
Automatic Synthesis of Fault Detection Modules for Mobile Robots�

Anders Lyhne Christensen Rehan O’Grady Mauro Birattari Marco Dorigo
IRIDIA-CoDE, Université Libre de Bruxelles

50, Avenue Franklin Roosevelt, CP 194/6
1050 Brussels, Belgium

alyhne@iridia.ulb.ac.be,�rogrady,mbiro,mdorigo�@ulb.ac.be

Abstract

In this paper, we present a new approach for automatic
synthesis of fault detection modules for autonomous mobile
robots. The method relies on the fact that hardware faults
typically change the flow of sensory perceptions received by
the robot and the subsequent behavior of the control pro-
gram. We collect data from three experiments with real
robots. In each experiment, we record all sensory inputs
from the robots while they are operating normally and after
software-simulated faults have been injected. We use back-
propagation neural networks to synthesize task-dependent
fault detection modules. The performance of the modules is
evaluated in terms of false positives and latency.

1 Introduction

When a robot stops exhibiting its intended behavior, ei-
ther due to an internal fault or external factors, it can be-
come a costly and/or a dangerous affair [12]. The problem
is often exacerbated if the fault is not detected in a timely
manner. In a recent paper [3], the reliability of seven mobile
robots from three different manufacturers was tracked over
a period of two years and the mean time between failures
was found to be 8 hours. The result suggests that faults in
mobile robots are quite frequent. As more and more robots
are introduced in space, industry, and private homes, fault
detection is becoming an increasingly important issue to ad-
dress. Fault detection can be achieved by adding special-
purpose hardware such as torque and joint position sen-
sors [23]. Adding additional hardware increases cost and
complexity, and it is therefore something that we would like
to avoid in many cases.

In this paper, we propose a general method for synthe-
sizing fault detection modules for autonomous robots. The

� An extended version of this paper has been submitted for journal
publication.

method is not computationally intensive and requires no
special-purpose hardware. In brief, sensory data and con-
trol signals to actuators are recorded, firstly over a period
of time when a robot is operating as intended, and secondly
over a period of time when various types of simulated hard-
ware faults have been injected. Neural networks are trained
on the recorded data to infer the presence of faults from
changes in the flow of sensory inputs and control program
behavior.

2 Related Work

Fault detection is based on observations of a system’s
behavior. Deviations from normal behavior can be inter-
preted as symptoms of a fault in the system. A large body
of research in model-based fault detection approaches ex-
ists [8, 13]. In model-based fault detection some model of
the system or of how it is supposed to behave is constructed.
The actual behavior is then compared to the predicted be-
havior and deviations can be interpreted as symptoms of
faults. A deviation is called a residual, that is, the differ-
ence between the estimated and the observed value. In the
domain of mobile autonomous robots, accurate mathemati-
cal models are not feasible due to uncertainties in the envi-
ronments, noisy sensors, and imperfect actuators. A number
of methods have been studied to deal with these uncertain-
ties. Artificial neural networks and radial basis function net-
works have been used for fault detection and identification
based on residuals [25, 23, 21].

Another popular approach to fault detection is to oper-
ate with multiple models concurrently. Each model corre-
sponds to a fault state, for example a broken motor, a flat
tire, and so on. Such a fault detection system determines
that a fault corresponding to a particular model is present
when that model’s predictions are a sufficiently close match
to the currently observed behavior. Banks of Kalman filters
have been used for such state estimation [22, 9]. Kalman fil-
ters are based on the assumption that the modelled system
can be approximated as a Markov chain built on linear op-

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

erators perturbed by Gaussian noise [14]. Robotics systems
are, like many other real-world systems, inherently nonlin-
ear. Furthermore, discrete fault state changes can result in
discontinuities in behavior. Thus, the underlying assump-
tions do not hold well in the robotics domain and many of
these models are therefore not generally applicable.

As a potential solution to this issue, dynamic Bayesian
networks have been proposed and studied since assump-
tions about linearity are not required by this technique [15].
Recently, computationally efficient approaches for approxi-
mating Bayesian belief using particle filters have been stud-
ied as a means for fault detection and identification [5, 26,
16]. Particle filters are Monte Carlo methods capable of
tracking hybrid state spaces of continuous noisy sensor data
and discrete operation states. The key idea is to approxi-
mate the probability density function over fault states given
the observed data by a swarm of points or particles. One of
the main issues related to particle filters is tracking multiple
low-probability events (faults) simultaneously. A scalable
solution to this issue has recently been proposed [27].

Artificial immune-systems (AIS) represent a biologically
inspired approach to fault detection. An AIS is a classifier
that distinguishes between self and non-self [7]. In fault
detection, “self” corresponds to fault-free operation while
“non-self” refers to observations resulting from a faulty be-
havior. AIS have been applied to robotics, see for exam-
ple [2] in which fault detectors are obtained for a Khepera
robot and for a control module of a BAE Systems Rascal
robot. The two systems are first trained during fault-free
operation and their capacity to detect faults is then tested.

3 Methodology

Our approach relies on training detectors on observation
from normal operation and after a fault has been injected
(as opposed to AIS in which training of detectors is only
performed on observation from normal operation). Further-
more, we base fault detection on both current and past ob-
servations. Many faults can only be detected if a system is
observed over some time. This is especially true for me-
chanical faults in mobile robots: a fault causing a wheel to
block, for instance, can only be detected once the robot has
tried to move the wheel for a period of time long enough
for the absence of movement to be detectable. This period
of time could be anywhere from a few milliseconds, e.g.,
if dedicated torque sensors in the wheels are used, to sec-
onds if the presence of a fault has to be inferred based on
information from non-dedicated sensors.

We assume that the correct behavior has been specified
in the form of a control program that steers a robot to per-
form the task it is intended to perform. The fault detec-
tion problem is to determine if the robot performs this task
correctly, or if some fault in the hardware or in a software

sub-system (but not in the control program itself) is affect-
ing the robot’s behavior. If a fault is detected, a signal can
be sent to the control program itself, another robot, or a
human operator. In our design, the fault detector is an iso-
lated software component that passively monitors the per-
formance of the robot through the information that flows in
and out of the control program. The approach involves sim-
ulating hardware faults in the on-board software. We apply
a well-establish technique known as software implemented
fault injection (SWIFI), which is mainly used in depend-
able systems research. The technique is usually applied to
measure the robustness and fault tolerance of software sys-
tems [11, 1]. In our case, we inject faults to discover how
both the sensor readings and the control signals to the ac-
tuators change when faults are present. In this way, we can
control the exact point in time at which the fault occurs, the
location, and the type of the fault. By recording the result-
ing flow of data in and out of the control program, we can
use supervised learning techniques and synthesize a classi-
fier that, based on the data flow, can determine if the system
is in a fault state or not.

Each fault detection module consists of a time-delay neu-
ral network (TDNN) [28, 4]. TDNNs are feed-forward net-
works that allow for classification based on time-varying in-
puts without the use of recurrent connections. In a TDNN,
the values for a group of neurons are assigned based on
a set of observations from a fixed distance into the past.
The TDNNs used in this paper are standard multilayer
perceptrons for which the inputs are taken from multiple,
equally spaced points in a delay-line of past observations.
TDNNs have been extensively used for time-series pre-
diction due to their ability to make predictions based on
data distributed in time. Unlike more elaborate, recurrent
network architectures, the properties of multilayer TDNNs
are well-understood and supervised learning through back-
propagation can be applied.

��� ������ 	
������

Our aim is to obtain a function that maps a set of current
and past sensory inputs � and control signals � to either 0
or 1 corresponding to no-fault and fault, respectively:

� � ���� ��� ��� (1)

We assume that such a function exists and we approximate it
with a feed-forward neural network. We let � � �� ��� be
the inputs to the network, and we choose a network that has
a single output neuron and whose output is in the interval
��� ��. The output is interpreted in a task-dependent way.
For instance, a threshold-based classification scheme can
be applied where an output value above a given threshold is
interpreted as 1 (fault), whereas an output value below the

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

threshold is interpreted as 0 (no-fault). In the following, we
describe our approach in more detail:

Sensory Inputs, Control Signals and Fault State: We per-
form a number of runs each consisting of a number of con-
trol cycles (sense-compute-act loops). For each control cy-
cle �, we record the sensory inputs and control signals to
and from the control program. We let ��

�
denote a single set

of control program inputs and outputs (CPIO), that is, the
CPIO for control cycle � in run �. We let 	 denote the num-
ber of values in a single CPIO set. We let �� be the ordered
set of all CPIO sets for �. Similarly, for each control cycle
we let
�

�
denote the fault state for control cycle � in run �,

where
�� � � if a fault has been injected and � otherwise.
Hence,
�

�
� � when the robot is operating normally and

�
�
� � otherwise.
Tapped Delay-Line and Input Group Distance: The

CPIO sets are stored in a tapped delay-line, where each tap
has a size 	. The input layer of a TDNN is logically or-
ganized in a number of input groups ��� ��� � � � � ���� and
each group consists of precisely 	 neurons, that is, one neu-
ron for each value in a CPIO set. The activation of the input
neurons in group �� are then set according to �� � ��

�����
,

where � is the current control cycle and � is the input group
distance. See Fig. 1 for an example. If we choose an input
group distance � � �, for example, the TDNN has access
to the current and the �� � most recent CPIOs, whereas if
� � �, the TDNN has access to the current and every other
CPIO set up to ��� � �� control cycles into the past, and
so on. In this way, the input group distance specifies the
relative distance in time between the individual groups and
(along with the number of groups) how far into the past a
TDNN ‘sees’.

TDNN Structure and Activation Function: The input
layer of the TDNN is fully connected to a hidden layer,
which is again fully connected to the output layer. The out-
put layer consists of a single neuron whose value reflects
the network’s classification of the current inputs. The ac-
tivations of the neurons are computed layer-by-layer in a
feed-forward manner and the following sigmoid activation
function is used to compute the neurons’ outputs in the hid-
den and the output layers:

�� �
�

� � ���
� (2)

where is the activation of the neuron.
Classification and Learning The output of the TDNN

has a value between � and �. The error factor used in the
back-propagation algorithm is computed as the difference
between the fault state
�

�
and the output ��:

�� �
�� � ��� (3)

The neural networks are all trained by a batch learning

Fault detector

...... ...

� �

��
���

��
���

��
���

��
���

��
���

��
���

Robot API/hardwareControl Program

Output layer

Tapped
delay-line

�� ��

Hidden layer

Input layer

��

��
�

��
���

��
���

Control program
input and output (CPIO)

� neurons

Figure 1: An illustration of a fault detection module based
on a TDNN with 3 input groups and an input
group distance (�) of 4.

back-propagation algorithm that aims at minimizing the ab-
solute value of the error factor �� in (3).

In summary, sensor and actuator data is collected from a
number of runs on real robots and different types of faults
are injected. A TDNN is trained to discriminate between
normal and faulty operation. By storing past observations
in a tapped delay-line, classification based on how the flow
of information changes over time can be performed.

��� ����� �������

We use a number of real robots known as s-bots [17].
The s-bot platform has been used for several studies, mainly
in swarm intelligence and collective robotics [6, 24, 18].
Overcoming steep hills and transport of heavy objects are
notable examples of tasks that a single robot could not
solve individually, but that have been solved successfully
by teams of collaborating s-bots [10, 20, 19].

Each s-bot is equipped with an Xscale CPU running
at 400 MHz, a number of sensors including an omni-
directional camera, light and proximity sensor, as well as
a number of actuators including a ring of 8x3 (RGB) col-
ored leds, and a gripper that allows robots to attach to each
other. The sensors and actuators are indicated in Fig. 2.

4 Fault Model

In this paper, we focus on faults in the mechanical sys-
tem that propels the s-bots. This system consists of a set of
differential treels (combined tracks and wheels) [17]. Given

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

Gripper

S−bot:

− Body diameter: 116mm
− Body height: 100mm

− Weight: ~700g

− Autonomy: 2h+

− Rotation of the main
 body with respect to
 the motion base

− 400 MHz XScale CPU

− 15x 20 MHz PICs

− WiFi communication

− Linux OS

− All−terrain mobility

Spherical mirror

Proximity sensors

Camera

Differential treels

RGB LEDs

Light sensors

Ground sensors

Loudspeakers

Figure 2: The s-bot platform, sensors, and actuators.

that the treels contain moving parts and that they are used
continuously in most experiments, they are the components
in which the majority of faults occur. We analyze two types
of faults. Both types can either be isolated to the left or the
right treel or they can affect both treels simultaneously. The
first type of fault causes one or both treels to stop moving.
This usually happens if the strap that transfers power from
the electrical motors to the treels breaks or jumps out of
place. We denote this type of fault as stuck-at-zero.

The second type of fault occurs when an s-bot’s software
sub-system crashes leaving one (or both) motor(s) driving
the treels running at some undefined speed. The result is
that a treel no longer can be controlled by the on-board soft-
ware. We refer to this type of fault as stuck-at-constant.

When data is collected, a number of runs are performed
and in each run the s-bot starts in perfect condition. During
the run, a fault is injected. The fault is simulated by ignoring
the control program’s commands to the failed part and by
substituting them according to the type of fault injected. If,
for instance, a stuck-at-constant fault is simulated in the left
treel, the speed of that treel is set to a random value, and all

Find perimeter:

L L L L

(1) (2) (3) (4)

Follow the leader:

(1) (2) (3) (4)

Connect to s-bot:

(1) (2) (3) (4)

Figure 3: The three task.

future changes in speed requested by the control program
are ignored. The consequence of a fault depends on the
type and location of the fault and on the subsequent actions
performed by the control program. The control program is
unaware that a fault has occurred and continues to try to
steer the robot based on the sensory input it receives.

5 The Three Tasks

We have chosen three tasks to study fault detection based
on fault injection and learning. The tasks are called find
perimeter, follow the leader, and connect to s-bot, respec-
tively. They are illustrated in Fig. 3. For all tasks, we use a
180x180 cm arena surrounded by walls.

In the find perimeter task, an s-bot follows the perimeter
of a dark square drawn on the arena surface. The four in-
frared ground sensors are used to discriminate between the
normal light-colored arena surface and the dark square. A
light source detectable by the light sensors is placed in the
center of the square.

In the follow the leader task, an s-bot (the leader) per-
forms a random walk in the environment and another s-bot
(the follower) follows. The two robots perceive one another
using the omni-directional camera. The infrared proximity
sensors are used to detect and avoid walls. Depending on
light conditions, objects up to 50 cm away can be seen re-
liably through the camera. Infrared proximity sensors have
a range from a few centimeters up to 20 cm depending on
the reflective properties of the obstacle or object. Faults are
injected in the follower only.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

In the connect to s-bot task, one s-bot tries to connect to
another, stationary s-bot. The connection is made using the
gripper. The connecting s-bot uses the camera to perceive
the location of the other robot. Faults are only injected in
the connecting s-bot.

In the find perimeter task, each control cycle period is
100 ms, while for the follow the leader and the connect to
s-bot tasks the control cycle period is 150 ms. For the latter
two tasks, a longer control cycle period is required in order
to have time to extract the relevant information from the
images captured by the camera. Images from the camera
are partitioned into 16 sections and each of the 16 neurons
are assigned values inversely proportional to the distance of
the closest object perceived in the corresponding section.
The image processor has been configured to detect colored
LEDs. This configuration means that the camera detects
other s-bots only and not objects like walls. For the other
sensors such as the infrared ground sensors, readings are
normalized before they are used as inputs to the TDNN in a
fault detector.

6 Experimental Setup

A total of 60 runs on real s-bots are performed for each
of the three tasks. In each run, the robot(s) start in perfect
condition, and at some point during the run a fault is in-
jected. The fault is injected at a random point in time after
the first 5 seconds of the run and before the final 5 sec-
onds of the run according to a uniform distribution. There
is a 50% probability that a fault affects both treels instead
of only one of the treels, and faults of the type stuck-at-
zero and stuck-at-constant are equally likely to occur. Each
run consists of 1000 control cycles and for each control cy-
cle the sensory inputs, control signals, and the current fault
state are recorded. For the find perimeter task 1000 cycles
correspond to 100 seconds, while for the follow the leader
and the connect to s-bot tasks 1000 cycles correspond to
150 seconds, due to the longer control cycle period.

The data sets for each task are partitioned into two sub-
sets, one consisting of data from 40 runs, which is used for
training; and one consisting of the data from the remain-
ing 20 runs, which is used for performance evaluation. The
TDNNs all have a hidden layer of 5 neurons and an input
layer consisting of 10 input groups.

The performance of the trained neural networks is com-
puted based on the 20 runs reserved for evaluation for each
task. A network is evaluated on data from one run at a time.
The output of the network is recorded and compared to the
fault state.

Fault detection for autonomous robots involves classi-
fication based on partial and imperfect information due to
limited and noisy sensors and actuators. Furthermore, there
is often a delay between the occurrence of a fault and ob-

servable symptoms. Since the classification is binary (is
there a fault or not?), the scheme for approximating the fault
state must be chosen according to the desired properties of
the fault detector.

For some tasks, the recovery procedure is costly, and
fewer false positives might be desirable even at the cost of
a higher latency. For other tasks, undetected faults can have
serious consequences and a low latency is more important
than reducing the number of false positives. The trade-off
between latency and false positives can be controlled by our
interpretation of the TDNN’s output, and a simple way of
doing so is by fine-tuning a threshold. For instance, the out-
put of a trained TDNN could be interpreted such that any
value above a chosen threshold triggers the fault recovery
mechanism. In the next section, we present results for five
different thresholds: ����, ����, ����, ��	�, and ��
�.

7 Results

The false positive and the latency results for the find
perimeter, follow the leader, and connect to s-bot tasks are
shown in Fig. 4, Fig. 5, and Fig. 6, respectively. For all
tasks, an input group distance of 5 is used.

The fault detector synthesized for the find perimeter task
in general detects faults with a lower latency and produces
fewer false positives than the fault detectors for the other
two tasks. We believe that this is due to both the set of sen-
sors used and to the nature of the find perimeter task. In this
task, the s-bot follows the perimeter of the dark square on
the ground in a zig-zag motion, meaning that its ground sen-
sors constantly detect the color of the underlying surface.
Moreover, the light source placed in the center of the dark
square provides a fixed point of reference to which the zig-
zag motion can be correlated. We believe that the constant
change in sensory input according to a regular pattern and
a fixed point of reference are features that a fault detection
module can exploit. In the connect to s-bot task, the sta-
tionary s-bot does provide a fixed reference, however, it is
perceived through the camera by the other robot. The cam-
era can be quite noisy, especially when a robot is moving.
Furthermore, the connecting s-bot does not move according
to a regular pattern with constant changes in sensory input.
In the follow the leader task, no fixed point of reference
exists.

Two interesting tendencies should be noticed: The num-
ber of false positives for the follow the leader task are com-
paratively high, while for the connect to s-bot the latencies
are high. In the follow the leader task there are two robots
moving around. The fault detector for the follower, in which
faults were injected, has to infer the presence of faults based
on the interaction between itself and the leader. The mis-
classification of the current state can occur in situations
where, for instance, the leader and the follower are mov-

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

0
20

40
60

80

Threshold

La
te

nc
y

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

0
50

10
0

15
0

20
0

Threshold

F
al

se
 p

os
iti

ve
s

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

Figure 4: Results for the find perimeter task, for different
thresholds and an input group distance of 5.

ing at constant speeds in the same direction. In those cases,
the follower will essentially receive sensory inputs similar
to those in situation where both its treels are stuck-at-zero,
i.e., in the case where the leader waits for the follower, but
due to the fault, the follower does not move. The fact that
the control program (and therefore the fault detector) de-
pends on a dynamic feature of the environment (the leader)
seems to complicate accurate classification of the fault state.
However, fault detection is still quite good, especially con-
sidering that the leader often is the only object perceivable
by the follower unless it is within proximity sensor range of
a wall.

The comparative high latency results for the connect to
s-bot task are likewise due to a task-dependent feature: Af-
ter a successful connection has been made, the connecting
robot waits for 10 seconds before disconnecting, moving
back, and attempting to make a new connection. During the
waiting period it is not possible to detect if a fault has oc-
curred in the treels or not. Even if a stuck-at-constant fault
is injected, causing one or both treels to be assigned a ran-
dom and non-changeable speed, the outcome is the same:
The robot does not move because it is physically connected
to the other robot. Thus, it can take longer to detect a fault
given the existence of these particular situations in which
a fault does not have an effect on the performance of the
robot.

We experimented with a different interpretation mecha-
nism for the output of the fault detecting neural network.
The majority of the false positives occur only for a single
control cycle or for a few consecutive control cycles. We
tried to reduce the number of false positives by filtering out
these spikes: we computed the moving average of the out-
put value of the fault detector and used a threshold of ��	�.
The corresponding results for latencies and false positives
are shown in Fig. 7, using a moving average over 25 control

0
20

40
60

80

Threshold

La
te

nc
y

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

0
50

10
0

15
0

20
0

Threshold

F
al

se
 p

os
iti

ve
s

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

Figure 5: Results for the follow the leader task, for different
thresholds and an input group distance of 5.

0
20

40
60

80

Threshold

La
te

nc
y

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

0
50

10
0

15
0

20
0

Threshold

F
al

se
 p

os
iti

ve
s

(c
on

tr
ol

 c
yc

le
s)

0.
10

0.
25

0.
50

0.
75

0.
90

Figure 6: Results for the connect to s-bot task, for different
thresholds and an input group distance of 5.

cycles.
By computing the moving average and smoothing the

output of the TDNN, we almost completely eliminate false
positives (during one follow the leader run the fault detector
produced 164 false positives). As the results in Fig. 7 show,
however, this is at the cost of a higher latency.

In some cases, a fault is never detected. This can either
be because a fault is injected at the end of an experiment
and the fault detector does not have a sufficient amount of
time to detect it, or because the behavior after fault injection
closely resembles correct behavior. For the find perimeter
task, 2 out of 20 faults were not detected when averaging
the output over 25 control cycles, compared to only 1 when
averaging was not used. Similarly, for the connect to s-
bot task 5 faults were not detected when a moving average
was used, compared to 2 when the output of the TDNN was
used directly. For the follow the leader task all faults were

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

0
50

10
0

15
0

20
0

Task

La
te

nc
y

(c
on

tr
ol

 c
yc

le
s)

Find perimeter Follow the leader Connect to s−bot

Normal
Smoothed

0
10

20
30

40
50

Task

F
al

se
 p

os
iti

ve
s

(c
on

tr
ol

 c
yc

le
s)

Find perimeter Follow the leader Connect to s−bot

Normal
Smoothed

Figure 7: Latency and false positives results for a fault detector in which the output of the TDNNs is used directly and one in
which the output is smoothed by computing the moving average over 25 control cycles.

detected in both cases.

8 Conclusions

The results presented in this paper suggest that fault
detection through fault injection and learning is a viable
method for synthesizing fault detectors for autonomous mo-
bile robots. All results are based on experiments with real
robots. The robots were not equipped with dedicated or re-
dundant sensors to improve fault detection. In order to de-
tect faults, only the information flowing between the control
program and the robots’ sensors and actuators was used.

It was shown that when we averaged the output of the
fault detectors over several control cycles, we obtained a
correct detection rate of 75% - 100%, without any false pos-
itives (except in a single case). The results show that a fairly
small amount of key information is sufficient to obtain good
fault detectors. The latency and the number of false posi-
tives could probably be reduced using data from more (pos-
sibly dedicated) sensors. Additional sensors would increase
the complexity of the hardware and the system designer is
therefore faced with a trade-off between cost and accuracy.
The method we proposed is, however, still equally applica-
ble if additional and/or dedicated fault detection sensors are
used.

Our fault detector learned to distinguish faulty behavior
from normal behavior based on observations from experi-
ments in which faults were simulated. An obvious exten-
sion would be to include fault diagnosis, that is, not only
to detect the presence of a fault, but also its location. This
could be useful when, for instance, a gripper breaks during

transport of a heavy object. If the control program is made
aware of this fault, it could steer the robot to push the ob-
ject instead of unsuccessfully trying to connect to the object
and pull it. One way of extending our methodology to in-
clude fault identification is to add more output neurons to
the neural network. Different output neurons would then
correspond to different types of faults. Another approach
would be to use multiple neural networks, one for each fault
type.

In contrast with the majority of existing approaches to
fault detection, the method proposed in this study is model-
free. An interesting property of our approach is that the
scheme is straightforward to extend beyond self-diagnosis.
For instance, in the follow the leader task, we injected faults
in the follower robot and a fault detector for that robot was
trained. However, a fault occurring in the follower has, in
most cases, influence on what the leader robot perceives
and its subsequent actions. A fault detector in the leader
should, therefore, be able to detect faults in the follower. We
are currently verifying whether this is the case and studying
methods for exogenous fault detection.

Acknowledgements

Anders Christensen and Rehan O’Grady acknowledge support from

COMP2SYS, a Marie Curie Early Stage Research Training Site funded by

the European Community’s Sixth Framework Programme (grant MEST-

CT-2004-505079). The information provided is the sole responsibility of

the authors and does not reflect the European Commission’s opinion. The

European Commission is not responsible for any use that might be made of

data appearing in this publication. This work was supported by the ANTS

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

project, an Action de Recherche Concertée funded by the Scientific Re-

search Directorate of the French Community of Belgium. Marco Dorigo

acknowledges support from the Belgian FNRS, of which he is a Research

Director.

References

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie,
E. Martins, and D. Powell. Fault injection for dependability
validation: A methodology and some applications. IEEE
Trans. on Software Engineering, 16(2):166–182, 1990.

[2] R. Canham, A. Jackson, and A. Tyrrell. Robot error de-
tection using an artificial immune system. In Proc. of
NASA/DoD Conf. on Evolvable Hardware, 2003, pages 199–
207. IEEE Press, Washington D.C., 2003.

[3] J. Carlson and R. Murphy. Reliability analysis of mobile
robots. In Proc. of IEEE Int. Conf. on Robotics and Au-
tomation, ICRA’03, volume 1, pages 274–281. IEEE Press,
Piscataway, NJ, 2003.

[4] D. Clouse, C. Giles, B. Horne, and G. Cottrell. Time-delay
neural networks: Representation and induction of finite-state
machines. IEEE Trans. on Neural Networks, 8:1065–1070,
1997.

[5] R. Dearden, F. Hutter, R. Simmons, S. Thrun, V. Verma, and
T. Willeke. Real-time fault detection and situational aware-
ness for rovers: Report on the Mars technology program
task. In Proc. of IEEE Aerospace Conf., pages 826–840.
IEEE Press, Piscataway, NJ, 2004.

[6] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. Labella, G. Bal-
dassarre, S. Nolfi, J.-L. Deneubourg, F. Mondada, D. Flore-
ano, and L. M. Gambardella. Evolving self-organizing be-
haviors for a swarm-bot. Autonomous Robots, 17(2–3):223–
245, 2004.

[7] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri. Self-
nonself discrimination in a computer. In Proc. of the 1994
IEEE Symp. on Research in Security and Privacy, pages
202–212. IEEE Press, Piscataway, NJ, 1994.

[8] J. Gertler. Survey of model-based failure detection and isola-
tion in complex plants. IEEE Control Systems Mag., 8:3–11,
1988.

[9] P. Goel, G. Dedeoglu, S. Roumeliotis, and G. Sukhatme.
Fault detection and identification in a mobile robot using
multiple model estimation and neural network. In Proc.
of IEEE Int. Conf. on Robotics and Automation, ICRA’00,
pages 2302–2309. IEEE Press, Piscataway, NJ, 2000.

[10] R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Au-
tonomous self-assembly in swarm-bots. IEEE Trans. on
Robotics, 22(6):1115–1130, 2006.

[11] M. Hsueh, T. Tsai, and R. Iyer. Fault injection techniques
and tools. Computer, 30(4):75–82, 1997.

[12] R. Isermann. Supervision, fault-detection and fault-
diagnosis methods – An introduction. Control Engineering
Practice, 5(5):639–652, 1997.

[13] R. Isermann and P. Ballé. Trends in the application of
model-based fault detection and diagnosis of technical pro-
cess. Control Engineering Practice, 5(5):709–719, 1997.

[14] R. Kalman. A new approach to linear filtering and prediction
problems. Jour. of Basic Eng., 82(1):35–45, 1960.

[15] U. Lerner, R. Parr, D. Koller, and G. Biswas. Bayesian fault
detection and diagnosis in dynamic systems. In Proc. of
the 7th Nat. Conf. on Artificial Intelligence, pages 531–537.
AAAI Press/The MIT Press, Cambridge, MA, 2000.

[16] P. Li and V. Kadirkamanathan. Particle filtering based likeli-
hood ratio approach to fault diagnosis in nonlinear stochastic
systems. IEEE Trans. on Systems, Man, and Cybernetics —
Part C, 31(3):337–343, 2001.

[17] F. Mondada, L. Gambardella, D. Floreano, S. Nolfi,
J. Deneubourg, and M. Dorigo. The cooperation of swarm-
bots: Physical interactions in collective robotics. IEEE
Robotics & Automation Mag., 12(2):21–28, 2005.

[18] S. Nouyan and M. Dorigo. Chain based path formation in
swarms of robots. In Ant Colony Opt. and Swarm Intel-
ligence: 5th Int. Workshop, ANTS 2006, volume 4150 of
LNCS, pages 120–131. Springer Verlag, Berlin, Germany,
2006.

[19] S. Nouyan, R. Groß, M. Bonani, F. Mondada, and
M. Dorigo. Group transport along a robot chain in a self-
organised robot colony. In Intelligent Autonomous Sys-
tems 9, IAS 9, pages 433–442. IOS Press, Amsterdam, The
Netherlands, 2006.

[20] R. O’Grady, R. Groß, F. Mondada, M. Bonani, and
M. Dorigo. Self-assembly on demand in a group of phys-
ical autonomous mobile robots navigating rough terrain. In
Adv. in Artificial Life: 8th Euro. Conf., ECAL 2005, pages
272–281. Springer Verlag, Berlin, Germany, 2005.

[21] R. Patton, F. Uppal, and C. Lopez-Toribio. Soft computing
approaches to fault diagnosis for dynamic systems: A sur-
vey. In Proc. of 4th IFAC Symp. on Fault Detect., Superv. and
Safety for Tech. Processes, pages 298–311. Elsevier, Oxford,
UK, 2000.

[22] S. Roumeliotis, G. Sukhatme, and G. Bekey. Sensor fault
detection and identification in a mobile robot. In Proc.
of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 1383–1388. IEEE Press, Piscataway, NJ, 1998.

[23] M. Terra and R. Tinos. Fault detection and isolation in
robotic manipulators via neural networks: A comparison
among three architectures for residual analysis. Jour. of
Robotic Sys., 18(7):357–374, 2001.

[24] V. Trianni and M. Dorigo. Self-organisation and communi-
cation in groups of simulated and physical robots. Biological
Cybernetics, 95:213–231, 2006.

[25] A. Vemuri and M. Polycarpou. Neural-network-based robust
fault diagnosis in robotic systems. IEEE Trans. on Neural
Networks, 8(6):1410–1420, 1997.

[26] V. Verma, G. Gordon, R. Simmons, and S. Thrun. Real-
time fault diagnosis. IEEE Robotics & Automation Mag.,
11(2):56–66, 2004.

[27] V. Verma and R. Simmons. Scalable robot fault detection
and identification. Robotics & Autonomous Sys., 54(2):184–
191, 2006.

[28] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and
K. Lang. Phoneme recognition using time-delay neural net-
works. IEEE Trans. on Acoustics, Speech, and Signal Pro-
cessing, 37:328–339, 1989.

Second NASA/ESA Conference on Adaptive Hardware and Systems(AHS 2007)
0-7695-2866-X/07 $25.00 © 2007

