proof. The proof is immediate and is given only for the sake of completeness:

∫

µ̃SN
dP (µ̃SN

) =

∫

K
∑

k=1

nk
∑

j=1

ckj

nkK

K
⊙

k=1

dPI(ik)

nk
⊙

j=1

dPC(ckj |ik)

=

K
∑

k=1

nk
∑

j=1

1

nkK

∫

ckj dPC(ckj |ik) dPI(ik) = µ.
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Lemma 3. In a given scenario P (c, i) = PC(c|i)PI(i), and for a given experimental setting
SN = (K,n1, n2, . . . , nK), the variance of the estimator µ̃SN

is given by:

∫

(µ̃SN
− µ)2 dP (µ̂SN

) =
1

K2

K
∑

k=1

1

nk
σ̄2

WI +
1

K
σ2

AI.

Proof. It results:

Z

(µ̃SN − µ)2 dP (µ̃SN ) =

∫

 

K
X

k=1

„

1

nkK

nk
X

j=1

ckj

«

− µ

!

2 K
K

k=1

dPI(ik)

nk
K

j=1

dPC(ckj |ik) =

=

∫

 

K
X

k=1

nk
X

j=1

ckj − µik + µik − µ

nkK

!2 K
K

k=1

dPI(ik)

nk
K

j=1

dPC(ckj |ik).

It follows that:
Z

(µ̃SN − µ)2 dP (µ̃SN ) =

=

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

∫

ckj − µik

nkK

ck′j′ − µik′

nk′K
dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′)+ (4a)

+

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

∫

µik − µ

nkK

µik′ − µ

nk′K
dPI(ik) dPI(ik′)+ (4b)

+

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

2

∫

ckj − µik

nkK

µik′ − µ

nk′K
dPC(ckj |ik) dPI(ik) dPI(ik′). (4c)

Let us now consider one by one the three addends given in 4a, 4b, and 4c.

Addend 4a: Concerning the terms for which k 6= k′, it results:

∫

ckj − µik

nkK

ck′j′ − µik′

nk′K
dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

∫

ckj − µik

nkK

0

dPC(ckj |ik) dPI(ik)

∫

ck′j′ − µik′

nk′K

0

dPC(ck′j′ |ik′) dPI(ik′) = 0.

Similarly, if k = k′ but j 6= j′, it results:

∫

ckj − µik

nkK

ck′j′ − µik′

nk′K
dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

∫

 
∫

ckj − µik

nkK

0

dPC(ckj |ik)

∫

ckj′ − µik

nkK

0

dPC(ckj′ |ik)

!

dP (ik) = 0.

On the other hand, if k = k′ and j = j′, it results:

∫

ckj − µik

nkK

ck′j′ − µik′

nk′K
dPC(ckj |ik) dPI(ik) dPC(ck′j′ |ik′) dPI(ik′) =

=

∫

(ckj − µik)2

(nkK)2
dPC(ckj |ik) dPI(ik).

Thus, addend 4a amounts to:

1

K2

K
X

k=1

 

1

n2

k

nk
X

j=1

Z

(ckj − µik)2 dPC(ckj |ik) dPI(ik)

!

.
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Addend 4b: since the integrand is independent from j and j′, it results:

K
X

k=1

nk
X

j=1

K
X

k′=1

nk′
X

j′=1

∫

µik − µ

nkK

µik′ − µ

nk′K
dPI(ik) dPI(ik′) =

=
1

K2

K
X

k=1

K
X

k′=1

Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′).

If k 6= k′, it results:
Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′) =

Z

(µik − µ)

0

dPI(ik)

Z

(µik′ − µ)

0

dPI(ik′) = 0.

Otherwise, if k = k′, it results:
Z

(µik − µ)(µik′ − µ) dPI(ik) dPI(ik′) =

Z

(µik − µ)2 dPI(ik).

Thus, addend 4b amounts to:

1

K2

K
X

k=1

Z

(µik − µ)2 dPI(ik).

Addend 4c: it results:
∫

ckj − µik

nkK

µik′ − µ

nk′K
dPC(ckj |ik) dPI(ik) dPI(ik′) =

=

∫

 

µik′ − µ

nk′K

∫

ckj − µik

nkK

0

dPC(ckj |ik)

!

dPI(ik) dPI(ik′) = 0.

Thus, addend 4c is identically null.

It results therefore:

∫

(µ̃SN
− µ)2 dP (µ̃SN

) =

=
1

K2

K
∑

k=1





1

n2

k

nk
∑

j=1

∫

(ckj − µik
)2 dPC(ckj |ik) dPI(ik)



 +
1

K2

K
∑

k=1

∫

(µik
− µ)2 dPI(ik).

On the basis of Definitions 7 and 8 we can write:

∫

(µ̃SN
− µ)2 dP (µ̃SN

) =
1

K2

K
∑

k=1

1

nk
σ̄2

WI +
1

K
σ2

AI.

Let us consider the coefficient of the first term.

Lemma 4. For a given K < N and under the additive constraint
∑K

k=1
nk = N , the quantity

C(SN ) =
∑K

k=1
(1/nk) is minimized if and only if maxk nk − mink nk ≤ 1, that is, nk = N/K ∀x

when K divides N , or nv = n for K − r distinct nv and nw = n+1 for other r distinct nw, where
n and r are quotient and rest of the integer division of N by K, respectively. For the given K, the
optimal value of the function C is therefore

C(S̄N |K) =
K − r

n
+

r

n + 1
.
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Proof. In order to prove the statement, let us assume by way of contradiction, that the setting
SN = {K,n1, . . . , nK} with maxk nk −mink nk > 1 minimizes C(SN ) while satisfying the additive
constraint. Let further M = arg maxk nk and m = arg mink nk, we have thus nM − nm − 1 > 0.
We can generate a setting S ′

N = {K,n′
1, . . . , n

′
K} with n′

m
= nm + 1, n′

M
= nM − 1, and n′

k = nk,
otherwise. Clearly SN satisfies the additive constraint. Moreover, it results:

C(S ′

N ) =

K
X

k=1

1

n′

k

= C(SN ) −

„

1

nm

+
1

nM

«

+

„

1

n′
m

+
1

n′

M

«

=

= C(SN ) −
nm + nM

nmnM

+
n′

m + n′

M

n′
mn′

M

= C(SN ) −
nm + nM

nmnM

+
nm + 1 + nM − 1

(nm + 1)(nM − 1)
=

= C(SN ) −
nm + nM

nmnM

+
nm + nM

nmnM + nM − nm − 1
.

Since the nM − nm − 1 > 0, the second fraction is smaller than the first and thus C(S ′
N ) < C(SN ),

which is a contradiction. To conclude the prof we need to observe that for a given K, all possible
settings for which maxk nk − mink nk ≤ 1 is satisfied are just permutations of the same set
{n1, n2, . . . , nK}, where the first r elements have value n + 1 and the other K − r elements have
value n. All such settings share therefore the same value of the function C, which is clearly
invariant under permutation of the addends, and thus all of them minimize it. The condition is
therefore necessary and sufficient. The rest of the statement follows trivially.

Lemma 5. For any possible setting SN = {K,n1, . . . , nK} that satisfies the additive constraint
∑

k nk = N , it results:

1

K2

K
∑

k=1

1

nk
≥

1

Kn
,

where n is the result of the integer division of N by K.

Proof. From Lemma 4 it follows that for any generic setting SN ,

1

K2

K
∑

k=1

1

nk
≥

1

K2

(

K − r

n
+

r

n + 1

)

=
1

K

(

K − r

K

1

n
+

r

K

1

n + 1

)

.

The two addends in parenthesis in the last term represent a weighted average of 1/n and 1/(n+1),
with weights (K − r)/K and r/K, respectively. The value in parenthesis is therefore constrained
to stay between 1/n and 1/(n + 1), thus:

1

Kn
≤

1

K

(

K − r

K

1

n
+

r

K

1

n + 1

)

≤
1

K(n + 1)
.

The statement follows.

Theorem 4. In any scenario P (c, i) = PC(c|i)PI(i), for any given number of total runs N ,
the estimator µ̃SN

is not better than the estimator µ̂HN|1
for what concerns the variance of the

estimate.

Proof. Let us recall that according to Corollary 1, the variance of µ̂HN|1
is:

E
[

(µ̂HN|1
− µ)2

]

=
1

N
σ̄2

WI +
1

N
σ2

AI.

According to Lemma 3, the variance of µ̃SN
is:

E
[

(µ̃SN
− µ)2

]

=
1

K2

K
∑

k=1

1

nk
σ̄2

WI +
1

K
σ2

AI.
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Let us compare the coefficients of σ2
WI

and σ2
AI

in the two equations. According to Lemma 5,

1/K2
∑K

k=1
1/nk ≥ 1/Kn, where n is the result of the integer division of N by K. Therefore

Kn ≤ N and

1

K2

K
∑

k=1

1

nk
≥

1

N
. (5)

On the other hand, K ≤ N and therefore

1

K
≥

1

N
. (6)

In both inequalities 5 and 6, the equal sign holds if and only if µ̃SN
= µ̂HN|1

.

6 Conclusions

The paper considers a class of linear unbiased estimators to empirically evaluate, on the basis of
N runs the expected behavior of the given metaheuristic on a class of instances. In particular, we
formally show that performing one single run on N different instances guarantees that the variance
of the estimate is minimized. Any other experimental setting fails being efficient for what concerns
the reduction of the variance. Moreover, we show that the total variance can be decomposed in
two terms: the expected within-instance variance and the across-instance variance. A suboptimal
experimental setting fails to act on the latter.

Contrary to popular belief, there is no trade-off involved in the definition of the experimental
setting when the total number of runs is fixed. The setting “N instances, one run per instance”
is shown to be uniformly the best across all possible scenarios, that is, irrespectively of the ratio
between expected within-instance variance and across-instance variance.
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Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for con-
figuring metaheuristics. In Langdon, W. B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D.,
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