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Abstract We introduce AutoMoDe: a novel approach to the automatic design of control
software for robot swarms. The core idea in AutoMoDe recalls the approach commonly
adopted in machine learning for dealing with the bias–variance tradedoff: to obtain suit-
ably general solutions with low variance, an appropriate design bias is injected. AutoMoDe
produces robot control software by selecting, instantiating, and combining preexisting para-
metric modules—the injected bias. The resulting control software is a probabilistic finite
state machine in which the topology, the transition rules and the values of the parameters are
obtained automatically via an optimization process that maximizes a task-specific objective
function. As a proof of concept, we define AutoMoDe-Vanilla, which is a specialization
of AutoMoDe for the e-puck robot. We use AutoMoDe-Vanilla to design the robot control
software for two different tasks: aggregation and foraging. The results show that the control
software produced by AutoMoDe-Vanilla (i) yields good results, (ii) appears to be robust
to the so called reality gap, and (iii) is naturally human-readable.
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1 Introduction

In this paper, we introduce a novel approach to automatically generate control software for
robot swarms.

In swarm robotics (Şahin 2005; Dorigo et al. 2014), a large number of robots cooperate
and accomplish a task that a single individual would be unable to accomplish. A robot swarm
is a highly redundant system that acts in a self-organized way without the need of any form
of centralized coordination. The collective behavior of the swarm is the result of the local
interactions that each robot has with its neighboring peers and with the environment.

The self-organized and distributed nature of robot swarms makes them challenging to
design. The requirements are typically expressed at the swarm level by specifying the task
that the swarm, as a whole, has to perform. However, the swarm is a collective entity
and, as such, it is an immaterial concept. In particular, the swarm itself cannot be pro-
grammed, only the individual robots can. The designer’s task is therefore indirect: he has
to design the individual-level behaviors of the robots that, through a complex set of robot–
robot and robot–environment interactions, result in the desired collective behavior of the
swarm.

At the moment, there is no general approach to the design of robot swarms, even though
some preliminary proposals have been made (Hamann and Wörn 2008; Kazadi et al. 2009;
Berman et al. 2011; Brambilla et al. 2012). Currently, most robot swarms are designed by hand
using a trial-and-error process: an individual-level behavior is iteratively improved and tested
until the desired collective behavior is obtained. This approach is closer to craftsmanship than
to engineering: the quality of the result strongly depends on the experience and intuition of
the designer. Moreover, this trial-and-error process is time consuming, costly, and lacks
repeatability and consistency.

An alternative way to develop robot swarms is to rely on automatic design. To date, the
main automatic design approach that has been adopted in swarm robotics is evolutionary
robotics (Nolfi and Floreano 2000). In this approach, an evolutionary algorithm is used to
obtain the parameters of a neural network that maps the sensor readings of the individual
robot into values fed to its actuators. A large literature shows that evolutionary robotics is able
to produce robot swarms that can perform a number of tasks—for a review, see Brambilla
et al. (2013).

Nonetheless, evolutionary robotics presents some known limitations, and an engineering
methodology for the design of robot swarms via evolution is still lacking (Trianni and Nolfi
2011). Most importantly, in the context of swarm robotics, the evolutionary approach has
not demonstrated the capability of scaling in complexity and providing solutions for realistic
applications. Among the causes, we reckon the difficulty in overcoming the reality gap, that
is, having a seamless transition from simulation—the main tool for evolutionary design—to
the real world.

In this paper, we conjecture that the observed limitations of evolutionary robotics result
from an uncontrolled representational power of the control architecture that is typically
adopted in evolutionary robotics. Indeed, one of the tenets of evolutionary robotics is to
minimize the assumptions and the bias injected by the designer (Harvey et al. 1997; Nolfi
and Floreano 2000; Bongard 2013). The idea is to rely on an evolutionary process to fine-
tune the dynamics of the interaction between the robot and the environment. To this aim, a
common assumption in the literature is the need of a control architecture that features a high
representational power—for example, a neural network.

Unfortunately, a high representational power may be counter-productive in the peculiar
working conditions faced in swarm robotics, which are highly dynamic and uncertain due to
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the numerous robot–robot interactions. We claim that such working conditions offer limited
regularities to be discovered and exploited by the evolutionary process. As a consequence,
it is likely that evolution will produce control software that exploits “idiosyncratic features”
(Floreano and Keller 2010) of the simulation, that is, the differences between simulation
and reality, which unavoidably occur. This control software will generalize poorly and will
be unable to overcome the reality gap. Because the a priori identification of the differences
between simulation and reality is in general difficult, an automatic design approach must
be as robust as possible to their presence. With the goal of obtaining a robust automatic
design approach, we cast the generalization problem in terms of the bias–variance tradeoff
formalized in the machine learning literature (Geman et al. 1992). In Sect. 3, we discuss the
implications of the bias–variance tradeoff on the automatic design of robot swarms, and we
conjecture that the generalization problem can be tackled through a suitable injection of bias
in the control architecture adopted by the automatic design process.

Driven by our conjecture, we develop a novel automatic design approach for robot swarms,
called AutoMoDe (automatic modular design). AutoMoDe generates an individual-level
behavior in the form of a probabilistic finite state machine by searching for the best com-
bination of preexisting parametric modules. In other words, AutoMoDe develops control
software by selecting, via an optimization algorithm, the topology of the probabilistic finite
state machine, the modules to be included, and the value of their parameters. The set of
modules and the rules to compose a probabilistic finite state machine represent the bias
injected in the automatic design process. As a result of the injection of bias, we con-
jecture that the variance of the behaviors designed by AutoMoDe will be consequently
reduced.

As a proof of concept, we present AutoMoDe-Vanilla, which is a specialization of
AutoMoDe for the e-puck robot (Mondada et al. 2009a,b). More precisely, AutoMoDe-
Vanilla is specialized for a given reference model of the e-puck. This reference model
formally describes the characteristics of the robot and the functionalities that are made avail-
able to the control software.

We evaluate AutoMoDe-Vanilla using two tasks commonly studied in the swarm robot-
ics literature: aggregation and foraging. The results obtained show that AutoMoDe-Vanilla
automatically designs control software that allows the swarm to successfully accomplish the
two tasks. Moreover, the control software designed by AutoMoDe-Vanilla is naturally
understandable for a human.

The rest of the paper is organized as follows: In Sect. 2 we discuss the related work. In
Sect. 3 we discuss the bias–variance tradeoff in the automatic design of robot swarms. In
Sect. 4, we introduce AutoMoDe and AutoMoDe-Vanilla. In Sect. 5, we describe the
experimental protocol and the setup we used to evaluate AutoMoDe-Vanilla. In Sect. 6
we present the results we obtained and in Sect. 7 we discuss them. Finally, in Sect. 8 we draw
some conclusions and we highlight directions for future work.

2 Related work

In this section, we provide a brief overview of the main design approaches for swarm robotics,
namely the behavior-based approach and evolutionary robotics. Both have been developed
and largely applied in the single-robot domain, and subsequently adopted in swarm robotics.
In this context, they have shown some advantageous features and some limitations, which
are discussed below. For an extensive review of the swarm robotics literature, we refer the
reader to Brambilla et al. (2013).
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The behavior-based approach In the behavior-based approach, the designer develops the
robot control software manually via trial and error. The control software is organized in a
modular architecture that is largely inspired by Brooks’ subsumption architecture (Brooks
1986). The application of the behavior-based approach to swarm robotics is straightforward,
and has been the most common choice to date (Brambilla et al. 2013). However, the behavior-
based approach does not address the core design problem that one faces in swarm robotics: it
does not provide any guideline to define what the individual robot should do so that the given
swarm-level specifications are met. Some ideas to address this core design problem have
been proposed (Hamann and Wörn 2008; Kazadi et al. 2009; Berman et al. 2011; Brambilla
et al. 2012) but they often rely on strong assumptions and their generality is limited, as they
typically refer to specific tasks.

Reinforcement learning coupled with the behavior-based approach has been successfully
applied in the single-robot domain to arbitrate low-level behaviors—see for instance Maes
(1991). In the multi-robot domain, reinforcement learning was also applied with some suc-
cess (Parker 1996; Matarić 1997a,b). See Panait and Luke (2005) for a review. Nonetheless,
the application of reinforcement learning to swarm robotics presents several major challenges,
among which the difficulty to reward the individual contribution to the global behaviour (i.e.,
the credit assignment problem), the large size of the state space, and the dynamic and uncer-
tain working conditions—for a discussion, see Brambilla et al. (2013).

Evolutionary robotics Evolutionary robotics is an automatic design approach that applies
artificial evolution to the development of robot control software (Nolfi and Floreano 2000).
A number of robot swarms have been designed using evolutionary robotics. For example,
Baldassarre et al. (2007) used evolutionary robotics to design a coordinated motion behaviour,
and Trianni and Dorigo (2006) extended this behaviour with hazard-avoidance capabilities.
Trianni and Nolfi (2009) developed a synchronization behavior. Hauert et al. (2008) designed
control software for a swarm of aerial robots to create a communication network.

Besides being used as a design approach, evolutionary robotics is also used to shed light
on questions of relevance in evolutionary biology. Marocco and Nolfi (2007) studied the
evolution of communication for solving a collective navigation problem. Waibel et al. (2009)
studied the performance of homogeneous and heterogeneous teams evolved under individual
and collective selective pressure. Tuci (2009) studied linguistic interaction between agents
to form common perceptual categories. Mitri et al. (2011) used evolutionary robotics to
investigate the correlation between genetic relatedness and reliability of evolved signaling
strategies in a foraging scenario. Winfield and Erbas (2011) used evolutionary robotics to
explore imitation and the emergence of a sort of artificial culture in multi-robot systems.
Finally, Wischmann et al. (2012) studied the evolutionary development of robust and efficient
communication strategies in robot swarms.

The suitability of evolutionary robotics as an automatic design approach in swarm robot-
ics is discussed in Sect. 3. Before concluding this brief review, it is worth mentioning that
several attempts to marry behavior-based and evolutionary approaches have been made in
the single-robot domain (e.g., Urzelai et al. 1998). Recently, Duarte and co-workers used a
neural network to arbitrate either hand-coded low-level behaviors (Duarte et al. 2012a) or
other neural networks (Duarte et al. 2012b). Riano and McGinnity (2012), in the context
of robot manipulators, used artificial evolution to obtain a probabilistic finite state machine
composed of predefined low-level behaviors. A notable example of the evolution of behavior-
based control software in swarm robotics is an original approach based on grammar evolution
(Ferrante et al. 2013). With this approach, a foraging behavior has been designed, but exper-
iments were limited to simulation: no validation on robots has been provided to date.
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3 The bias–variance tradeoff in the automatic design of robot swarms

A widely recognized problem in evolutionary robotics is the so-called reality gap problem:
the control software developed in simulation does not produce the same behavior and perfor-
mance when instantiated in the physical system. Several techniques have been proposed to
mitigate this problem. For example, Miglino et al. (1995) increased the realism of simulation
using samples of the responses of sensors and actuators of the robot; Jakobi (1997) suggested
the inclusion of noise in the simulation of sensors and actuators and in the conditions experi-
enced by the robots during the design process; more recently, Bongard et al. (2006) and Koos
et al. (2013) alternated simulation with tests on the physical system to correct the simulator
nuisances. The reality gap problem is a specific instance of a wider problem related to the
generalization abilities of evolutionary robotics—and of any automatic design approach—
that is, the overfitting of the solution to the particular conditions encountered during the
design process. By continuously refining the control software in a subset of the possible
operating conditions, solutions are obtained that match the specificities or idiosyncrasies of
these conditions (Floreano et al. 2008).

Our contention is that the inability to generalize to unexperienced working conditions in
the automatic design of robot swarms should be considered in the light of the bias–variance
tradeoff, which is a well known concept developed in the domain of machine learning (Geman
et al. 1992). With respect to the training of neural networks, it has been formally shown
that a low bias—i.e., the potential capability of reproducing any input–output mapping—
entails a high variance, that is, a hypersensitivity to contingent elements in the training set,
which eventually results in overfitting and in the inability to generalize to an independent
test set. In evolutionary robotics, the standard approach to the overfitting problem amounts
to the attentive definition of the conditions experienced by the robots during the design
process. This usually corresponds to the introduction of variability in order to remove the
regularities that can cause overfitting (Floreano et al. 2008). In the single robot domain,
Pinville et al. (2011) proposed to promote generalization by taking inspiration from the three
data sets approach adopted in supervised learning. Overall, if variability is introduced in
the working conditions experienced by the robot at design time, a low bias does not hinder
generalization. In this context, one can adopt a control architecture that features a high
representational power and therefore manage the robot–environment interaction in a very
fine-grained way. This allows obtaining solutions that could not be obtained otherwise—for
a discussion in the single-robot domain, see Nolfi (2002). It is interesting to note that the
idea of injecting variability at design time has been adopted also in the training of neural
networks within the domain of supervised learning: indeed, it has been formally shown
that the addition of noise to training data is equivalent to a form of regularization (Bishop
1995).

Unfortunately, this idea does not scale well with the number and complexity of operating
conditions (Floreano et al. 2008). In particular, this idea does not appear to be appropri-
ate in swarm robotics because the number of states in which a robot swarm can be found
increases exponentially with the number of its robots, and augments the conditions against
which the control software must prove flexible and robust. In this context, it is not trivial
to define opportunely-varied operating conditions so as to guarantee that the robot swarm
can experience similar states sufficiently often. Additionally, the highly dynamic working
conditions faced in swarm robotics offer limited regularities to be found by the evolutionary
process. Also, any small modification in the control software may lead to strong changes
in the robot–robot interactions, hindering a progressive refinement of the global behavior.
This does not mean that evolutionary robotics is deemed to failure, as the several successful
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experiences demonstrate (Trianni and Nolfi 2011; Brambilla et al. 2013). Instead, it means
that the design problem is worsened, and the variance of the obtained solutions increased.

The mainstream approach adopted in supervised learning to deal with the bias–variance
tradeoff amounts to limiting the variance by injecting an appropriate bias (Dietterich and Kong
1995). In practice, this means restricting the representational power while trying, at the same
time, to preserve the ability of representing the system at hand. Indeed, simple approximators
characterized by a low representational power often perform better than competitors that
display a much higher representational power (Geman et al. 1992).

We believe that the injection of bias is a suitable strategy to be explored in swarm robotics.
As discussed above, automatic design approaches might be unable to properly exploit the high
representational power offered by a control architecture that enables a fine-grained control
of the robot–environment interaction. By reducing the representational power, and therefore
working at a coarser level of granularity, it is possible to reduce the overfitting problem and
obtain effective solutions. In robotics, this amounts to generating solutions that overcome
the realty gap and that can be effectively used in real-world applications.

In this paper, we propose an automatic design approach in which the control software has
a much reduced representational power with respect to those so far adopted in evolutionary
robotics, but proves able to produce behaviors that are of interest in swarm robotics.

4 AutoMoDe

AutoMoDe (automatic modular design) is an approach to automatically generate modular
control software in the form of a probabilistic finite state machine. We chose probabilistic
finite state machines as a control architecture because they are commonly used in the manual
design of robot swarms due to their modularity and readability. Probabilistic finite state
machines are composed of states and transitions. In AutoMoDe, states are chosen among a
set of preexisting constituent behaviors and transitions are defined on the basis of a set of
preexisting conditions. In the following, we will collectively refer to constituent behaviors
and conditions as modules. AutoMoDe automatically searches for the best combination of
modules to perform a given task.

Each constituent behavior is an activity that the robot can perform. Constituent behaviors
have a set of parameters that regulate their internal functioning. Parameters allow AutoMoDe
to fine-tune constituent behaviors and fit different situations. Different instances of the same
constituent behavior can be obtained by assigning different values to the parameters and can
coexist in the same probabilistic finite state machine.

Conditions are used to trigger transitions from a constituent behavior to another one in
response to a particular event. Similarly to constituent behaviors, conditions can be fine-tuned
through a set of parameters and can be instantiated multiple times in the same probabilistic
finite state machine.

The output of AutoMoDe is thus a combination of specific instances of modules where the
parameters and the topology of the connections are optimized for the task at hand. AutoMoDe
explores a search space that is represented by all the possible probabilistic finite state machines
that can be obtained by instantiating and combining the given modules. Within AutoMoDe,
the exploration of the search space can be performed using a wide range of optimization
algorithms.

In AutoMoDe, the fact that the control software is obtained by selecting, assembling, and
fine-tuning some given modules introduces a bias and reduces the representational power:
the control software produced is a priori constrained to belong to the space of the finite
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state machines that can be composed out of the given modules. This limits the possibility
to fine-tune the dynamics of the robot–robot and robot–environment interaction. As we will
show with the experimental results presented in Sect. 6, if the set of modules is appropriately
defined, the bias that is introduced reduces the variance and increases the generalization
capabilities of the obtained control software, without hampering its effectiveness.

The specialization of AutoMoDe

AutoMoDe is a general framework that needs to be specialized: (i) AutoMoDe has to be
adapted to the given robotic platform, and (ii) the optimization process has to be defined. In
the following, we will refer to the person that performs the specialization of AutoMoDe for
a specific platform as the expert.

The expert specializes AutoMoDe for a specific platform on the basis of a reference model,
an abstraction of the robotic platform that specifies in formal terms its characteristics and
capabilities. The reference model defines the way in which we think of the robots and the way
in which we intend the interaction of a robot with the environment and with other robots. In
particular, the reference model defines an interface between the hardware layer and the logic
layer represented by the control software. As an example, the reference model of a platform
featuring an ambient light sensor could include the capability to distinguish between night
and day. This capability could take the form of a Boolean variable that is updated by the
hardware every, say, 100 ms and that can be read by the control software.

The reference model implicitly defines the class T of tasks that can be performed using a
swarm composed of instances of the given robotic platform. For example, a task that requires
separating blue objects from green objects cannot be performed by robots that are unable to
distinguish green from blue. On the basis of the reference model, the expert must produce
the set of modules that will be used by the specialization of AutoMoDe that is intended
to produce control software for the corresponding platform. The set of modules implicitly
defines the class T

′ of tasks that can be performed by a swarm of the given platform whose
control software is obtained by assembling them.

In the ideal case, the set of modules perfectly and exhaustively exploits all the capabilities
provided by the reference model and T

′ ≡ T. In practice, it has to be expected that the set
of modules produced by the expert fails to suitably exploit some of the capabilities provided
by the reference model, with the result that T

′ will be a proper subset of T. In this process of
specialization, the experience of the expert plays an important role. Indeed, the expert defines
the constituent behaviors and the conditions by taking inspiration from those that have been
previously presented in the literature and is guided by her personal understanding of what
tasks are relevant in swarm robotics.

It has to be noticed that the specialization of AutoMoDe for a given reference model is
task independent and has to be done only once: the same set of modules will be then used
to design the control software for any task that one will subsequently wish to tackle with the
given platform. It will be clearly unrealistic to expect that a specialization of AutoMoDe for
a reference model is able to perform a task t �∈ T, where T is the class of tasks implicitly
defined by the given reference model. On the other hand, given the current understanding of
swarm robotics, whether any task t ∈ T can be performed via the set of modules produced
by the expert—that is, whether T

′ ≡ T—is an empirical question.
Concerning the definition of the optimization process, a number of elements have to be

selected including: the optimization algorithm to span the space of possible control software;
a way to initialize the optimization algorithm; possible constraints on the finite state machine
to be produced—e.g., the maximum number of states and of outgoing transitions for each
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state; and a way to assess the performance of a candidate control software. We foresee that, to
assess the performance of control software candidates, the optimization process will typically
rely on computer-based simulations. The specialization of AutoMoDe for a specific robotic
platform involves therefore the selection of an appropriate simulator of the robotic platform
at hand.

4.1 Proof of concept: AutoMoDe-Vanilla

AutoMoDe-Vanilla is a proof-of-concept specialization of AutoMoDe. Our goal in this
paper is not to define the ultimate automatic design method, but to show that the core ideas
of AutoMoDe are valid. For this reason, AutoMoDe-Vanilla is unsophisticated in many
respects such as the way in which probabilistic finite state machines are represented and
optimized. We will explore more sophisticated instances of AutoMoDe in future research.

4.1.1 Robot platform and reference model

AutoMoDe-Vanilla is specialized for a swarm of e-puck robots extended with the Overo
Gumstick, the ground sensor, and the range-and-bearing board—see Figure 1 for a picture of
the platform. The e-puck robot is a small wheeled robot designed for research and education
(Mondada et al. 2009a,b). It is equipped with eight IR transceivers that can be used as light
and proximity sensors. The IR transceivers are distributed around the body of the robot—for
details on the position of the sensors, see Mondada et al. (2009b). The Overo Gumstick is
a single-board computer that allows the e-puck to run Linux. The ground sensor comprises
three IR transceivers positioned in the front of the robot and pointed downward to measure
the reflectivity of the ground. The range-and-bearing board (Gutiérrez et al. 2009) comprises
12 IR emitters and 12 receivers equally distributed along the perimeter of the board and

Fig. 1 The e-puck robot
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Table 1 Reference model—proxi is the reading of the i-th proximity sensor and � qi is the angle at which
the i-th proximity sensor is positioned with respect to the head of the robot; lighti is the reading of the i-th
light sensor and � qi is the angle at which the i-th light sensor is positioned with respect to the head of the
robot; gndi is the reading of the i-th ground sensor; n is the number of robots in the neighborhood; rm and
� bm are respectively the range and bearing of the m-th neighbor; vl and vr are respectively the speed of the
left and right wheel; and v̄ is the maximum speed of the robot. Sensors and actuators are updated with a period
of 100 ms

Sensors/actuators Variables

Proximity proxi ∈ [0, 1], � qi , with i ∈ {1, 2, . . . , 8}
Light lighti ∈ [0, 1], � qi , with i ∈ {1, 2, . . . , 8}
Ground gndi ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range and bearing n ∈ N and rm , � bm , with m ∈ {1, 2, . . . , n}
Wheels vl , vr ∈ [−v̄, v̄], with v̄ = 0.16 m/s

Period of the control cycle: 100 ms

pointed radially and outwards, on the horizontal plane. The range-and-bearing board allows
the e-puck to reliably send and receive messages within a range of about 0.7 m. When an
e-puck receives a message via the range-and-bearing board, it also obtains information about
the relative position of the sender.

In this paper, the reference model that we adopt for the platform described above is given
in Table 1. According to this reference model, the control software has a control cycle of
100 ms. At each control step, the control software makes decisions based on the variables
proxi , lighti , gndi , n, rm , and � bm , which abstract the proximity, light, ground sensors and
range-and-bearing readings. Similarly, the control software can set the variables vl and vr ,
which abstract the actuators that operate on the wheels. Specifically, proxi can assume values
in the range [0, 1] and it is equal to 0 when the i-th proximity sensor does not perceive
obstacles within a 0.03 m range, while it is equal to 1 when the obstacle is closer than
0.01 m; lighti can assume values in [0, 1] and it is equal to 0 if the i-th light sensor perceives
only the ambient light, while it is equal to 1 when the sensor saturates;1 gndi can assume only
three values and it is equal to 0, 0.5 or 1 when the i-th ground sensor detects, respectively, a
black, a gray, or a white floor; n is the number of robots in the neighborhood, as perceived
via the range-and-bearing board; rm and � bm are the range and bearing of each robot m in
the neighborhood. The values vl and vr define the speed of the wheels and are constrained
in [−v̄, v̄], with v̄ = 0.16 m/s being the maximum speed of the e-puck.

4.1.2 Module set

In AutoMoDe-Vanilla, the set of modules comprises six constituent behaviors and six
conditions. Some of the modules have tunable parameters that are optimized by AutoMoDe-
Vanilla. AutoMoDe-Vanilla selects, combines, and fine-tunes these modules to pro-
duce a finite state machine. This finite state machine operates with a period of 100 ms, which
is the same period at which sensors and actuators are updated, as specified by the refer-
ence model given in Table 1. At each control cycle, the constituent behavior associated with
the current state is performed. Subsequently, each outgoing transition of the current state is
considered and the corresponding condition is evaluated to decide whether the transition is

1 The reference model assumes that, besides the ambient light, at most one light source is present in the
environment.
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enabled or not. In case no transition is enabled, no state transition occurs. If at least a transition
is enabled, one of them is randomly selected and the current state is updated accordingly.

In the following, we describe the modules of AutoMoDe-Vanilla. We adopt the con-
vention that tunable parameters are denoted by letters of the Greek alphabet.

Constituent behaviors
Exploration: the robot moves straight. If any of the proximity sensors positioned in front

senses an obstacle, that is, if proxi ≥ 0.1 for any i ∈ {1, 2, 7, 8}, the robot turns on itself for
a random number of control cycles chosen in {0, 1, . . . , τ }, where τ is an integer parameter
in {1, 2, . . . , 100}. The robot turns away from the direction faced by the proximity sensor
that returned the highest value.

Stop: the robot stays still.
Phototaxis: the robot moves towards the light source, if perceived; otherwise, it moves

straight. Obstacle avoidance is embedded: the robot follows the vector w = w′ −kwo, where
k is a hard-coded parameter whose value has been a priori fixed to 5 and w′ and wo are
vectors defined as:

w′ =
{

wl = ∑8
i=1

(
lighti ,

� qi
)
, if light is perceived,

(1, � 0) , otherwise;

wo =
8∑

i=1

(
proxi ,

� qi
)
,

(1)

where � qi is the angle at which sensor i is positioned with respect to the head of the robot.

Anti-phototaxis: the robot moves away from the light source, if perceived; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector w = w′ −kwo,
where

w′ =
⎧⎨
⎩

−wl , if light is perceived,

(1, � 0) , otherwise;

and k, wl , and wo are defined in phototaxis.

Attraction: the robot uses the range-and-bearing board to go in the direction of the robots
in neighborhood, if any; otherwise, it moves straight. Obstacle avoidance is embedded: the
robot follows the vector w = w′ − kwo, where

w′ =
⎧⎨
⎩

wr&b = ∑n
m=1

(
α

rm
, � bm

)
, if robots are perceived,

(1, � 0) , otherwise;
(2)

and α is a real-valued parameter in [1, 5], and where wo and k are defined in phototaxis.

Repulsion: the robot moves away from the other robots in its neighborhood, if any; oth-
erwise, it moves straight. Obstacle avoidance is embedded: the robot follows the vector
w = w′ − kwo, where

w′ =
⎧⎨
⎩

−wr&b, if robots are perceived,

(1, � 0) , otherwise;

and wr&b is defined in attraction, while wo and k are defined in phototaxis.
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Conditions

Black-floor: if gndi = 0, for any i ∈ {1, 2, 3}, the transition is enabled with probability
β, where β is a parameter.

Gray-floor: same as black-floor but the prerequisite is that gndi = 0.5, for any i ∈ {1, 2, 3}.
White-floor: same as black-floor but the prerequisite is that gndi = 1, for any i ∈ {1, 2, 3}.
Neighbor-count: the transition is enabled with probability:

z(n) = 1

1 + eη(ξ−n)
, (3)

where n is the number of robots in the neighborhood, η ∈ [0, 20] is a real-valued parameter
and ξ ∈ {0, 1, . . . , 10} is an integer parameter. The transition is enabled with probability 0.5
if n = ξ . The parameter η regulates the steepness of the function z(n) at n = ξ .

Inverted-neighbor-count: the transition is enabled with probability 1 − z(n), where z(n)

is defined in Eq. 3.

Fixed-probability: the transition is enabled with probability β, where β is a parameter.

4.1.3 Optimization process

Concerning the optimization algorithm, AutoMoDe-Vanilla adopts F-Race (Birattari et al.
2002; Birattari 2009), a racing algorithm originally developed for tuning metaheuristics. In
particular, we use the implementation provided by the irace package (López-Ibáñez et al.
2011) for R (R Development Core Team 2008). F-Race has been designed to handle sto-
chasticity in the evaluation of candidates: in the case of swarm robotics, the performance
of a control software candidate is highly stochastic and the ability of F-Race to handle sto-
chasticity appears to be appropriate in this context. Moreover, F-Race is an extremely simple
algorithm and in the context of this paper we wish to keep the focus on the control architecture
rather than on the optimization process.

Within the optimization process, control software candidates are evaluated via a computer-
based simulation performed using ARGoS (Pinciroli et al. 2012), a multi-engine simulator of
swarm robotics systems. In particular, we use ARGoS’ 2D dynamic physics engine to model
the robots and the environment.

F-Race iteratively evaluates a set of control software candidates, all generated randomly
at the beginning of the optimization process, and discards the candidates that have a low
expected performance, until a stopping criterion is met.

At iteration i , the candidates that have not been discarded in the previous i−1 iterations
are evaluated on a test case. A test case is characterized by the specific initial condition—e.g.,
the initial position of the robots in the arena. To evaluate a control software candidate on a test
case, F-Race performs a simulation run. After all candidates are evaluated, F-Race discards
those candidates whose expected performance, as estimated on the i test cases considered so
far, is statistically dominated by at least another candidate. The surviving candidates enter
iteration i +1. The process stops either when a single candidate remains or when a predefined
maximum number of evaluations has been performed. The maximum number of evaluations
is the available design budget and is part of the specifications of an automatic design problem.
It measures the computational resources available to produce the desired design.

In order to limit the complexity of the control software produced and therefore its represen-
tational power, we limit the number of states and conditions included: AutoMoDe-Vanilla
can generate probabilistic finite state machines with up to four states, where each state can
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Fig. 2 Example of a finite state machine generated by AutoMoDe-Vanilla. The notation adopted is the
one defined in Eq. 4

have up to four outgoing transitions. The candidates are generated at the beginning of the
optimization process using the built-in sampling procedure provided by the irace package.
This procedure samples the space defined as:

〈#S, Si , S p
i , #Ni , Ni, ji , Ci, ji , C p

i, ji
〉 i = 1, 2 . . . , #S

ji = 1, 2, . . . , #Ni

(4)

where #S ∈ {1, 2 . . . , 4} is the number of states of the probabilistic finite state machine; Si ∈
{1, 2 . . . , 6} is the constituent behavior of state i ;2 S p

i are the parameters of the constituent
behavior Si , if any; #Ni ∈ {1, 2, . . . , 4} is the outdegree of state i , that is, the number of
transitions outgoing state i ; ji is an index spanning the #Ni successors of state i ; Ni, ji ∈
{1, 2, . . . , #S} is the ji -th successor of state i ; Ci, ji ∈ {1, 2, . . . , 6} is the condition associated
to the transition that connects state i to its ji -th successor Ni, ji ; and C p

i, ji
are the parameters

of the condition Ci, ji , if any. Figure 2 provide an illustrative example of a finite state machine
sampled from the space defined in Eq. 4.

The cardinality of the initial set of candidates is one sixth of the available design budget.
AutoMoDe-Vanilla implements the best practice commonly followed in automatic

design to obtain control software that has the highest chance to overcome the reality gap: A
simulated uniform noise of 5 % is added on the proximity, ground and light sensors and on
the wheels actuator (Jakobi et al. 1995). The noise of the range-and-bearing board follows
a model defined using empirical data. Moreover, the initial position and orientation of the
robots at each iteration of the F-Race algorithm are randomly set by sampling from a uniform
distribution.

5 Experimental setup

To assess the capabilities of AutoMoDe-Vanilla, we conduct a series of experiments
in which AutoMoDe-Vanilla is used to automatically design the control software for
robot swarms that are intended to perform two different tasks: aggregation and foraging.
We selected these two tasks because they are common benchmarks in swarm robotics and
it appears that they can be performed by a swarm of robots characterized by the reference
model presented in Sect. 4.1.

The experiments presented in this paper adhere to a hands-off experimental protocol:
we do not allow any human intervention in the automatic design process. The aim of the

2 State i = 1 is the initial state of the probabilistic finite state machine.
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experiments is to assess the expected performance of AutoMoDe-Vanilla in design-
ing control software for a robot swarm.3 We run three sets of experiments that differ in
the design budget, that is, the total number of simulation runs that AutoMoDe-Vanilla
can use to design the control software. The three design budgets are: 10000, 50000, and
200000 simulation runs. For each design budget, we execute 20 independent runs of
AutoMoDe-Vanilla and we therefore obtain 20 instances of control software; we then
assess the performance of these instances on the robots by performing a single run of each of
them.4

The experimental protocol we adopt provides for a number of elements that reduce the
intervention of the human experimenter during the evaluation of the control software produced
by AutoMoDe-Vanilla: the control software obtained in simulation is automatically cross-
compiled by ARGoS and copied on the e-pucks without any modification. The initial position
and orientation of the robots is obtained by running the constituent behavior exploration—see
Sect. 4.1—for a random number of seconds in {1, 2, . . . , 20}. The performance of the robots
is automatically computed by a tracking system (Stranieri et al. 2013) on the basis of data
gathered via a ceiling camera.

With the aim of quantifying the effects of the reality gap, we perform a further indepen-
dent assessment in simulation of the instances of control software produced by AutoMoDe-
Vanilla. Also in simulation, each instance is assessed by performing a single run.

5.1 A yardstick: EvoStick

To put AutoMoDe-Vanilla into perspective, we define another automatic design method
and we perform a comparison. This second method, which we call EvoStick, is based
on evolutionary robotics and implements the current best practice in the automatic design
of robot swarms. EvoStick is the same method that we have already successfully used in
previous experiments (Francesca et al. 2012).
EvoStick is based on the same reference model that we have defined in Table 1 and

that is adopted by AutoMoDe-Vanilla. Each robot is controlled by a fully connected,
feed-forward neural network whose control cycle has a period of 100 ms, as specified by
the reference model. The neural network has 24 inputs, 2 outputs and no hidden units.
The inputs are based on the capabilities defined by the reference model: 8 proximity sen-
sors proxi ∈ [0, 1], i ∈ {1, 2, . . . , 8}; 8 light sensors lighti ∈ [0, 1], i ∈ {1, 2, . . . , 8};
3 ground sensors gndi ∈ {0, 0.5, 1}, i ∈ {1, 2, 3}; and 5 aggregated inputs from the
range-and-bearing board. The aggregated inputs from the range-and-bearing board are:

3 Because AutoMoDe-Vanilla is stochastic, reporting and discussing its expected performance appears to
be the appropriate choice (Birattari and Dorigo 2007).
4 The reader might wonder why, in order to estimate the expected performance of AutoMoDe-Vanilla
on each design budget, we repeat the design process 20 times and we test the resulting design on the robots
only once. Due to time constraints, we have decided to run 20 robot experiments per design budget. Having
fixed to 20 the total number of robot experiments, one might be tempted to consider alternative protocols:
repeat the design 20 times and evaluate each resulting design 1 time; repeat the design 10 times and evaluate
each resulting design 2 times; repeat the design 5 times and evaluate each resulting design 4 times; or even
performing the design once and evaluate the result 20 times. Although all these protocols would produce an
unbiased estimate of the expected performance of AutoMoDe-Vanilla, the one implemented in this study
is the one that minimizes the variance of the estimate. A similar issue has been formally studied in the context
of the assessment of stochastic optimization algorithms (Birattari 2004, 2009).
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Table 2 EvoStick—partition
of the available design budget

Budget Evolutionary
algorithm

(Iterations) Post-evaluation (Per
individual)

10,000 8,000 (8) 2,000 (20)

50,000 40,000 (40) 10,000 (100)

200,000 150,000 (150) 50,000 (500)

z̃(n) = 1 − 2/(1 + en), where n is the number of the robots perceived; and the scalar pro-
jections of wr&b = ∑n

m=1 (1/rm, � bm) on the four unit vectors that point at 45◦, 135◦, 225◦,
and 315◦ with respect to the head of the robot. Please notice that z̃(n) is defined as the
function z(n) adopted in AutoMoDe-Vanilla (Eq. 3), with η = 1, ξ = 0, and scaled
and shifted to be constrained in [−1, 1]; wr&b is defined as the function of the same name
adopted in AutoMoDe-Vanilla (Eq. 2), with α = 1. The activation of the output neu-
rons is computed as the weighted sum of all input units plus a bias term, filtered through a
standard logistic function. The outputs of the neural network are scaled in [−vm, vm], with
vm = 0.16 m/s, as specified by the reference model, and are used to set the speed of the two
wheels.

The neural network is characterized by a set of 50 parameters. Each parameter is a real
value in [−5, 5]. These parameters are optimized via a standard evolutionary algorithm. The
cardinality of the population is 100. The initial population is randomly generated. At each
iteration, each individual in the population is evaluated through 10 simulations performed
using ARGoS’ 2D dynamic physics engine. The following population is generated via elitism
and mutation. The elite composed of the 20 best individuals is included unchanged. The rest
of the population is obtained from the elite via mutation: parameters are modified by adding a
random value drawn from a normal distribution with mean 0 and variance 1. The evolutionary
algorithm stops after a predefined number of iterations. The final population is re-evaluated
a number of times to obtain a better performance estimation, and the individual with the
highest mean performance is selected. The available design budget is partitioned in two
parts: one for the evolutionary algorithm and one for the post-evaluation. See Table 2 for the
details.
EvoStick implements exactly the same precautions adopted in AutoMoDe-Vanilla

to reduce the risk of obtaining control software that does not overcome the reality gap—
see Sect. 4.1.3. In the definition of EvoStick, we do not employ any further tech-
nique to overcome the reality gap. The adoption of other techniques is not a priori justi-
fied, and would possibly become apparent only a posteriori, when looking at the results
obtained on each specific task to be performed. If additional techniques to overcome the
reality gap are adopted on a per-task basis and a posteriori on the base of the results
obtained, the overall design process would end up into a human-driven trial-and-error search
and this would defeat the purpose of our experimental protocol and of our research as a
whole.

We assess the performance of EvoStick with the same criteria and under the same
experimental conditions that we adopt for the assessment of AutoMoDe-Vanilla. In par-
ticular, the two methods use the same simulator, design control software for the same robotic
platform under the same reference model, and optimize the same objective function under the
same environmental conditions. Concerning the robot experiments, to limit spurious effects
of battery level and of other possible unforeseen ambiental contingencies, the order of the
experiments is randomly generated and runs of instances of control software produced by
AutoMoDe-Vanilla and by EvoStick are interleaved.
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(a) (b)

Fig. 3 Arena for the aggregation task. a Simulated arena and 20 e-pucks; b Real arena and 20 e-pucks

5.2 Tasks

In all the experiments that we perform on the aggregation and the foraging tasks, the swarm
comprises 20 e-puck robots. The available time to carry out the task is 250 s. The robots
operate in a dodecagonal arena of 4.91 m2, surrounded by walls. For future reference, we
define a coordinate system with origin in the center of the arena and x axis parallel to one of
the sides. Coordinates in this system are given in meters.

5.2.1 Aggregation

In the aggregation task, the swarm has to cluster in one of the two black areas of the arena’s
floor. The aggregation task is the same analyzed in (Francesca et al. 2012). Figure 3 shows
the arena for the aggregation task in both simulation and reality. The floor of the arena is
gray and there are two black circular areas on the floor, namely a and b. The areas have the
same radius of 0.35 m and are centered in (0.6, 0) and (−0.6, 0).

At the beginning of each run, the 20 e-puck robots are randomly distributed in the arena.
The objective function is Faggregation = max(Na, Nb)/N , where Na and Nb are the number
of robots that are in the black areas a or b at the end of the simulation, and N = 20 is the
size of the swarm. This objective function equals 1 if all the robots are aggregated in one of
the two areas.

5.2.2 Foraging

In the foraging task, the swarm has to retrieve as many objects as possible from two sources
and deposit them in the nest. Because the e-puck platform has no grasping capabilities,
we abstract the actions of retrieving and depositing objects: We reckon that an e-puck has
retrieved an object when it enters a source, which is represented by a black circle on the
ground. Similarly, we reckon that an e-puck has deposited the object it is carrying when it
enters the nest, which is represented by a white area. Our foraging task is inspired by the one
presented in (Liu et al. 2007). Figure 4 shows the arena for the foraging task in both simulation
and reality. The two black areas have a radius of 0.15 m and are centered in (0.75, 0) and
(−0.75, 0). Moreover, a light source is positioned behind the nest area, in (0, 1.25) at 0.75 m
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(a) (b)

Fig. 4 Arena for the foraging task. The red circle at the bottom of the simulated arena represents the light
source. a Simulated arena and 20 e-pucks; b Real arena and 20 e-pucks

from the ground. The objective function is Fforaging = No, where No is the total number of
objects retrieved and deposited.

6 Results

We analyze the results of the experiments from two points of view: first, we estimate the per-
formance of the control software produced by AutoMoDe-Vanilla, using the performance
of the one produced by EvoStick as a yardstick; second, we compare the performance of
the control software produced by AutoMoDe-Vanilla in simulation and on the robots to
evaluate the impact of the reality gap. Also in this case, we use EvoStick as a yardstick.

Moreover, for each task we provide a behavioral analysis of the swarms designed by
AutoMoDe-Vanilla and by EvoStick. In this analysis, we also highlight the main dif-
ferences between the behaviors observed in simulation and those observed in reality.

The complete set of experimental data and video recordings of all the robot experiments
is available online (Francesca et al. 2013).

6.1 Aggregation

Figure 5 shows the performance of AutoMoDe-Vanilla and of EvoStick in simulation
and on the robots.

In all three sets of experiments, AutoMoDe-Vanilla designs robot swarms that perform
better than those designed by EvoStick: for each design budget, the difference in perfor-
mance between AutoMoDe-Vanilla and EvoStick is statistically significant according
to the Wilcoxon test, with 95 % confidence.

A visual inspection of the plots shows that AutoMoDe-Vanilla and EvoStick
have similar performance in simulation. For what concerns the reality gap, in the case of
EvoStick there is a large difference in performance between simulation and reality. The
control software obtained by EvoStick, even though it yields good results in simulation,
is not able to reliably produce aggregation on the robots. On the contrary, in the case of
AutoMoDe-Vanilla the difference between simulation and reality is small. A statistical
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Fig. 5 Aggregation—performance of the control software obtained using different design budgets. The plot
shows, for AutoMoDe-Vanilla and EvoStick, the performance of the 20 instances of the control software
(one for each independent run) both in simulation (narrow boxes) and on the robots (wide boxes). A box
comprises observations between the first and third quartile; the black horizontal line represents the median
of the observations; the top whisker extends either to the largest observation or to 3/2 of the upper quartile
(whatever is smaller); the bottom whisker is defined similarly; observations falling outside the extension of
whiskers (if any) are outliers and are represented as circles. a 10,000 design budget; b 50,000 design budget;
c 200,000 design budget

Table 3 Aggregation—
estimated mismatch between
simulation and reality, and
corresponding confidence
intervals according to the
Wilcoxon test

Estimated 95 % confidence
Budget mismatch interval

10000 AutoMoDe-Vanilla 0.01 −0.06 0.08

EvoStick 0.19 0.07 0.30

50000 AutoMoDe-Vanilla 0.03 −0.12 0.17

EvoStick 0.40 0.30 0.50

200000 AutoMoDe-Vanilla 0.01 −0.11 0.12

EvoStick 0.40 0.30 0.50

analysis based on the Wilcoxon test is reported in Table 3. The data confirms that the mismatch
between simulation and reality is lower in AutoMoDe-Vanilla than in EvoStick. The
difference between the mismatch observed for AutoMoDe-Vanilla and for EvoStick is
significant with a confidence level of at least 95 %. The table indicates that the performance
difference between simulation and reality observed in EvoStick increases with the design
budget from 10000 to 50000, and then saturates. These observations could be explained as
a result of overfitting: the larger the design budget, the longer the fine-tuning of the control
software, and consequently the larger the risk of overfitting, up to saturation.

In all 60 runs, across the three budget levels, AutoMoDe-Vanilla has used the whole
available design budget. As a result, AutoMoDe-Vanilla and EvoStick have always run
the same number of simulated experiments.

6.1.1 Behavioral analysis

In this section, we describe the behavior of the control software designed by AutoMoDe-
Vanilla and EvoStick for aggregation.
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Fig. 6 Aggregation—an instance of control software designed by AutoMoDe-Vanilla. The initial state is
represented by the double-line circle. The robot performs attraction and moves toward the other robots. When
it detects the black floor, it stops. In the stop state it checks for its transitions. It changes state when it detects
the gray floor. It also starts moving, with a 0.25 probability, independently from the floor color

AutoMoDe-Vanilla. A feature of AutoMoDe is that the obtained control software is a
probabilistic state machine, which is human readable. The 60 instances of the control software
designed by AutoMoDe-Vanilla for the aggregation task have, with minor differences, the
same structure. Figure 6 shows a representative instance. Each robot starts in the attraction
state, that is, it moves toward other robots. With probability 1, a robot changes state to stop
when it senses that the floor is black. In the stop state, the robot does not move. The robot then
changes the state to attraction with a 0.25 probability or when it perceives the gray floor. This
last event can happen because the robot is pushed outside the black area by other robots. The
resulting collective behavior can be described as follows: Initially, robots tend to move in the
direction of their neighbors and tend to cluster. Robots that enter a black area stop for some
time and act as an attraction point for their neighbors. After a while, all robots are either in
a black area or in its proximity. Eventually, most of the robots are attracted inside the black
area where the majority of the robots are located. The behaviors observed in simulation and
in reality are similar.
EvoStick. Because neural network are not human readable, the only way to analyze

the control software obtained by EvoStick is to instantiate it on the robots and observe
the resulting behavior. The 60 instances of control software obtained by EvoStick show
behaviors that are qualitatively similar to one another. When a robot is in the gray area,
it moves following a circular trajectory. The radius of this trajectory decreases when the
number of robots perceived increases. This movement allows the robots to create aggregates.
When a robot enters a black area, the radius of its trajectory becomes very small, to the point
that the robot almost rotates on the spot. In this condition, the robot leaves the black area
only because pushed out by other robots. The robots that are in the black areas attract other
robots. From our observations, it appears that the quality of the resulting collective behavior
strongly depends on where the first aggregates are created: if these aggregates are far from
the black areas, the robots are not able to find the black areas. In simulation, the behavior is
qualitatively similar but the circular trajectories have a larger radius with respect to the ones
observed in reality.

6.2 Foraging

Figure 7 shows the performance achieved on the foraging task by AutoMoDe-Vanilla and
by EvoStick, both in simulation and on the robots. The obtained results show the same
trend observed in the aggregation task.
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Fig. 7 Foraging—performance of the control software obtained using different design budgets. The plot
shows, for AutoMoDe-Vanilla and EvoStick, the performance of the 20 instances of the control software
(one for each independent run) both in simulation (narrow boxes) and on the robots (wide boxes). See the
caption of Fig. 5 for an explanation of the graphical conventions adopted in the plot. a 10,000 design budget;
b 50,000 design budget; c 200,000 design budget

Table 4 Foraging—estimated
mismatch between simulation
and reality, and corresponding
confidence intervals according to
the Wilcoxon test

estimated 95 % confidence
budget mismatch interval

10000 AutoMoDe-Vanilla −3 −7 2

EvoStick 39 31 47

50000 AutoMoDe-Vanilla −2 −6 3

EvoStick 57 51 64

200000 AutoMoDe-Vanilla −1 −6 4

EvoStick 70 64 79

In all three experiments, AutoMoDe-Vanilla designs robot swarms that perform better
than those designed by EvoStick. Differences are all significant according to the Wilcoxon
test, with 95 % confidence.

Concerning the reality gap, it is interesting to note that EvoStick shows signs of over-
fitting: the mismatch between simulation and reality is large and increases with the design
budget. On the contrary, AutoMoDe-Vanilla is able to design control software that is
robust to the reality gap. The statistical analysis reported in Table 4 confirms these observa-
tions: In all the experiments, the difference between the mismatch observed for AutoMoDe-
Vanilla and for EvoStick is significant with a confidence level of at least 95 %. In the
case of AutoMoDe-Vanilla, the simulation slightly underestimates the performance of
the robots. This is shown by the fact that the expected difference is slightly negative. On the
contrary, in the case of EvoStick the simulation greatly overestimates the performance of
the robots.

In all 60 runs, across the three budget levels, AutoMoDe-Vanilla has used the whole
available design budget. As a result, AutoMoDe-Vanilla and EvoStick have always run
the same number of simulated experiments.
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(a)

(b)

Fig. 8 Foraging—the two classes of control software designed by AutoMoDe-Vanilla. The initial state is
indicated by a double-line circle. a First class: an example; b Second class: an example

6.2.1 Behavioral analysis

In this section, we describe the behavior of the control software designed by AutoMoDe-
Vanilla and EvoStick for foraging.

AutoMoDe-Vanilla. The 60 instances of the control software obtained by AutoMoDe-
Vanilla can be grouped into two classes. The instances in the first class feature only
exploration. See Fig. 8a for an example. By performing exploration, the robots periodically
enter the black and the white areas incrementing the value of the objective function. Instances
of the first class of control software are frequent when the lowest design budget is used (14
instances out of 20), while they are rare for the other design budgets (3 and 0 instances in the
case of design budget 50000s and 200000s, respectively). The instances of the second class
feature an alternation between exploration and phototaxis. See Fig. 8b for an example. A
robot uses exploration to search for the black areas. When it finds a black area, it switches to
phototaxis to return to the white area. When it reaches the white area, it resumes exploration.
The behaviors observed in simulation and in reality are similar.
EvoStick. The 60 instances of the control software obtained by EvoStick show

qualitatively similar behaviors. Robots explore the arena following curved trajectories that
are perturbed by the presence of other robots, the color of the floor and the intensity of
the light. As a result of the perturbations, robots follow the walls and sometimes cross the
arena passing on the black areas (the sources) and on the white area (the nest). However,
this behavior is strongly affected by interference among robots: frequently, robots create
aggregates that dissolve after a while. Concerning the comparison between the simulation
and reality, two are the main differences. (i) robots interfere less with each other in simulation
than in reality; and (ii) circular trajectories have a larger radius in simulation than in reality.

7 Discussion

In the experiments reported in Sect. 6, AutoMoDe-Vanilla scored better than EvoStick
at overcoming the reality gap. It should be noted that the two methods have been tested
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under the same conditions: same simulator, environment, objective function, design bud-
get, robot platform, and reference model. The reality gap that AutoMoDe-Vanilla and
EvoStick had to overcome is therefore the same. Nonetheless, the mismatch between sim-
ulation and reality that we observed is significantly higher for the control software generated
by EvoStick than for the one generated by AutoMoDe-Vanilla. Following the con-
jecture we presented in Sect. 3, we ascribe this difference to the different representational
power of the control architecture adopted by AutoMoDe-Vanilla and EvoStick. It is
true that, besides the control architecture, AutoMoDe-Vanilla and EvoStick also differ
in the optimization algorithm adopted. Nonetheless, it is our contention that the impact of
the optimization algorithm is negligible in this context and that the control architecture is
the main responsible for the differences observed in our experiments. To backup this con-
tention, we performed some exploratory experiments (Francesca et al. 2013) in which we
compare EvoStick with another method, FnnStick, in which the control architecture
is the same neural network adopted in EvoStick and the optimization process is the one
adopted in AutoMoDe-Vanilla. The results of these exploratory experiments show that
FnnStick performs slightly worse than EvoStick, which excludes that the differences
between the performance of AutoMoDe-Vanilla and EvoStick can be explained by
a superior performance of the optimization process adopted in AutoMoDe-Vanilla. We
can therefore conclude that our experiments corroborate the conjecture presented in Sect. 3:
the high representational power provided by the fine-grained control architecture adopted in
EvoStick is not properly exploited and results in solutions that do not properly generalize
to the real world. On the contrary, AutoMoDe-Vanilla, with its relatively low representa-
tional power, displays better generalization capabilities. In terms of the bias–variance tradeoff
(Geman et al. 1992), AutoMoDe-Vanilla has a higher bias towards a relatively restricted
class of behaviors—specifically, those that can be obtained by assembling a four-state prob-
abilistic finite state machine starting from the six given constituent behaviors and the six
given conditions. As a result, AutoMoDe-Vanilla expectedly features a lower variance
compared to EvoStick. Eventually, this results in a superior ability to overcome the reality
gap.

8 Conclusions and future work

Guided by the concept of bias–variance tradeoff, we introduced AutoMoDe: a new approach
to the automatic design of control software for robot swarms. AutoMoDe designs control
software in the form of probabilistic finite state machines by drawing from a given set of
preexisting parametric modules. AutoMoDe automatically selects, combines, and instanti-
ates these modules using an optimization algorithm that aims at maximizing a task-specific
measure of performance. By injecting an appropriate bias in the form of predefined modules,
we can reduce the variance of the automatic design process. As a result, the control software
produced by AutoMoDe is able to overcome the reality gap.

We presented also AutoMoDe-Vanilla, which is a proof-of-concept instance of Auto-
MoDe specialized for a specific reference model of the e-puck robot. We carried out an
experimental analysis in which we used AutoMoDe-Vanilla to design control software
for two different swarm robotics tasks: aggregation and foraging. The experiments were car-
ried out using a hands-off experimental protocol, that is, no human intervention has been
allowed in the automatic design process. The results show that AutoMoDe-Vanilla is
able to successfully design control software for both tasks. The control software obtained
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by AutoMoDe-Vanilla overcomes the reality gap: the performance in simulation and in
reality is comparable.

Future work will focus on the empirical characterization of the class of tasks for which
AutoMoDe-Vanilla can successfully design control software. We will also focus on the
development of other instances of AutoMoDe. We plan on improving over AutoMoDe-
Vanilla by exploring the use of different optimization algorithms and more sophisticated
ways to encode probabilistic finite state machines.
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