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Abstract. In this paper, we present a novel method for performing collective trans-
port in the presence of obstacles. Three robots are physically connected to an object
to be transported from a start to a goal location. The task is particularly challenging
because the robots have a heterogeneous perception of the environment. In fact, the
goal and the obstacles can be perceived only by some of the robots. Hence, the task
requires appropriate negotiation of the direction among the robots. We developed a
novel negotiation strategy in order to tackle this challenge. We perform experiments
in simulation. In the experiments, we analyze efficiency in an environment with only
one obstacle, and robustness in an environment with several obstacles.

1 Introduction

The ability of robots to move in a coordinated fashion is of central importance for
the multi-robot research community. Research in coordinated motion can be divided
in two categories. In the first category we find works in multi-robot formation, were
no physical connection between robots is assumed. In the second category, we find
works in collective transport and coordinated motion where there is a physical con-
nection between the robots or between the robots and the object to be transported.

Works in multi-robot formation have been documented in some surveys [1, 2],
where the authors compare centralized vs. decentralized approaches. The most
studied decentralized method in this area are social potentials [3] and artificial
physics [4].

In collective transport, a group of robots has to cooperate in order to transport an
object that, because of its weight, cannot be transported by a single robot. The task
we are interested in is particularly challenging because communication between the
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robots is only local, robots have no access to global information and they coordinate
using a decentralized approach.

Several works on collective transport were developed using centralized ap-
proaches like leader-following behaviors. In these works [5, 6, 7], a group of robots
is able to collectively push/pull an object. In order to coordinate their movements,
the robots follow a leader that has the knowledge of the goal area or of the path.

Balch [8] was one of the first to study the impact of communication in multi-robot
systems. Later, Donald et al. [9] and Yamada et al. [10], studied collective transport
with limited communication. In the first work [9], robots had to transport an object
without a goal location, whereas in the second work [10] robots had to carry an
heavy object towards a common goal determined by a light emitter (photo-taxis).

Campo et al. [11] investigated the use of goal negotiation strategies for perform-
ing collective transport to a given goal location. The robots used by the authors had
only a noisy perception of the goal, or they were not able to perceive the goal at
all. Furthermore, each of the robots used LEDs and an on-board camera to perceive
the orientation of the other robots, and used this information to compute an average
direction of motion.

Groß and Dorigo [12] used artificial evolution to synthesize a neural network to
achieve collective transport. Their robots were able to cope with objects of different
size and weight as well as with groups of different size (from 4 to 16). The authors
were able to obtain three different transport strategies. In the first one, the robots
directly connect to the object and pull it. In the second one, the robots connect to
each other (self-assembly) and to the object in order to pull it. In the third strategy,
the robots create a physical loop around the object. This last strategy involves a high
number of robots and a small (but heavy) object.

Trianni et al. [13] studied a task similar to obstacle avoidance in collective trans-
port. They call it collective hole-avoidance. In their task, robots are physically con-
nected to each other, and they have to navigate in an environment with holes. The au-
thors used artificial evolution for the synthesis of robots’ neural network controllers,
and studied different communication strategies among the robots: no direct commu-
nication, handcrafted signaling and communication induced by artificial evolution.
Differently from the work described in this paper, in Trianni et al. [13] no object had
to be transported. Furthermore, the robots did not have a specific goal direction on
where to go but they were rather exploring the environment while avoiding holes.

Baldassarre et al. [14] studied a task similar to the one studied by in Trianni et
al. [13]. In their study, physically connected robots collectively navigate in an en-
vironment with obstacles, furrows and holes and a light source to be found. The
authors used artificial evolution to synthetize a behavior able to integrate these three
sub-behaviors in a coherent fashion: collective motion, collective obstacle avoid-
ance and collective light approaching. However, the synthetized behavior heavily
exploited the traction sensor, a specialized sensor that is able to detect forces exerted
by the connected robots and that might not be available on all robotics platforms.

In this paper, a group of three simulated robots have to transport an object from
a start to a goal location in an environment with obstacles. Almost all tasks studied
so far in the literature consider collective transport in an obstacle-free environment
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(a) (b)

Fig. 1 Picture of the simulated foot-bot (a) and of the hand-bot, which is the irregularly
shaped object to be carried (b)

where a goal location is given, with two notable exceptions. In Trianni et al. [13], the
environment is cluttered but a goal direction is not given. In Baldassarre et al. [14],
both elements can be present at the same time but the synthesized solution, rather
than exploiting direct local communication, uses instead indirect communication
via specialized hardware. In this paper, we propose a novel negotiation strategy
for collective transport in presence of both obstacles and of a goal. The proposed
negotiation strategy is based on local direct communication.

The remaining of the paper is organized as follows. In Section 2, we describe
the task and the simulated robots. In Section 3, we describe the method we propose
to design the controller. In Section 4, we present experimental results, whereas in
Section 5 we conclude and sketch possible future works.

2 Task Definition

A group of three identical simulated mobile robots (like the one depicted in Fig-
ure 1a) attach to an irregularly shaped object (b). The task is to collectively transport
the object from an initial to a goal location. The robots we used are modeled after
the foot-bot robot [15], developed within the Swarmanoid project1. The irregularly
shaped object is an object which cannot be grasped through its entire perimeter but
only in certain regions. In our case, it is another simulated robot of the Swarmanoid
project, the hand-bot (Figure 1b) [16]. This robot is a manipulator that does not have
locomotion capabilities and thus needs to be carried by the foot-bots. In this task,
the hand-bot is passive during the entire process.

1 http://www.swarmanoid.org

http://www.swarmanoid.org
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The environment is an arena where a number of cuboid-shaped obstacles are
present, each with an arbitrary position and orientation. Each of the three simulated
mobile robots is equipped with a number of sensors and actuators. We considered
and used only the following sensors and actuators: i) a light sensor, that is able to
perceive the intensity of the light coming from different directions around the robot;
ii) a distance scanner, that is used to obtain distance and angular values from the
robot to other objects in the environment [17]; iii) a range and bearing communica-
tion system, with which a robot can send a message to other nearby robots in line of
sight [18]; iv) a gripper, that is used to physically connect to the transported robot
considered in the experiment; v) a turret actuator which, when set to active mode,
can be used to rotate the gripper installed on a rotating ring or, when set to passive
mode, can freely rotate in accordance with the speed of the wheels when the gripper
is gripping an heavy object; vi) a wheels actuator, that is used to control indepen-
dently the speed of the left and right wheels of the robot. The light sensor and the
distance scanner sensor are not perfect but subject to a certain degree of noise. The
range and bearing communication device can perceive messages coming from up to
4 meters away, more than enough to guarantee communication between the robots
when connected. The distance scanner has a range of 1.5 meters.

In the experiments, we also place a light source in a fixed position in the envi-
ronment behind the goal area. The light source has a high intensity such that it can
be perceived by all the robots. The aim of the light source is to act as a common
environmental cue, which is used as an implicit and shared reference frame by the
robots.

For the sake of simplicity, the robots use the direction of the light source as the
goal direction, that is they perform photo-taxis. Since the proposed methodology
is not restricted to this case, in Section 3 we consider the goal direction and the
environmental cue (or light) direction as two separated concepts. In the case where
the goal direction is different from the light direction, the robot might need to be
equipped with a separate sensor to detect the goal direction.

The presence of obstacles and the need to move to a given goal location create
the need of handling conflicting individual decisions, which can be produced due to
the non uniform perception of the environment.

For each individual robot, information of the following nature can be available at
a given time:

No information: The goal is not perceived, for example because occluded by ob-
stacles, and no obstacles are perceived as well.

Goal only: Only the goal is perceived, hence the robot moves towards it.
Obstacle only: The robot does not perceive the goal. However, it perceives an

obstacle, hence it has to avoid it. At the same time, it has to inform other robots
about the obstacle avoidance direction.

Goal and obstacle: The robot perceives both the goal and an obstacle. The direc-
tion of movement, considered by the robot and communicated to the other robots,
has to take into account both these elements.
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Table 1 Explanation of the notation used to describe the two behaviors

Notation Meaning Behavior
θP Preferred direction when in Sstubborn state Social mediation
θS Socially mediated angle θS← � ∑k

i=0 e jθi Social mediation, collective
transport

θ0 Direction sent by social mediation behavior: θS in
Ssocial state or θP in Sstubborn state

Social mediation

θ1 . . .θk Direction received from the k neighbors Social mediation
θG Goal direction Collective transport
θCO Obstacle direction Collective transport
θOA Obstacle avoidance direction. It has to take into ac-

count also θG if the goal is perceived.
Collective transport

θF Direction of the shared environmental cue. All
other directions are always relative to this

Collective transport

θ S Weighted time average of θS Collective transport

We now have all the elements to introduce the method we propose for tackling this
task.

3 Method

In this section we first introduce the main idea behind the proposed method. Sub-
sequently, we present the collective transport behavior, which we decomposed into
three sub-behaviors: go to goal, obstacle avoidance and social mediation.

In the following, we will use a certain notation to denote directional information
used in the behaviors. This is explained and summarized in Table 1.

The low level behaviors go to goal and obstacle avoidance are used as follows.
The go to goal behavior is used to query sensors and to obtain a goal direction,
denoted as θG; the obstacle avoidance behavior is used to detect the presence of
obstacles and the angle θCO of the closest one. The social mediation and collective
transport behaviors are the core focus of the proposed method.

The social mediation behavior, explained in Section 3.1, is used to negotiate the
direction to be followed in collective transport. This is needed since, as explained in
Section 2, different robots in the group can have access to conflicting information,
for example one might perceive the goal as well as an obstacle while the others
might perceive just the goal. Furthermore, when two or more robots perceive an
obstacle, they can perceive it from different angles.

Once a collective decision has been made on the direction to be followed, this is
used by the collective transport behavior, explained more in details in Section 3.2.

3.1 Social Mediation

The social mediation behavior is responsible for the negotiation of the direction
of motion. The behavior uses the directional information given by θS and θP: θS
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represents a socially mediated heading direction and θP the robot desired heading
direction. The main idea behind the algorithm is the following. When a robot in the
group has no information (i.e., it does not have any information on the goal or on
the obstacles), it has an internal state set to Ssocial. In this state, the robot acts as a
repeater, that is, it computes θS, the average of the direction information available to
its neighbors, and it sends this value around. However, when information (such as
on the obstacle) is available to the robot, its internal state is set to Sstubborn. In this
state, it will relay its own preferred direction θP (for example the obstacle avoidance
direction) instead of θS. When all other robots are still sending θS, the opinion of the
stubborn robot will soon diffuse in the entire group, that is θS through the group will
converge to θP. The internal state of this behavior can be changed only by the overall
collective transport behavior, as explained in Section 3.2. Algorithm 1 depicts the
steps executed at every control step.

Algorithm 1. Social mediation control loop

1: Receive(θ1,θ2, . . . ,θk)

2: θS← � ∑k
i=0 e jθi

3: if state = Ssocial then
4: θ0 = θS
5: else
6: θ0 = θP
7: end if
8: Send(θ0)

At the beginning of the control loop, the robot receives the heading direction in-
formation θ1,θ2, . . . ,θk of its neighbors, where k is the number of neighbors. Com-
munication is restricted to all neighboring robots in line of sight [18], as we are
using the range and bearing communication mechanism. Due to this restriction, the

Fig. 2 The carried robot and the carrying robots. The circular arrows show the area of the
distance scanner which is active for sensing, whereas dashed straight arrow show the line of
sight communication relationships.
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robot attached at the center has k = 2 neighbors, whereas the other two have k = 1
neighbor (see Figure 2). The socially mediated heading θS is computed by averaging
the directional information ( � means “the angle of”) received by the neighbors (line
2), with the robot’s own information θ0.

By using the mechanism depicted above, we are solving the issue of how to
diffuse a heading direction information, perceived only by one robot, through the
entire group, without the need of special signaling. This allows all robots in a group
to be aware of the avoidance direction of an obstacle, even if only one member of
the group can perceive the obstacle.

In the following section, we describe how this mechanism is used to achieve
effective collective transport with obstacle avoidance.

3.2 Collective Transport and Obstacle Avoidance

In this section we present the behavior responsible for collective transport with ob-
stacle avoidance. This behavior uses the directional information computed in the
social mediation behavior. In this behavior, θO denotes the direction of the obstacle
(if perceived), θG denotes the goal direction (if the goal is perceived) and θOA de-
notes the obstacle avoidance direction (see table 1 for a summary). This directional
information is always considered as relative to the direction of the shared environ-
mental cue, denoted with θF and represented in our case by the light source.

Algorithm 2. Collective transport control loop

1: [θG,goalPerceived]← PerceiveGoal()
2: [θCO,d,obstaclePerceived]← PerceiveObstacle()
3: if goalPerceived or obstaclePerceived then
4: SocialMediation :: state← Sstubborn
5: else
6: SocialMediation :: state← Ssocial
7: end if
8: if goalPerceived then
9: SocialMediation :: θP← θG

10: end if
11: if obstaclePerceived then
12: if goalPerceived then
13: w←− d

min(d,dmax)
+1

14: else
15: w← 1
16: end if
17: θOA← � w · e jθO+π +(1−w) · e jθG

18: SocialMediation :: θP← θOA
19: end if
20: SocialMediation :: ControlStep()

21: θS← � (1−α) · e jθ S +α · e jθS

22: MotionControl(θS)
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At the beginning of Algorithm 2, sensors are queried to detect whether the goal
and/or obstacles are perceived (lines 1-2). The corresponding directions θG, corre-
sponding to the goal direction, and θCO, corresponding to the angle of the closest
obstacle, are also queried.

According to the information available to the robot (see Section 2) the internal
state of the social mediation behavior is set (lines 3-7). If the robot perceives an
obstacle with its distance scanner its state is set to Sstubborn. The same happens when
the robot perceives the goal. In all other cases, that is when both the goal and the
obstacles are not perceived, the state is set to Ssocial.

If the goal is perceived, the robot simply informs the others about the goal by
setting its desired direction θP to the goal direction θG (line 9).

In case an obstacle is perceived two things can happen. If no goal direction θG is
available, the robot simply tries to avoid the obstacle using the angle θOA = θCO +
π and by setting w = 1 (line 15). If, however, both the obstacle and the goal are
perceived, the robot needs to compute the desired direction according to this two
pieces of information: θO and θG are thus averaged using a weighted average and
the result is assigned to θOA (lines 17). The weighted average uses a weight w ∈
[0,1] dependent on the distance between the robot and the obstacle (line 13) which
represents how urgent it is to avoid obstacles: it is 1 when the obstacle is very close
(d = 0) and 0 when it is far away (d = dmax, the maximal perception range of the
obstacle avoidance behavior). We set dmax = 0.75 meters, half of the maximal range
of the distance scanner, and we use the min operator to avoid negative values for w.
The angle θOA is then assigned to the desired direction θP of the social mediation
behavior (line 18).

Once θP is computed, the control step of the social mediation behavior is exe-
cuted (line 20). As a result, the angle θS is computed by the social mediation behav-
ior. This angle is then filtered by computing a time average (line 21) to filter out the
effect of noise.

Finally, the motion control logic uses the filtered socially mediated direction θS

as a reference direction to be followed. The robot first converts the socially mediated
direction to its local frame of reference using the common environmental cue direc-
tion θF . All robots then compute the left and right wheels speed in the following
way:

NL = u+ωb , NR = u−ωb , ω = Kpθ S,

where NL, NR are the wheels rotation speed of the left/right wheel speed respectively,
b is the distance between the center of the robot and each of the wheels, u and
ω are the forward and angular velocities respectively. The forward velocity u is
kept constant, whereas we vary the angular velocity ω proportionally to the socially
mediated direction θ S to be followed, where Kp is a proportional factor (we assume a
clockwise convention for the angles). Furthermore, the motion control rule considers
the robot attached to the left as the left wheel of the compound system and the robot
attached to the right as the right wheel. This assumes that the two robots have always
the direction of the wheels axis parallel to each other and it is ensured by the fact
that we set the turret to active mode. Hence, the robot attached to the left of the
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compound will set both wheels speed to NL, whereas the robot to the right will set
them to NR. The robot at the center can instead independently control its own left
and right wheels depending on value computed by the motion control logic. The
turret of the central robot, which is set to passive mode, freely rotates passively and
follows the dynamics of the compound and the one imposed by the wheels.

To summarize the idea, the collective transport behavior interacts with the social
mediation behavior to obtain a socially mediated direction θ S which is consistent
in the group and allows a coherent motion. The social mediation behavior needs to
be set in the appropriate state (Sstubborn or Ssocial), according to which information
is available to the robot. It also needs the direction θP to be sent to the neighbors in
case it is in Sstubborn state. θP can be the direction to the goal, the obstacle avoidance
direction or the direction which takes into account both the goal and the obstacles.
The behavior achieves coherent collective motion even in case of conflicting opin-
ions, since the motion control logic uses the socially mediated direction, that is the
direction negotiated through the entire group, as the target direction to be followed.

4 Experiments and Results

We performed three sets of experiments. The first two sets consider a simple envi-
ronment, where we position an obstacle at the center of the arena with varying angle
α (see Figure 3a). For each setting, we executed 100 runs. Our prior expectation is
that the more α tends to 0, the longer it takes to avoid the obstacle in collective
transport. We also expect that the proposed behavior is robust enough to always ac-
complish the task (move from an initial to a goal location, see Figure 3b) in this
simplified setting. We hence report the completion times as a function of α . The
difference between the first and the second set of experiments is that in the first set
we just analyze the impact of the angle α by keeping the projected size of the obsta-
cle m fixed (Figure 3a), whereas in the second set we also analyze the impact of the
varying projected size, keeping l fixed. Execution times are reported in time-steps.
Each simulated second corresponds to 10 time-steps.

In the third and last set of experiments, we generate at random some more com-
plex environments, of the type depicted in Figure 3b. We report the success rate of
the behavior. We executed a total of 1000 runs, where in each run the angle and an
offset of the position of each obstacle is generated at random.

Figure 4 shows the results for the first two sets of experiments performed in
the simple environments. As we can see, the initial hypothesis can be accepted, as
the execution times solely depends on α and not on the projected length m of the
obstacle. In fact, execution times increase with increasing values for α . The more
the obstacle is perpendicular to the direction of motion, the longer it takes for the
robots to to perform obstacle avoidance.

The case α = 0 is particularly problematic. Average times are much higher, and
many more outliers are present (not fully shown due to scale differences). This is
explained by the fact that, when the obstacle is perpendicular to the direction of
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(a) (b)

Fig. 3 (a) The controlled obstacle’s parameter in the first two sets of experiments and (b) an
example of complex environment. S denotes the starting area, G the goal area.

(a) (b)

Fig. 4 Box plot of completion time for the experiment set with fixed m (a) and for fixed l (b)

motion, i.e. α = 0, the avoidance direction θOA takes some time to converge to one
of the two possible obstacle avoidance sides. All the runs were successful and no
collision was registered.

In the third set of experiments, results showed a remarkable success rate of 96%.
In the remaining 4% of the cases, robots hit an obstacle and hence the corresponding
run was terminated. After analyzing failures cases separately, we found out that they
were all due to slow turning rate achieved by the compound robot structure in the
goal direction after avoiding an obstacle. This slow turning rate made the robot hit
the next obstacle with the blind side of the carried structure, corresponding to the
region of the object where the robots cannot attach and which is blind with respect
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to the distance scanner. A video showing one typical run for this set of experiments
can be found in a supplementary page [19].

5 Conclusion and Future Work

In this paper, we presented a novel method to tackle a task that has received lim-
ited attention in the literature: obstacle avoidance in collective transport. The task
involves collective transport of an object by a group of three robots. In this task,
robots assemble to the object and have to navigate to a given goal location while
avoiding obstacles.

The proposed method consists of two interacting behaviors. The first behavior
is called social mediation and is used to perform negotiation of an heading direc-
tion which takes into account possibly conflicting perceptions of the members of
the group. The second behavior achieves collective transport, using this mediated
heading direction.

Experiments were performed in a simple arena with one obstacle placed at differ-
ent angles and in a more complex arena with several obstacles. Results in the simple
arena show that the efficiency (inversely linked to execution times) of the behavior
solely depends on the angle at which obstacles are placed, and that the more the
obstacle is placed perpendicularly to the direction of motion the more time it takes
to avoid it. In a more complex environment, we measured the success rate of the
proposed approach, obtaining 96% of success.

This work can be extended in a number of directions. As a first step, the proposed
methodology can be validated on real robots. We speculate that the social mediation
method, being a very high level behavior, will need few adaptations for the real
robots experiments, whereas the collective transport might need some adjustments,
especially for the motion control rule that has to minimize wheel slippage. Second,
some of the assumptions made in this work could be relaxed. For example, it can be
interesting to investigate how to solve the task by assuming that the irregular shape
of the object is not known in advance. In this case, we speculate that the motion
control logic will need to be extended. Third and more ambitiously, a long term
goal would be to understand how to control a group of an arbitrary number of robots,
connected between each other and/or to an irregular object at different positions. In
this case, we speculate that the social mediation methodology can be extended to
tackle dynamic negotiation of heading direction with an arbitrary number of robots.
Finally, a theoretical model of the system can be developed and used to prove some
properties of the algorithm, such as that no cyclic situations (i.e. no “deadlocks”)
can arise.
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