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Abstract— This study proposes a method that lets individual
robots in a group estimate the size of the group in a distributed
manner. The process is loosely based on the signaling behavior
of fireflies and crickets. Holland et al. first devised a method
based on local robot signaling to estimate the group’s size.
Each robot emits a signal and can perceive the signals of
neighboring robots in close proximity. Following the approach
of Holland et al., our robots count the number of emitted
signals over a suitably defined period of time. Experiments
show that the estimates calculated with Holland et al.’s method
display a great deal of noise. We modify their method so as
to sensibly stabilize the output. We assess the quality of our
method through extensive simulation-based experiments.

I. INTRODUCTION

Swarm robotics [9] is a branch of collective robotics
focused on the study of relatively large groups of robots
with limited sensor and communication capabilities. Swarm
robotic systems naturally display a high level of redundancy
and parallelism, thus making them suitable for complex and
high risk scenarios such as rescue missions [2] and space
exploration [3]. For such applications, some of the robots
are likely to be lost or experience failures, thus making the
number of surviving robots an important piece of information
for tuning the action of the swarm.

Furthermore, in many applications the performance of
the swarm varies with its size and an optimal value for
size exists. For example, a minimum number of robots are
required to transport a heavy object, and as the number of
robots assisting with the task increases, the overall perfor-
mance increases superlinearly [8]. At the same time, the
coordination of the swarm becomes more complex; beyond
a certain number of robots, this negative effect dominates
and performance decreases [6]. Therefore, we can identify
an optimal number of robots corresponding to maximum
performance.

Given the effect of swarm size on performance, the ability
to estimate the swarm’s size is frequently of significant
importance. Based on this piece of information, robots may
switch to the fittest operational regime and/or divide into
groups of optimal sizes for the tasks to perform. In the typical
usage scenario, a swarm of known size is deployed and
failures are expected as the task progresses, thus lowering
the group’s size. When the loss of robots drives the swarm’s
size below a certain threshold, robots may send messages to
the operator and ask for the addition of new robots.
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In this paper, we propose a simple distributed algorithm
that lets each robot in a swarm estimate individually and
in a reliable manner the size of the swarm. The algorithm
works assuming only minimal communication requirements,
i.e. each robot can only send signals to its neighbors within
a very limited range. Our method is based on the pioneering
work of Holland et al. [5] on group size estimation, which in
turn was inspired by the simple flash synchronization process
of fireflies [10]. As discussed in more detail in Section III,
Holland et al.’s method is very promising, but provides a
noisy and unreliable estimate of the swarm’s size for practical
use. We modify this method so as to obtain more reliable
estimates.

The paper is organized as follows. In Section II we detail
the basic methodology we applied throughout the paper. In
Section III we introduce the method of Holland et al. to
obtain an estimate of the group size and discuss its perfor-
mance. Section IV explains our modifications to improve
performance. The robustness, scalability and stability of our
modified method is discussed in Section V. Section VI
concludes the paper and proposes future research directions.

II. METHODOLOGY

A. Objectives
The aim of our work is to design a reliable method that

lets each individual robot in a swarm estimate the group’s
size. By reliable, we mean that our method should display
properties which make it applicable in a real scenario.

The first desirable property such a method should display
is low individual estimation error, i.e., the difference between
a robot’s estimate and the actual group size should be small.
Secondly, each robot’s estimation should be stable, meaning
that once settled on a value, the estimate should not fluctuate
significantly. Finally, another important property is a high
degree of agreement throughout the swarm, i.e., the estimates
of the individuals in the swarm should not be too different
among each other.

B. Quality Assessment
To compare the original method of Holland et al. with our

modified one, we defined suitable measures of the desired
properties discussed above.

We proceeded by first running a set of experiments to
find, for each method, the parameter choice that minimized
the mean relative estimation error across the swarm. The
individual mean relative error of robot i is defined as
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Fig. 1. The phase cycles of the HMH method (a) and of the proposed method (b).

where N is the actual number of robots in the swarm
and n̂i

t is robot i’s t-th estimate. In our experiments, to
ensure fair comparisons, the observation period [t1, t2] during
which estimates are taken begins after the initial stabilization
phase is through. The parameters we selected are those that
minimize the average of the individual errors over the swarm,
defined as

E =
1
N

N∑
i=1

Ei.

Furthermore, to ensure fairness, we searched for the best
parameter choice of each method evaluating the same number
of setups.

All our results have been obtained through extensive sim-
ulations. Implementation on real robots1 is currently under
development.

III. THE HOLLAND, MELHUISH AND HODDELL METHOD

A. Basics

Holland et al. proposed a modification of Mirollo and
Strogatz’ model in which fireflies behave like coupled os-
cillators [7] to allow robots to estimate the swarm’s size.
Each robot possesses an internal counter c ranging from 0
to CMAX which is increased at each time step by a fixed
quantity δ = 1. When c > CMAX the robot emits a signal
and sets c = 0. Depending on the value of c, a robot can be
in one of the two phases of the algorithm: it is either in the
refractory phase when c ∈ [0, C1] or in the stimulated+non-
stimulated signaling phase when c ∈ (C1, CMAX ] (see
Figure 1(a)).

During the stimulated+non-stimulated signaling phase, at
each time step a robot can emit a signal with probability p.
When this happens, the robot has emitted a non-stimulated
signal. After signaling, the robot resets c to 0. A neighboring
robot that perceives the signal resets c to 0 and emits
a signal too. In the latter case the robot has emitted a
stimulated signal. This causes a cascade of stimulated signals
across the swarm. To avoid an infinite sequence of signal
waves traversing the swarm back and forth, robots that have
signaled enter into the refractory phase which prevents them
from signaling even if a neighbor does. Therefore, robots

1The platform we are porting our software to is the e-puck robot
(http://www.e-puck-org).

cycle between two successive phases: the stimulated+non-
stimulated signaling phase, in which a robot can signal or
be stimulated to signal; and the refractory phase, in which a
robot ignores its neighbors’ signals.

With this method, in a swarm of N robots, a robot should
emit a non-stimulated signal every N −1 stimulated signals.
Each robot counts the number si

t of stimulated signals it has
emitted since the last non-stimulated one. Therefore, n̂i

t =
si

t + 1 can be used as an estimate of the group’s size.

B. Discussion

Holland, Melhuish and Hoddell’s method (HMH) has a
strongly probabilistic nature and so the values of si

t over
time display dramatic fluctuations. The signaling probability
p plays a key role in shaping such fluctuations: for a high
value of p, robots signal too frequently in a non-stimulated
manner. In this way, signals are likely to overlap, thus making
the estimates n̂i

t significantly lower than N . For this reason,
small values of p are preferable. In their method, Holland et
al. dampen fluctuations with a weighted average of n̂i

t over
time:

n̂i
t = α(si

t + 1) + (1− α)n̂i
t−1.

In their paper, Holland et al. suggest α = 0.85. As reported
in Table I, the minimum error E obtained with this method
is more than 50%. This is the key drawback of the method,
because it entails two undesired consequences. First, for an
individual robot it is not possible to ultimately decide about
the size of the group, thus making the estimate basically
useless. Second, the swarm as a whole displays a very
low degree of agreement – even averaging an individual’s
estimate with its neighbours’ is not likely to improve the
method’s performance sensibly.

Furthermore, our experiments showed that the length of
the refractory phase C1 has no effect the error of the system,
but affects its stabilization speed. High values for C1, in fact,
oblige the robots to wait for a long time before exiting the
refractory period, thus slowing down the entire process. In
our experiments we set the length of this phase to the same
value used in Holland et al. experiments: C1 = 20.

Finally, the choice of a value for CMAX derives from a
trade off between scalability and speed. In fact, if CMAX is
too low, there could be not enough time for all the robots
to signal, thus making the method not scalable with N . The
value of CMAX depends also on the probability of emitting



TABLE I
MEAN RELATIVE ERROR OF THE DISCUSSED METHODS WHEN PARAMETERS ARE SET TO OPTIMAL VALUES.

Method [Averaging Method] C1 CMAX p ε α b w Error [%]
HMH [Time-Weighted Average] 20 260 0.01 - 0.85 - - 58.24
Modified Method [No Average] 20 400 0.12 10 - - - 1.2
Modified Method [Time-Weighted Average] 20 400 0.12 10 0.85 - - 9.60
Modified Method [Moving Average] 20 400 0.12 10 - - 9 3.68
Modified Method [Mixed Average] 20 400 0.12 10 - 2 9 4.29
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(a) The HMH method.
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(b) The modified method without averaging.

Fig. 2. Results of test runs of the method with 25 simulated robots. Each graph shows the distribution of the estimates of the group’s size for each robot
over time. The thin dotted line delimits the maximum and minimum estimates in the swarm; the gray area corresponds to the estimations falling into the
first and third quartiles; the black solid line is an example of estimate of a single robot. A qualitative measure of agreement across the swarm is provided
by the thickness of the max-min span or of the quartile span. In these graphs and in Figures 4– 6, the simulation time step lasts 100 ms.

a non-stimulated signal p, so that a high CMAX value with
a low probability p increases the time needed by the robots
to obtain the estimate of the group’s size.

IV. REDUCING THE ERROR

The HMH method provides a distributed and simple
method to estimate group size, but for real applications the
results are too noisy. As the above discussion demonstrated,
this is due to the low degree of stability of the individual
estimates over time caused by the fact that when a robot
emits a non-stimulated signal, after the refractory phase it
has the same probability as any other robot to emit another
non-stimulated signal.

Instead, it would be desirable if those robots that have
recently emitted a non-stimulated signal were less likely to
emit another one, while robots that did not have the occasion
to emit a non-stimulated signal were more likely to emit
one. This way, the estimates would be less noisy, because
the probability of having exactly N − 1 stimulated signals
between two non-stimulated ones would be higher.

What would be needed, in other words, is an ordering
mechanism that lets each robot emit a non-stimulated signal
every N − 1 stimulated emissions. However, forcing a strict
signaling order requires a distributed agreement protocol and
more powerful communication abilities than those assumed
for our robots [4]. With the simple signals our method
can afford, we can obtain an approximated but satisfactory
ordering with a simple modification to the original method.

The key idea is the following: between the refractory
phase and the stimulated+non-stimulated signaling phase,
we introduce a stimulated only signaling phase in which a
robot can emit a stimulated signal, but has zero probabil-
ity of emitting a non-stimulated one. Therefore, as shown
in Figure 1(b), a robot is in the refractory phase when

c ∈ [0, C1], in the stimulated only signaling phase when
c ∈ (C1, C2] and in the stimulated+non-stimulated signaling
phase when c ∈ (C2, CMAX ]. Whenever a robot emits a
signal (stimulated or not), it resets c to 0.

Furthermore, while C1 remains constant over time and is
set to the same value for all robots, the value of C2 is allowed
to vary. The value of C2 is maximum and equal to CMAX for
a robot that emitted a non-stimulated signal in the previous
time step. This means that a robot that has just signaled does
not pass through the stimulated+non-stimulated signaling
phase. After each complete cycle of c, C2 is gradually
decreased subtracting a quantity ε. Clearly, at the same time,
the length of the stimulated+non-stimulated signaling phase
increases by the same quantity. As a result, every robot has
a different length of the stimulated only signaling phase and
the stimulated+non-stimulated signaling phase, proportional
to the time elapsed since the last non-stimulated signal. The
decrease of C2 continues until it reaches C1: in this case,
the stimulated only signaling phase disappears and the phase
cycle that results is the same as in the HMH algorithm. The
swarm is initialized with C2 = C1 and c = 0.

In this mechanism, the choice of ε, C1 and CMAX are
critical. Together, they characterize the number of phase
cycles τ needed for the stimulated only signaling phase to
disappear:

τ =
CMAX − C1

ε

With a value of τ that is too low, the stimulated only
signaling phase disappears quickly and its benefits vanish –
the method behaves similarly to the HMH’s and suffers the
same drawbacks. Hence, a slow decrease is preferable, as it
lets room for each robot to signal in a non-stimulated manner.
In general, the larger the swarm size, the larger τ should be
to obtain good estimates n̂i

t. As discussed in Section I, in
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(a) Spectrum of the HMH method.

0.0 0.1 0.2 0.3 0.4 0.5

1e
−

01
1e

+
01

1e
+

03
1e

+
05

frequency

sp
ec

tr
um

bandwidth = 0.00077

(b) Spectrum of the modified method
without averaging.

Fig. 3. Spectral analysis of the sequence of robot ID signaling in a non-
stimulated way. Since the robot ID is immaterial, the sequences are analyzed
as symbolic time series. The total Fourier spectrum of the symbolic sequence
is defined as the sum of the squared modulus of the individual indicator
sequence spectra [1].

the typical usage scenario we assume that the initial size of
the group is known, so τ can be adjusted to a reasonable
value. Furthermore, as casualties due to failures reduce the
group’s size, τ increases, thus improving the quality of the
estimates.

The insertion of the stimulated only signaling phase ren-
ders the choice of p noncritical. As discussed with more
detail in Section V-C, although an optimal value for p
exists, even suboptimal values do not result in a significant
degradation of performance.

Experiments show that the proposed modification alone,
without averaging, significantly improves the quality of the
estimation. Table I reports the mean relative error E obtained
with the best parameter values we found and Figure 2(a)
shows the results obtained with the HMH method, while the
proposed modification is depicted in Figure 2(b). There is
also another interesting way to analyze the effect of our
modification. Consider the series S(k) of the IDs of the
robots that (over time) emit a non-stimulated signal (i.e.,
S(k) = i if the swarm’s k-th non-stimulated signal has
been emitted by robot i). Our modification imposes on S(k)
a periodicity. The spectrum in Figure 3(b) shows a large
peak for frequency 1/N = 1/25 = 0.04 and subsequent
smaller peaks for frequencies k/N, k ∈ N, k > 1. Each
peak corresponds to an increasing part of the series S(k)
overlapping with itself. The spectrum corresponding to the
HMH method (Figure 3(a)) does not display that regularity.

To provide a qualitative comparison of individual stability
between the HMH method and our modified version, in
Figure 2 we show the behavior of a single individual picked
at random. In an analogous way, agreement is visualized
plotting the maximum and minimum values of the group
size estimate in the swarm, and the first and third quartiles.
The two graphs show that stability and agreement in our
modified version are significantly better than those of the
HMH method. However, in the modified method, individual
estimates still display slight fluctuations around the equi-
librium value. Fluctuations, albeit small, are undesirable
because they prevent the robot from ultimately deciding
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Fig. 4. Result of a test experiment with 50 simulated robots.

about the swarm’s size. For a robot to take a decision based
on the swarm’s size, the estimation needs to stay constant for
a sufficient number of successive observations, beyond which
the robot considers the estimate definitive. As discussed in
Section V-D, averaging can help reduce fluctuations, thus
making the estimates more stable.

V. PROPERTIES

A. Scalability

In the simulated experiments shown in Figure 2, 25
simulated robots are used. We are currently studying the scal-
ability properties of the modified method and the preliminary
results we obtained running our method with an increasing
number of robots are very promising. As an example, in
Figure 4 we report the results of an experiment in which 50
robots are used in simulation. The results are obtained with
C1 = 20, CMAX = 700, p = 0.12 and ε = 10. The swarm
stabilizes around the correct value with very high levels of
stability and agreement across the swarm.

B. Adaptivity

The modified method proves also to be adaptive to changes
in the swarm size. Figure 5 shows the results of a test
experiment where initially 25 robots are used. After the
estimates across the swarm successfully stabilize around the
right value, a second phase starts in which 5 robots are added
(Figure 5(a)) and 10 robots are removed (Figure 5(b)). These
results are obtained using the same setup as in Section V-
A. In the first case (group size is increased), the system
behaves slightly worse than in the second case (when group
size is decreased). This is due to the fact that increasing the
group size lowers τ , and vice versa. As explained in Section
IV, a higher τ highlights the benefits of the stimulated only
signaling phase, thus ensuring better adaptivity. Nevertheless,
even without further parameter tuning, the method shows a
good adaptivity to changes in group size.

C. Robustness

As the aim of this work is to provide a reliable method
for group size estimation, we studied robustness to parameter
variation. We studied the effect of perturbing the probability
to signal p around its best found value 0.121 and the
decrease quantity ε around its best found value 10. Table II
summarizes the mean relative error obtained in each of these
setups. The results show that the error does not change
considerably with slight modifications of the parameters,
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Fig. 5. Adaptivity tests. In these two-phase experiments, the swarm size is 25 during the first phase. In the second phase, the swarm size is changed to
(a) 30 and (b) 15.

TABLE II
ROBUSTNESS – MEAN RELATIVE ERROR OF THE MODIFIED METHOD FOR DIFFERENT VALUES OF p, THE PROBABILITY TO SIGNAL, AND OF ε, THE

DECREASE RATE OF C2 PER CYCLE.

p
0.115 0.116 0.117 0.118 0.119 0.120 0.121 0.122 0.123 0.124 0.125

ε

8 2.52 6.04 5.68 3.84 8.8 6.12 8.12 6.28 4.56 9.92 2.96
9 1.92 2.84 4.56 6.2 1.96 6.88 1.96 1.56 2.96 4.28 2.04

10 2.76 3.92 3.52 1.8 1.36 1.2 0.92 3.24 1.16 3.16 4.64
11 2.48 4.72 3.76 3.96 1.56 3.12 3.44 3.12 2.28 1.08 3.2
12 2.24 2.76 3.56 3.76 1.12 3.52 4.16 4.28 3.96 4.6 3.8

thus giving good performance even in case of suboptimal
parameter settings.

D. Stability

To improve the stability of individual estimates n̂i
t, we

have tried several averaging strategies. Table I reports the
mean relative errors obtained with the three different aver-
aging strategies we studied. As can be seen, the price to
pay to improve stability is a slightly increased error and
less adaptivity (i.e., the system is slower to react to changes
of group size). The choice of whether or not to privilege
precision over stability depends on the situation in which
the method is employed.

1) Time Weighted Average: The average used by Holland
et al. is a time-weighted average process based on the past
history of the system. At every new estimation, the averaged
output is computed adding the most recent values (multiplied
by a constant α) and the previous average (multiplied by a
constant 1−α). Parameter α influences the trade off between
adaptivity and stability. The lower the parameter, the more
stable the output. The price to pay for stable estimates is
that if the group size changes (e.g., due to malfunctioning
robots) longer time is needed to stabilize to a new value.

An undesired effect of this averaging strategy is that the
robots underestimate the real group size. This is due to
the fact that this way of averaging takes into account the
complete history of the estimates, and that at the beginning
of the process, all robots’ estimates are initialized to 1, i.e.,

∀i n̂i
0 = 1.

Over time, the estimates progressively grow up to the stable
value. Given that the past history is always considered during
the process, future estimates are always affected by the initial
low values, thus causing the system to underestimate the
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(a) Time-Weighted average (α = 0.85).
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(b) Moving average (w = 9).
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(c) Mixed average (b = 2, w = 9).

Fig. 6. Comparison of different averaging strategies for the modified
method.



group size. A test experiment with this kind of averaging is
reported in Figure 6(a).

2) Moving Average: To eliminate the underestimation ef-
fect caused by the time-weighted average, a moving average
is a possible solution. With this strategy, the next estimate
of a robot is calculated averaging its last w observations si

j :

n̂i
t =

1
w

t−w∑
j=t−1

(si
j + 1)

This average solves the underestimation problem, and sta-
bility and agreement improve as w increases. On the other
hand, increasing w makes stabilization time increase as
well, because w estimates are needed to fill the averaging
window. Hence, the moving average introduces a trade off
between stability and stabilization speed. In our experiments
we obtained satisfactory results with the averaging window
w = 9. Results are shown in Figure 6(b).

We also tested a weighted moving average, in which
weights are higher for recent observations and lower for older
ones. We have computed the average using both linear and
exponential weights, noticing no significant improvement.

3) Mixed Average: The trade off between stability and
stabilization speed introduced by the moving average can
be solved with a mixed strategy. Figure 6(c) shows that, at
the beginning of the process, estimates grow fast towards
the stable value. It is only after this phase that averaging
is needed. Introducing the moving average at this point
allows the system to settle fast around a value and dampen
fluctuation from then on, thus retaining the good levels of
stability and agreement of the pure moving average.

The benefit of this averaging approach depends on the
length of the initial phase when averaging is off. Since robots
perform their estimations n̂i

t only when they signal in a non-
stimulated manner, the length of the initial phase can be
expressed by the number of non-averaged estimates b before
averaging is turned on. The value of b must be high enough
to allow the robots to settle around a good estimate. In our
experiments we found that b = 2 is a reasonable value.

For what concerns the averaging period w, the discussion
in Section V-D.2 still holds. Therefore, w = 9 is a reasonable
value in this case too. The results obtained with this average
are shown in Figure 6(c).

VI. CONCLUSIONS AND FUTURE WORK

In swarm robotics, and more generally in distributed
systems, the ability of group members to estimate the group’s
size is often useful. In this work, we propose a method that
lets each robot in a swarm estimate the group’s size in a
distributed manner by exploiting only local information. We
base our work on the assumption that the robots are only
able to send and receive signals within a limited range.

Our method is a modification of the one proposed by
Holland et al., who were the first to propose to use local
robot signaling for estimating the group’s size from signaling
frequency. The HMH method is very interesting, but its mean
relative error is considerable. We identified the reason for the

problem as being the fact that the robots do not signal in an
ordered way, thus causing great deals of noise.

We modified the HMH method by imposing a partial
ordering on robot signaling, while retaining the distributed
nature of the original method. Our method outperforms the
original one, both in terms of precision and in terms of
overall stability of the estimate and agreement across the
swarm.

We are currently deepening our understanding of the
proposed method. Preliminary results show that the method
is adaptive to changes of group size, scalable when applied
to larger swarms and robust, i.e., the performance degrades
gracefully for small perturbations of the parameter values.

We are planning to test our method on e-puck robots. At
present, in our simulations we do not model message loss
due to noise or interference, and we believe that the next
major point will be coping with this issue.
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