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Abstract. In this paper, we study a robot swarm that has to perform
task allocation in an environment that features periodic properties. In
this environment, tasks appear in different areas following periodic tem-
poral patterns. The swarm has to reallocate its workforce periodically,
performing a temporal task allocation that must be synchronized with
the environment to be effective.

We tackle temporal task allocation usingmethods and concepts that we
borrow from the signal processing literature. In particular, we propose a
distributed temporal task allocation algorithm that synchronizes robots of
the swarm with the environment and with each other. In this algorithm,
robots use only local information and a simple visual communication pro-
tocol based on light blinking. Our results show that a robot swarm that
uses the proposed temporal task allocation algorithm performs consider-
ably more tasks than a swarm that uses a greedy algorithm.

1 Introduction

In dynamical environments, real-time resource allocation commonly involves sit-
uations in which events occur periodically, with a certain frequency [14]. Peri-
odicity can originate from both natural and artificial phenomena, for example,
earth’s rotation and revolution, tides, cyclic production processes, and customer
demands. In artificial systems, the designer typically wishes to allocate resources
so as to increase the system performance and achieve predefined goals [11]. To
this end, it is paramount that information on the nature of the periodic events
involved is available during the design process [9].

Task allocation as studied in swarm robotics [5] is a class of resource allo-
cation problems: the workforce of the swarm can be seen as the resource to be
allocated—see [2] for a recent review of the swarm robotics literature including
works on task allocation. In this paper, we study a case in which a robot swarm
needs to perform task allocation in an environment that features periodic proper-
ties. Specifically, the periodicity of the environment lies in the temporal pattern
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in which new tasks appear. To operate effectively, the swarm needs to reallocate
its workforce according to the periodicity of the environment. We call temporal
task allocation a task allocation that takes into account temporal properties of
the environment.

To exploit environments with periodic properties, a task allocation algorithm
needs to adapt to the periodicity of the environment. In this paper, we propose
a novel temporal task allocation algorithm that adapts to the environment. This
algorithm is based on concepts that we borrow from the signal processing and
collective synchronization literature.

Collective synchronization has been previously observed and studied in biolog-
ical systems (e.g., [6]). In these systems, the components converge to a common
phase and oscillate in unison. Collective synchronization is usually modeled via
coupled oscillators [15]. A model that is commonly adopted is the one proposed
by Kuramoto [8]. A direct application of Kuramoto’s model in swarm robotics
is not appropriate because it would require that each robot knows with which
phase the others oscillate. Other models exist that do not require that a robots
knows the phase of the others. Examples are models based on firefly synchro-
nization and chorusing mechanisms [4,7], which are commonly based on local
communication.

In this paper, we propose a temporal task allocation algorithm in which robots
synchronize with each other and with the environment. The synchronization with
the environment is the novelty of our work.

2 Environment and Robots

We consider a rectangular environment that is divided in three areas: workspace
A, workspace B, and a transition area. Fig. 1a shows a schematic representation
of the environment. Tasks appear either in workspace A or B, following a tempo-
ral pattern. Robots have to travel from workspace to workspace to attend tasks
where they appear. The workspaces are separated by the transition area: a robot
that moves from one workspace to the other has to cross the transition area. The
time spent by the robot i to cross the transition area is called switching cost ξis.
It is measured in time units and is independent for each robot. Due to possible
collisions with other robots, ξis is a random variable.

We use an abstracted representation of tasks: to carry out a task, a robot has
to reach the location at which the task appeared and stay there for a certain
amount of time. The time ξe that a robot spends working on a task is fixed.
Tasks have a life time ξl after which they expire: if a task remains unattended
for longer than ξl, it is removed from the environment. At time k, NA[k] and
NB[k] are the number of tasks present in workspace A and B, respectively. The
amount of tasks in each workspace is bounded by the task capacity Γ , which is
the same for the two workspaces.

The periodicity of the environment that we consider in this paper lies in the
temporal pattern with which tasks appear. During a period of time TA, new tasks
appear in workspace A. After the end of TA, new tasks appear in workspace B
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Fig. 1. Environment definition. a) Schematic representation of the arena, with
workspaces A and B in white and transition area in gray. b) Environment period
and location of the task appearance example: I) signal senv [k] of task appearance with
period T env, II) number NA[k] of tasks in workspace A, III) number NB [k] of tasks in
workspace B.

for a period of time TB. After the completion of TB, new tasks appear again
in workspace A, and so on. The full cycle has a period T env = TA + TB. In
this paper, we assume TA = TB. The location of the appearance of tasks in the
environment can be described as a square signal denoted by senv[k] that takes
a value of A or B. An example of T env and senv[k] is shown in Fig. 1b-I.

Regardless of the workspace, the tasks appear in the environment with a
certain incoming task rate λ. If the task capacity Γ of a workspace is reached,
additional tasks are dismissed. When tasks no longer appear in a workspace,
the number of tasks in this workspace decreases as tasks expire. This effect can
be observed in Fig. 1b-II and 1b-III for both workspaces: the number of tasks
increases until Γ is reached and decreases after new tasks cease to appear.

The robots move in the arena between workspaceA andB in order to attend to
the tasks. Robots act independently of each other, but are able to exchange sim-
ple messages via short-range line-of-sight communication. The number of robots
in a workspace are the workforce allocated to this workspace by the swarm. In
order to maximize performance, the swarm needs to allocate its complete work-
force to the workspace where tasks are available. To achieve this goal, the robots
need to switch between workspaces so that their movement is synchronized with
the temporal pattern of task appearance, performing a temporal task allocation.

3 Collective Synchronization Algorithm

In this section, we present the collective synchronization (CS) algorithm. The
goal of CS is to synchronize the movement of the robots between workspaces
with the appearance of tasks in the environment. In CS, each robot i has an
internal timer τ i that governs its transitions between workspaces. This timer
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increases each time step and resets to zero when it reaches the period T i of
robot i. The robot switches between workspaces depending on τ i:

si[k] =

⎧
⎨

⎩

A τ i ≤ T i/2

B τ i > T i/2
(1)

This equation produces a square signal si[k] as shown in Fig. 2a-I. The timer
τ i might not be synchronized with the appearance of tasks in the environ-
ment. The difference between τ i and task appearance is τ̄ i, defined in the range
[−T i/2, T i/2].

CS achieves synchronization in two steps. First, each robot i evaluates the
extend to which it is synchronized with the environment. This is measured by
the fraction of time during which the robot finds tasks in its current workspace—
see Sect 3.1. Second, each robot i modifies its internal timer τ i and period
T i to synchronize with the environment—see Sect. 3.2 and 3.3. A robot i is
synchronized with the environment when T i = T env and τ̄ i = 0. Additionally, CS
features a visual communication protocol to avoid physical interference between
robots—again, see Sect. 3.2.

3.1 Assessment of Synchronization

Each robot i assesses its synchronization with the environment by measuring
the correlation between its internal timer and the appearance of tasks. Robot
i switches between workspaces every T i/2, where T i is updated by CS and
is therefore not constant. Let li be a sequential number that identifies switches
between workspaces for robot i, and let kli be the moment in time at which switch
li happens. Let W i[li] be the amount of time spent in a workspace by robot i
between switch li − 1 and li, as opposed to transitioning between workspaces.
See Fig. 2a-II.

Robot i can perform a task when it is in a workspace that contains available
tasks. Let wi[k] a signal that takes the value 1 if robot i is working on a task at
instant k and 0 if it is not. See Fig. 2a-III.

In order to assess its synchronization with the environment, robot i should
ideally compute the correlation between the signal si[k] of its internal timer and
the signal senv [k] of the actual appearance of tasks:

gi[k] =

⎧
⎨

⎩

1 if senv [k] = si[k]

0 if senv [k] �= si[k]
(2)

gi[k] can be integrated over a time interval yielding a cross-correlation by which
robots can evaluate the similarity of the two signals during the chosen interval.
Let ri[li] define the cross-correlation between these signals during W i[li]:

ri[li] =
1

W i[li]

W i[li]∑

κ=0

gi [kli − κ] (3)
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Fig. 2. Example of robot operation and cross-correlation of signals. a) Robot operation:
I) signal si[k] of the internal timer τ i of robot i; II) robot location in the environment
and amount of time W i spent in a workspace (as opposed to transitioning between
workspaces); III) work signal wi[k]. b) Cross-correlation and partial cross-correlation,
from top to bottom: signal senv [k] of task appearance; actual robot location; correlation
of senv [k] and si[k].

If robot i is perfectly synchronized with the environment, the two signals are
identical; that is, ri[li] = 1, ∀li. Typically, the two signals are not identical and
ri[li] takes values lower than 1 for any value of li.

Unfortunately, ri[li] can not be directly measured because senv [k] is not known
by the robots. Nevertheless, we can approximate ri[li] using the work signal
wi[k]: if robot i is performing a task, its internal timer and the location of task
appearance match. Hence, we assume wi[k] ≈ gi[k]. Let ρi[li] define the cross-
correlation between si[k] and wi[k] during W i[li]:

ρi[li] =
1

W i[li]

W i[li]∑

κ=0

wi [kli − κ] (4)

Contrarily to ri[li], ρi[li] can be measured by robot i and provides it with an
estimated assessment of the synchronization between its internal timer and task
appearance.

3.2 Synchronization of the Internal Timer

To achieve internal timer synchronization with senv[k], robot i uses the cross-
correlation ρi[li] defined in (4). We additionally define two partial cross-
correlations:

ρibeg [l
i] =

2

W i[li]

W i[li]∑

κ=W i[li]/2

wi [kli − κ]

ρiend [l
i] =

2

W i[li]

W i[li]/2∑

κ=0

wi [kli − κ]

(5)
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where ρibeg [l
i] is computed for the first half of W i[li] and ρiend [l

i] for the second.
The comparison between these two quantities measures the balance of work
between the two halves of W i[li]: ρibeg �= ρiend indicates that robot i is working

more during one half of W i[li] than the other. See Fig. 2b.
Robot i uses the relationship between ρibeg and ρiend to shift its internal timer

as follows:

Δτ i[li] =
W i[li]

2

(
ρibeg [l

i]− ρiend [l
i]
)

(6)

where Δτ i[li] denotes the timer modifier of robot i at switch li, which occurs at
the end of W i[li].

Collective Synchronization: Additionally to (6), we propose a mechanism
for collective synchronization that is based on short-range line-of-sight commu-
nication. Communication is implemented using a simple visual protocol: a robot
emits a light blink when its internal timer has finished a full cycle, thereby signal-
ing to other robots that its timer is zero—see Fig. 2a-I. Other robots perceiving
this light blink adjust their timers to achieve collective synchronization.

Upon perceiving a light blink, robot i shifts its internal timer as follows:

Δτ i =

⎧
⎨

⎩

0.1
(
βT i − τ i

)
if τ i ≤ T i/2

0.1
(
T i − βT i − τ i

)
if τ i > T i/2

(7)

where β ∈ [0, 0.5) is a parameter.
In case βT i < τ i < T i−βT i, robot i shifts its timer such that its reset point is

closer to one of the emitting robot. This provokes a coupling and clustering of the
timers. On the level of the swarm, the cluster of timers tends to synchronize with
senv[k] because each timer is modified by (6). On the other hand, if τ i < βT i

or τ i > T i − βT i, robot i shifts its timer so that its reset point is farther from
the one of the emitting robot. This avoids that timers are too closely clustered,
which would cause all robots to cross the transition area at the same time,
thereby creating physical interference. Notice that in (7) there is no reference to
an absolute time as robots do not share a common time reference and the visual
communication protocol is asynchronous.

3.3 Period Synchronization

To achieve period synchronization of signals si[k] and senv[k], robot i uses
two statistics of the cross-correlation ρi[li]: the exponential moving average
avg

(
ρi[li]

)
and the variance var

(
ρi[li]

)
. These statistics are updated with the

current value of the cross-correlation ρi[li], using a memory factor η:

avg
(
ρi[li]

)
= η avg

(
ρi[li − 1]

)
+ (1 − η)ρi[li]

var
(
ρi[li]

)
= η var

(
ρi[li − 1]

)
+ (1− η)

(
ρi[li]− avg

(
ρi[li]

))2
(8)
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Fig. 3. Cross-correlation examples for a) T i < T env , where avg
(
ρi[li]

) → 0.5 and
var

(
ρi[li]

) → 0.25 and b) T i > T env , where avg
(
ρi[li]

) → 0.53 and var
(
ρi[li]

) → 0.008.
From top to bottom: location of task appearance (senv [k]), robot location and cross-
correlation.

with η ∈ [0, 1] being a configurable parameter. The higher η, the more relevant
the current value. avg

(
ρi[li]

)
measures the difference between T i and T env : the

closer avg
(
ρi[li]

)
to 1, the smaller the difference is. As avg

(
ρi[li]

)
only indicates

a difference, but not if T i is shorter or longer, we use var
(
ρi[li]

)
to measure

the length of T i in relation to T env : if T i is shorter than T env , var
(
ρi[li]

)
goes

to 1. Figure Fig. 3 illustrates these statistics and their values in two example
situations.

Robot i modifies the period of its internal timer si[k] as follows:

ΔT i[li] = W i[li]
(
finc

(
var

(
ρi[li]

))− fdec
(
avg

(
ρi[li]

)))
(9)

where finc
(
var

(
ρi[li]

))
and fdec

(
avg

(
ρi[li]

))
are positive functions that increase

and decrease the period, respectively.
We use the following function finc(var

(
ρi[li]

)
) for increasing the period:

finc
(
var

(
ρi[li]

))
= W i[li]αvar

(
var

(
ρi[li]

))2
(10)

where αvar ∈ R is a configurable parameter that regulates the influence of
var

(
ρi[li]

)
on the period. We use the following function fdec

(
avg

(
ρi[li]

))
for

decreasing the period in this paper:

fdec
(
avg

(
ρi[li]

))
= W i[li]αavg

(
1− avg

(
ρi[li]

))2
(11)

where αavg ∈ R is a configurable parameter that regulates the influence of
avg

(
ρi[li]

)
on the period.

4 Experiments

We conduct the experiments in simulation using ARGoS [13]. ARGoS is a
discrete-time physics-based simulation framework whose focus is the simulation
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of large robot swarms. The arena that we use in the experiments has the same
layout as shown in Fig. 1a, with a length of 120 cm, a width of 60 cm, and a
workspace width of 30 cm.

For our experiments, we use a swarm of 6 e-puck robots [12], which are ran-
domly distributed in the transition area upon the start of the experiments. We
use the following sensors of the e-puck: proximity sensors for obstacle avoidance,
ground sensors to detect floor color, light sensor for phototaxis and the camera
for task detection and visual communication. We use the wheel actuator with a
maximum speed of 8 cm/s. Additionally, we use the LED actuator to implement
the visual communication protocol.

We represent tasks using a device called task allocation module (TAM) [3]. A
TAM represents a task to be executed by an e-puck robot at a given location
and at a given moment in time. TAMs are programmable booths that signal the
availability of a task to the robots through a set of color LEDs. A robot can work
on the task that is represented by a TAM by driving into it and waiting inside
until ξe has elapsed. We placed 10 TAMs in each workspace; hence, the task
capacity of each workspace is Γ = 10. The time that a robot needs to perform
a task is ξe = 0.5 s. The task life time is ξl = 5 s.

Robots use phototaxis to navigate: a light source identifies the right side of
the arena. Robots navigate towards the light to work in workspace B, and do
the opposite to work in workspace A. Robots can detect the workspace they are
in by reading the color of the floor. When a robot is in a workspace, it perceives
the available tasks by the color of the LEDs of the nearby TAMs. Robot i can
calculate W i[j] by measuring the time at which it arrives in a workspace and the
time at which the internal timer switches to the other workspace. The robot can
sense the work signal wi[k] by the color of the TAMs in its current workspace.

The parameters of the environment are the incoming task rate λ = 10 tasks/s
and the period T env = 80 s. The configurable parameters of CS used for this
example are η = 0.65, αavg = 0.58 and αvar = 41.92. These values have been
obtained through a tuning process using I/F-Race [1,10]. The parameter β =
0.0375 has been obtained by exhaustive search. Initially, the period T i of each
robot i is uniformly sampled from the interval [40, 240], and the initial time
difference between the internal timers and the task appearance τ̄ i is uniformly
sampled from the interval [−T i/2, T i/2].

Figure 4 shows the development of T i, τ̄ i and number of tasks performed
over the duration of the experiment. The synchronization of the periods in the
swarm is shown in Fig. 4a. Notice that T env is constant during the experiment.
We can observe that every T i converges to T env in the first 2500 s. The timer
synchronization is shown in Fig. 4b. We can observe that all τ̄ i converge to
zero. The number of tasks performed by the swarm during the experiment is
a cumulative metric shown in Fig. 4c. We define the performance rate as the
number of tasks performed per second which is the derivate of this metric. In
this example, the robots achieve a performance rate of 0.65 tasks/s.
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Fig. 4. Development of T i, τ̄ i and number of tasks performed over the duration of
the experiment. a) Periods T i of the robots compared to the period T env. b) Time
difference τ̄ i between the internal timers and the task appearance. c) Number of tasks
performed and final performance rate.

In order to analyze the performance of CS, we compare it with two other
algorithms:

– No-synchronization algorithm (NS): robots using NS have internal timers
for switching between areas, but do not attempt to synchronize with the
environment or with other robots. This means that τ̄ i and T i, which are
randomly initialized, remain unchanged throughout the experiment. This
represents the initial situation of CS. The comparison of CS with NS allows
us to quantify the improvement obtained by synchronizing.

– Greedy algorithm (GR): robots using GR do not switch between workspaces
depending on an internal timer, but on task availability. To this end, robots
switch workspace with a given probability in case they to not find tasks in
their current workspace. The comparison of CS with GR allows us to ob-
serve the difference in task performance between a temporal task allocation
algorithm and an algorithm that is commonly used in task allocation.
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Fig. 5. Comparison of the performance of CS, NS and GR. a) Average of the number
of tasks performed during the experiments; and final performance rate. b) Boxplot of
the number of task performed by each algorithm during the experiment, based on 15
repetitions per algorithm. The whiskers represent the lowest value still within 1.5 IQR
of the lower quartile, and the highest value still within 1.5 IQR of the upper quartile.

The comparison between algorithms is based on the number of tasks performed
in experiments of 5000 s. We perform 15 experiments for each algorithm.

The average number of tasks performed by the swarm, calculated every second
for each algorithm, is shown in Fig. 5a. Notice that the performance rates of NS
and GR remain constant during the experiment because these algorithms do
not implement a synchronization process. We can observe that GR has a higher
performance rate than NS. This implies that a temporal task allocation algorithm
that is not perfectly synchronized performs less tasks than a greedy algorithm.
Furthermore, we can observe that the performance rate of CS increases over
time due to the synchronization process. At the beginning of the experiments,
CS and NS have a similar performance rate. After 800 s, the performance rate of
CS increases and eventually the number of tasks performed by CS exceeds the
number of tasks performed by NS. Similarly, the number of tasks performed by
CS exceeds the number of tasks performed by GR after 1600 s.

Figure 5b shows a boxplot representation of the number of task performed at
the end of the experiments. The NS algorithm has the highest dispersion because
there is no synchronization; the results strongly depend on the initial conditions.
CS and GR have a lower dispersion than NS as they adapt the behavior of the
robots to the environment, reducing the dependence on the initial conditions.
Notice that the lower whisker of CS is longer than the upper whisker of the GR
algorithm. This implies that the previous deductions made on Fig. 5a are valid.
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5 Conclusions

In this paper, we studied task allocation in an environment that exhibits peri-
odic temporal patterns. In such an environment, robots can perform temporal
task allocation to exploit synchronization for improving their task performance.
We have described and analyzed a collective synchronization algorithm that
performs temporal task allocation for robot swarms. In order to analyze the per-
formance of the proposed algorithm, we compared it with a no-synchronization
algorithm and a greedy algorithm. From the results, we can conclude that a
swarm using our algorithm can synchronize with the environment, thereby out-
performing the competing algorithms. The comparison also shows that a tempo-
ral task allocation algorithm without synchronization performs less tasks than
a greedy algorithm. However, an algorithm with synchronization as proposed
by us increases the number of tasks performed by the robots considerably with
respect to a reactive behavior.

In this paper, we applied the concepts of synchronization and signal processing
to task allocation in swarm robotics, with satisfactory results. In the immediate
future, we plan to study the proposed approach on a swarm of real robots. The
potential of our approach opens several possible directions for future research.
One is to study environments that exhibit more complex temporal patterns,
for example, environments in which the task appearance is not only a square
signal but a signal with multiple frequency components. Another direction is
the application of this approach to other resource allocation problems such as
energy management. For example, they can be used to organize the consumption
of a scarce energy resource by a swarm of robots or other autonomous agents
such as electric vehicles.
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