
17

Property-Driven Design for Robot Swarms: A Design Method Based
on Prescriptive Modeling and Model Checking

MANUELE BRAMBILLA, ARNE BRUTSCHY, MARCO DORIGO,
and MAURO BIRATTARI, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

In this article, we present property-driven design, a novel top-down design method for robot swarms based
on prescriptive modeling and model checking. Traditionally, robot swarms have been developed using a code-
and-fix approach: in a bottom-up iterative process, the developer tests and improves the individual behaviors
of the robots until the desired collective behavior is obtained. The code-and-fix approach is unstructured,
and the quality of the obtained swarm depends completely on the expertise and ingenuity of the developer
who has little scientific or technical support in his activity. Property-driven design aims at providing such
scientific and technical support, with many advantages compared to the traditional unstructured approach.
Property-driven design is composed of four phases: first, the developer formally specifies the requirements of
the robot swarm by stating its desired properties; second, the developer creates a prescriptive model of the
swarm and uses model checking to verify that this prescriptive model satisfies the desired properties; third,
using the prescriptive model as a blueprint, the developer implements a simulated version of the desired
robot swarm and validates the prescriptive model developed in the previous step; fourth, the developer
implements the desired robot swarm and validates the previous steps. We demonstrate property-driven
design using two case studies: aggregation and foraging.

Categories and Subject Descriptors: I.2.9 [Artificial Intelligence]: Robotics

General Terms: Design, Reliability, Verification

Additional Key Words and Phrases: Swarm robotics, top-down design, prescriptive modeling, model checking,
aggregation, foraging

ACM Reference Format:
Manuele Brambilla, Arne Brutschy, Marco Dorigo, and Mauro Birattari. 2014. Property-driven design for
robot swarms: A design method based on prescriptive modeling and model checking. ACM Trans. Autonom.
Adapt. Syst. 9, 4, Article 17 (December 2014), 28 pages.
DOI: http://dx.doi.org/10.1145/2700318

1. INTRODUCTION

Swarm robotics is an approach to the coordination of large groups of robots that
takes inspiration from social insects, such as ants, bees, and termites [Şahin 2005].

The research leading to the results presented in this article received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agree-
ment n.246939 and from the EU project ASCENS, 257414.
Arne Brutschy, Marco Dorigo, and Mauro Birattari acknowledge support from the F.R.S.-FNRS of Belgium’s
Wallonia-Brussels Federation, of which they are a research fellow, a research director, and a research asso-
ciate, respectively.
Authors’ addresses: M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari, IRIDIA, CoDE, Université Libre
de Bruxelles, 50 Av. Franklin Roosevelt CP 194/6, 1050 Brussels, Belgium; emails: mbrambil@ulb.ac.be;
abrutsch@ulb.ac.be; mdorigo@ulb.ac.be; mbiro@ulb.ac.be.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1556-4665/2014/12-ART17 $15.00

DOI: http://dx.doi.org/10.1145/2700318

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

http://dx.doi.org/10.1145/2700318
http://dx.doi.org/10.1145/2700318

17:2 M. Brambilla et al.

Swarm robotics aims at developing systems that are fault tolerant, scalable, and flexi-
ble [Dorigo et al. 2014].

Robot swarms are self-organized systems that can be observed at two levels: the
individual, also called microscopic, level; and the collective, also called macroscopic,
level. The individual level is the behavior displayed by a single robot. The collective
level is the behavior displayed by the swarm and is the result of the interaction of the
individual behaviors.

On the one hand, this dual nature of swarm robotics systems is key in achieving
fault tolerance, scalability, and flexibility. On the other hand, it is the source of difficult
design challenges. In fact, the swarm robotics engineer must think at the collective
level but develop at the individual level: developers of robot swarms are caught between
collective-level missions, such as “monitor the perimeter of a building for intruders”
or “carry these heavy objects from here to there,” and individual-level software, as
the only controllable components of a robot swarm are the individual behaviors of the
robots. Conversely, at the individual level, collective-level goals could be meaningless:
for example, for a single robot, it is impossible to monitor an entire building at the same
time or transport an object if it is too heavy to be moved. Thus, the developer needs to
design the behavior of the individual robots so that their interaction will result in the
collective-level behavior that is needed to accomplish the mission.

Unfortunately, the design and development of individual-level behaviors to obtain a
desired swarm-level goal is, in general, quite difficult, as it is difficult to predict and thus
design the nonlinear interactions of tens or hundreds of individual robots that result in
a desired collective behavior. The difficulty to predict and design such interactions and
the lack of a centralized controller make traditional system engineering approaches
ineffective [Wooldridge and Jennings 1998; Banzhaf and Pillay 2007].

Some approaches to the design of robot swarms have been proposed in the last
years. However, as discussed in Section 2, these approaches present limitations, and
an effective approach to the top-down design of robot swarms is still missing.

In this article, we present property-driven design, a novel top-down design method
for robot swarms based on prescriptive modeling and model checking. In our approach,
the developer creates a prescriptive model of the desired robot swarm and uses it
as a blueprint for the implementation and improvement of the swarm. The use of
model checking allows the developer to formally verify properties directly on the model,
reducing the need for testing in simulation or with robots. In property-driven design,
different “views” of the system to realize are produced, from the most abstract (the
properties of the system) to the most concrete (the final robot swarm).

Property-driven design addresses the shortcomings of the existing approaches:

—It aims at providing a method to formally specify the requirements of the desired
robot swarm.

—It reduces the risk of developing the “wrong” robot swarm—that is, a robot swarm
that does not satisfy the requirements.

—It promotes the reuse of available models and tested solutions.
—It can be used to develop platform-independent models that help in identifying the

best robotic platform to use.
—It helps to shift the focus of the development process from implementation to design.

Property-driven design can be used to design and develop any kind of robot swarms.
In particular, its applicability is closely linked to the applicability of mathematical
modeling and model checking: property-driven design can be applied to the class of
robot swarms that can be described using mathematical modeling and whose properties
can be validated using model checking. Whether this class encompasses all possible
robot swarms is an open research question.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:3

Property-driven design is a step forward in the development of swarm engineering,
which is the systematic application of scientific and technical knowledge to specify re-
quirements, design, realize, verify, validate, operate, and maintain an artificial swarm
intelligence system [Brambilla et al. 2013].

To illustrate and validate property-driven design, we apply it to two case studies:
aggregation and foraging.

In Section 2, we present the related literature on design methods and model checking
for swarm robotics. In Section 3, we present model checking and its two components:
models and properties. In Section 4, we present property-driven design. In Section 5,
we present the two case studies.

2. RELATED WORK

In this section, we first discuss the literature on design methods and then the literature
on model checking in swarm robotics.

Design methods. The design of multirobot systems has been addressed in many
research papers [Zambonelli et al. 2001; Bordini 2009; Goldberg and Matarić 2001].
However, the design of robot swarms poses challenges that are not present in other
multirobot systems. Indeed, the characteristics of robot swarms, such as high number
of individuals, strong decentralization, simple behaviors, local communication, and
action, are usually regarded as characteristics that make a multirobot system “too
complex to manage effectively” [Wooldridge and Jennings 1998].

Traditional multirobot approaches are thus of limited use when developing robot
swarms. For this reason, other ad hoc design approaches have been proposed.

Kazadi et al. [2009] developed a design approach based on Hamiltonian vector fields
called the Hamiltonian method: starting from a mathematical description of a collective
behavior, the method derives microscopic rules that minimize or maximize a selected
numerical value (e.g., the virtual potential energy of a particular state of the swarm).
The Hamiltonian method has the major drawback that it deals only with spatially
organizing behaviors such as pattern formation.

Berman et al. [2009] proposed a top-down approach to the design of a task allocation
behavior. In this approach, the system is described as a Markov chain in which states
represent tasks and edges represent the possibility for a robot to move from one task
to another. The probabilities that govern how robots change task are obtained using
a stochastic optimization method that minimizes the time needed to converge to the
desired allocation. This approach is specific to task allocation and has not been extended
to other collective behaviors.

Hamann and Wörn [2008] proposed a method inspired by statistical physics. The
authors use Langevin equations to describe the individual behaviors of the robots,
and through analytical means, they derive a Fokker-Planck equation describing the
collective behavior of the system. A similar approach was adopted also by Berman et al.
[2011], who used a set of advection-diffusion-reaction partial differential equations to
derive the individual behaviors of a swarm performing task allocation. Both methods
are based on advanced mathematical techniques and on the ability of the developer
to model the robot interactions. Moreover, such methods rely on ordinary or partial
differential equations, which provide reliable results only if it is assumed that the
swarm size tends to infinity. In swarm robotics, this is often not the case, since typically
robot swarms are composed of no more than a hundred robots and often of just a few
tens of robots [Brambilla et al. 2013].

Model checking in swarm robotics. Property-driven design is based on model checking
[Baier and Katoen 2008], a technique to prove properties of a system in a formal way.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:4 M. Brambilla et al.

Winfield et al. [2005] were the first to model a robot swarm in the form of the
and-composition of individual-level models, as well as linear temporal logic to define
properties of individual robots and of the swarm. Dixon et al. [2012] further extended
focusing on the use of model checking to analyze a similar model. The approach
presented in these works is not scalable, as the number of states of the model increases
exponentially with the number of robots. Furthermore, linear temporal logic, which
deals only with binary values (true/false), is a suboptimal choice to analyze robot
swarms, which are systems characterized by stochastic properties.

Recently, Konur et al. [2012] adopted a different approach. The authors used model
checking on a macroscopic model of a robot swarm performing foraging. They specified
the desired properties of the system using probabilistic computation tree logic (PCTL),
a temporal logic that includes probabilistic aspects (see Appendix II for a description of
PCTL). This approach is able to overcome the limits of linear temporal logics. Moreover,
the use of a macroscopic model, instead of a microscopic one, allows this approach to
deal with systems composed of tens of robots. We used a similar approach in a previous
work [Brambilla et al. 2012], in which model checking and PCTL were used to verify
properties of a robot swarm performing aggregation.

In a work on the use of Bio-PEPA in swarm robotics [Massink et al. 2013], we were the
first to use statistical model checking (presented in Appendix III) to analyze a collective
decision-making behavior. Statistical model checking overcomes the scalability issues
of complete model checking, allowing us to analyze models of large swarms.

3. MODEL CHECKING

Property-driven design is based on prescriptive modeling and model checking. Model
checking is a formal method that allows one to formally prove that a model satisfies a
given property. The idea is that a system can be modeled using a formal mathematical
model and then is checked against a property defined using a formal logic language.
In this work, we use Markov chains to define models and probabilistic temporal logics
to define properties. Markov chains can be used to describe the behavior of a robot
swarm. Markov chains and probabilistic temporal logics have been proven to be well
suited for model checking in swarm robotics [Konur et al. 2012; Brambilla et al. 2012]
due to their simplicity and expressive power.

The most common way to describe the behavior of a swarm using a Markov chain is by
using a macroscopic Markov chain model: each state of the Markov chain is augmented
with a variable that tracks the number of robots in that particular state. Note that,
differently from rate equations, this variable tracks the actual number of robots, not
the ratio. This avoids rounding problems that might occur with rate equations.

Properties can be defined using probabilistic temporal logics. In this article, we use
PCTL.1 PCTL is well suited for swarm robotics systems, as it can capture both time-
related and stochastic aspects. Examples of properties that can be expressed using
PCTL are with a probability greater than 0.75, the system completes the task before
1,000 timesteps or there is a probability greater than 0.95 that every request is answered
within 10 timesteps.

More details about Markov chains, probabilistic logics, and model checking can be
found in the appendix.

1Note that PCTL can be used only with discrete-time Markov chains. For continuous-time Markov chains,
it is necessary to use continuous stochastic logic (CSL). For our goals and purposes, however, the two logics
are equivalent. Thus, for the sake of simplicity, we refer to PCTL also when dealing with continuous-time
Markov chains, even though this is formally incorrect.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:5

Fig. 1. The four phases of property-driven design.

4. PROPERTY-DRIVEN DESIGN

Property-driven design is composed of four-phases: (1) the requirements of the robot
swarm are first formally described in the form of desired properties; (2) subsequently, a
prescriptive model of the robot swarm is created; (3) this prescriptive model is used as
a blueprint to implement and improve a simulated version of the desired robot swarm;
and (4) the final robot swarm is implemented.

A schema showing the different phases of property-driven design is presented in
Figure 1.

In each phase of property-driven design, a new layer is added to the system. Layers
differ in their level of abstraction: the properties layer is the most abstract, in which
only the goal characteristics of the robot swarm are stated, and the robots layer is
the most concrete, in which the actual software for the real robots is developed and
deployed. The addition of a new layer brings the system closer to its final state.

Each phase of property-driven design is characterized by a development/validation
cycle: the focus of the developer is on the newly introduced layer, but all previously
developed layers are still active—that is, they are still improved and expanded, should
this be needed to guarantee the consistency of the layers. The newly introduced layer
provides the developer with further information on the system. This information is
used to improve the system being developed, to validate its prescriptive model, and to
verify its properties. For example, the development of the system in simulation provides
the developer with new data that can be used to improve and validate the prescriptive
model and further verify that the desired properties hold.

Phase One: Properties. In this phase, the developer formally specifies the require-
ments of the robot swarm in the form of desired properties. These properties are the
distinguishing features of the robot swarm that the developer wants to realize. They
can be task specific, such as the system eventually completes task X, or they can express
more generic properties, such as the system keeps working as long as there are at least
N robots or the system will never be in state Y for more than t timesteps. The more
precise and complete these properties are in this phase, the more the developed robot
swarm will meet expectations. Clearly stated requirements help to reduce the risk of
developing “the wrong robot swarm.” For simplicity, in this article, we assume that
requirements do not change during the development of the robot swarm.

Phase Two: Model. In this phase, the developer creates a prescriptive model of the
robot swarm. Usually, the prescriptive model describes how robots change state over
time, where a state is an abstract simplified description of the actions of a robot (see

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:6 M. Brambilla et al.

Appendix I). To create this prescriptive model, a creative step is necessary in which the
developer devises the behavior that the robots will execute. However, in property-driven
design, it is not necessary that this first behavior is exhaustively defined, particularly
regarding the implementation details. The prescriptive model should be sufficiently
detailed to capture the behavior of the robots and their interaction but not too detailed,
to avoid unnecessary complication.

Once a first draft of the prescriptive model is produced, the desired properties stated
in phase one are verified using model checking. Given that robot swarms are charac-
terized by uncertainty, the most natural choice is to use probabilistic model checking
[Baier and Katoen 2008]. As in test-driven development [Beck 2003], at first it is pos-
sible that the prescriptive model does not satisfy all of the desired properties. In an
iterative process, the developer expands and improves the prescriptive model until
the properties are satisfied. The outcome of this process is a prescriptive model of the
collective behavior of the robot swarm that satisfies the stated properties.

Note that it might not always be possible to identify all numerical parameters of the
model in this phase. If some parameter cannot be identified, the model will be completed
after an initial implementation in phase three. Nonetheless, even a partially completed
model can be useful as a blueprint to implement the system.

Phase Three: Simulation. In this phase, the developer uses the prescriptive model as
a blueprint to implement and improve the robot swarm using a physics-based computer
simulation (henceforth, simply simulation). By blueprint, we mean that the prescriptive
model is used to identify the most relevant aspects of the robot swarm to realize. This
allows the developer to focus on these aspects and neglect other minor details. For
example, if a prescriptive model shows that by entering state i an individual robot
affects the performance of the whole swarm more than by entering state j, the developer
can focus on the first and temporarily ignore the second. Moreover, concentrating on
the prescriptive model at design time allows the developer to direct his efforts toward
high-level decisions rather than toward the implementation.

It is possible that the implementation choices or other unforeseen aspects of the
system result in a simulated system that does not behave as predicted by the prescrip-
tive model. In this case, the developer must go back to the previous phases, modify
the prescriptive model to consider the results obtained from the simulation, and verify
whether the required properties still hold true.

Phase Four: Robots. In this phase, the developer realizes the final robot swarm.
Similarly to the transition between the prescriptive model and the simulation, if the
implementation on robots reveals that some assumptions made during the previous
phases do not hold, it might be necessary to modify the simulated version or the
prescriptive model to keep all levels consistent.

5. CASE STUDIES

In this section, we illustrate property-driven design using two very common case stud-
ies from the swarm robotics literature [Brambilla et al. 2013]: aggregation and foraging.
These case studies have been chosen because they allow us to develop behaviors with
different distinguishing characteristics.

In both case studies, we perform model checking using PRISM, a state-of-the-art
suite for model checking [Kwiatkowska et al. 2004]. PRISM is free and released as
open source software under the GNU General Public License (GPL).2

2http://www.prismmodelchecker.org.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

http://www.prismmodelchecker.org.

Property-Driven Design for Robot Swarms 17:7

5.1. Aggregation

In the first case study, we tackle aggregation: robots have to cluster in an area of the
environment. The robots have neither knowledge of the position of the other robots nor
a map of the environment. We choose aggregation as a case study for various reasons:
(1) aggregation is a simple case study, and this allows us to focus on the development
process; (2) aggregation is a common case study in swarm robotics (for a review, see
Brambilla et al. [2013]); and (3) the behaviors used to tackle aggregation possess many
of the salient traits of swarm robotics—they are completely distributed, based on simple
robot-to-robot interactions, and are characterized by stochasticity and spatial aspects.

The aggregation case study that we discuss in this article is similar to the one
presented by Jeanson et al. [2005]. We consider a dodecagonal environment with two
black spots of equal size referred to as area a and area b. We call area c the remaining
white area. Each of the black spots is large enough to host all the robots. (See Figure 5
for a picture of the environment.) Let N be the number of robots in the swarm. We
consider three swarm sizes: N ∈ 10, 20, and 50. We use three different arenas for the
three different swarm sizes, respectively, of 4.91 m2, 19.63 m2, and 50.26 m2. The
surfaces of the black areas, respectively, are 0.38 m2, 0.78 m2, and 3.14 m2.

In the following discussion, we will apply the four-phase process explained in
Section 4.

Phase One: Properties. The main property that the robot swarm must satisfy is that
eventually all robots form an aggregate either on area a or area b. We set a time limit
that depends on the number of robots composing the swarm, as we expect that larger
swarms will require a longer time to aggregate.

We define the following event of interest,

E1 ≡ [F ≤ 100N (Sa = N)|(Sb = N)],

and property,

P(E1) ≥ 0.75. (1)

In less formal terms, E1 means that in less than or equal to 100N seconds (F ≤ 100N),
where N is the total number of robots, the number of robots in area a (Sa) or in area
b (Sb) is equal to the total number of robots in the swarm (Sa = N|Sb = N). F ≤ t is
the bounded eventually operator, which is true if and only if the subsequent formula
becomes true in a future state that is closer to now than t seconds. The property we
require from the final swarm is that E1 is true with a probability greater than or equal
to 0.75.

Another property the swarm must satisfy is that the aggregate, once formed, is stable
for at least 10 seconds—that is, robots do not change state once the aggregate is formed.
We want this to happen more than two thirds of the times in which an aggregate is
formed.

We define the following event of interest,

E2 ≡ [G < 10 (Sa = N)|(Sb = N)],

which indicates the event of staying in the aggregate state for less than 10 seconds,
and property,

(Sa = N)|(Sb = N) ⇒ 1 − P(E2) ≥ 0.67. (2)

In natural language, Property 2 can be expressed in this way: starting from a state in
which the robot swarm is aggregated (Sa = N|Sb = N), is it true with probability of
at least 0.67 that event E2 does not occur (1 − P(E2) ≥ 0.67)—that is, that the swarm
does not leave the aggregate state for at least 10 seconds (G < 10)? The operator G < t

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:8 M. Brambilla et al.

Fig. 2. The prescriptive model for aggregation. Each state is used to count the number of robots in the
corresponding area.

is the bounded always operator, which is true if and only if the subsequent formula is
true for at most t seconds.

Phase Two: Model. We develop a discrete-time macroscopic prescriptive model. In a
macroscopic model, each state is used to track the number of robots that are in a specific
area of the environment or are performing a specific action (see Appendix I). To develop
the prescriptive model for the aggregation case study, we consider the three areas in
which the environment is divided. We define three states: a, b, and c, for areas a, b,
and c, respectively. To each state, we associate a variable, Sa, Sb, and Sc, respectively,
to track the number of robots currently in that area. Note that Sa + Sb + Sc = N.
Figure 2 provides a graphical representation of the prescriptive model.

In this initial stage of the definition of the prescriptive model, we assume that the
system can be effectively described by a nonspatial model—that is, a model in which
the trajectories of the robots are ignored and a robot can move instantaneously from
area c to area a or b, and vice versa. Moreover, for the moment, we also ignore the
effects of interferences between robots [Lerman et al. 2005]. In case these assumptions
prove to be not realistic and the results obtained with the prescriptive model do not
match those obtained in simulation or with the final robot swarm, we will modify them
in the following phases, as explained in Section 4.

The first design attempt is as follows: a robot performs random walk, and when it
finds a black area, it stops. A robot stopped on a black area has a fixed probability to
leave.

Since the prescriptive model is nonspatial and ignores interference, we consider
only the geometric properties of the areas to compute pca—that is, the instantaneous
probability that a robot transitions from Sc to Sa. A robot in area c can either go to area
a, go to area b, or stay in area c. This means that a robot in area c has a probability
of going from area c to area a equal to pca = Aa

Aarena
, where Aa is the surface of area a

and Aarena is the surface of the entire environment; a probability of going from area c
to area b equal to pcb = Ab

Aarena
, where Ab is the surface of area b; and a probability of

staying in area c equal to pcc = Ac
Aarena

= 1 − (pca + pcb), where Ac = Aarena − (Aa + Ab).
Note that pca = pcb, since Aa = Ab.

The remaining probabilities depend on the behavior of the robots. The aggregate can
be obtained in area a or area b, and thus we set the probabilities of leaving these two
areas to be equal: pac = pbc. A robot in area a can only go to area c or stay in area a, and
thus paa = 1 − pac. The same holds for area b. From the preceding scenario, it follows
that paa = pbb. The only probability remaining is pac—in other words, pac is the only
free parameter of the system. Using model checking, we can explore the parameter
space of pac to find the value that results in the highest probability to satisfy E1. Once

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:9

Table I. Model Checking Results for the First Solution with a Fixed pac

N Aa Aarena pca pac Pr 1 (P(E1)) Pr 2 (1 − P(E2))
10 0.38 m2 4.91 m2 0.08 0.05 � (0.75) ✗ (0.46)
20 0.78 m2 19.63 m2 0.06 0.04 ✗ (0.39) ✗ (0.07)
50 3.14 m2 50.26 m2 0.06 0.04 ✗ (0.12) ✗ (3.7 × 10−5)
Note: Column pac shows the best value of pac. Columns Pr 1 and Pr 2 show whether Property 1
and 2 are satisfied (�) or not satisfied (✗) and the exact values of the probabilities of the
related event of interest.

Table II. Model Checking Results for the Second Solution Where pac = 1 − pmin−ac · Ns

N Aa Aarena pca pmin−ac Pr 1
(
P(E1)

)
Pr 2

(
1 − P(E2)

)
10 0.38 m2 4.91 m2 0.08 [0.19, 0.24] � (0.95) � (0.92)
20 0.78 m2 19.63 m2 0.06 0.12 � (0.86) � (0.87)
50 3.14 m2 50.26 m2 0.06 0.10 � (0.77) � (0.71)
Note: Column pmin−ac shows the best value of pmin−ac. Column Pr 1 and Pr 2 are defined as
in Table I.

pac is set, we can use model checking to verify whether the desired properties are
satisfied.

Table I shows that this first attempt at tackling the aggregation case study is un-
successful: Property is satisfied only for N = 10 and Property 2 is never satisfied. In
general, the developed behavior obtains poor results, and the system does not cope well
with increasing swarm sizes.

An analysis of the prescriptive model can help us improve the developed behavior.
From the obtained results, we observe that a fixed pac does not promote the formation
of a single aggregate. A better solution might be to let a robot decide whether to leave
area a or area b according to the number of sensed robots in its proximity: with only
few robots nearby, the probability pac to leave the aggregate is high and vice versa. We
thus redefine pac as

pac =

⎧⎪⎨
⎪⎩

1 − pmin−ac · Ns if (1 − pmin−ac · Ns) ∈ [0.01, 0.99]

0.01 if (1 − pmin−ac · Ns) < 0.01

0.99 if (1 − pmin−ac · Ns) > 0.99,

where pmin−ac is the minimum staying probability that we want for a robot and Ns is the
number of robots in the sensory range of the robot, including itself. Subsequently, using
model checking, we find the best value of pmin−ac for the different swarm sizes. This is
done by evaluating several different values of pmin−ac using model checking and identi-
fying the one that gives the highest probability to satisfy the related event of interest.

An analysis of the improved behavior using model checking shows that results are
significantly better both for Property 1 and Property 2, as reported in Table II.

With the current prescriptive model, we are also able to define specifications for the
hardware capabilities of the robots: a ground sensor, to differentiate between the two
black areas a and b and the white area c; a sensor to detect nearby robots; and wheels
to move. An example of such a robot is the e-puck [Mondada et al. 2009], which can
be extended with a range and bearing board that allows it to perceive the presence of
neighboring robots [Gutiérrez et al. 2009].

Table III shows the symbols used in the model of the aggregation case study.

Phase Three: Simulation. In this aggregation case study, the prescriptive model cap-
tures well the microscopic behavior of the single robots; thus, it is quite straightforward
to implement the robot swarm in simulation. However, several implementation details
are not explicitly present in the prescriptive model, such as how the robots perform
random walk. These details now have to be defined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:10 M. Brambilla et al.

Table III. The Symbols Used in the Aggregation Model

Symbol Description Value
Si Number of robots in state i i ∈ {a,b,c}
Ai Size of area i i ∈ {a, b, c}
Aarena Total size of the arena Aarena ∈ {4.91m2,19.63m2, 50.26m2}
N Total number of robots N ∈ {10, 20, 50}
Ns Number of robots sensed by an individual robot,

including itself
Ns ∈ [1, N]

pij Probability that a robots moves from Ai to Aj i, j ∈ {a, b, c}; pij ∈ [0.01, 0.99]
pmin−ac Parameter of the model pmin−ac ∈ [0.01, 0.99]

Fig. 3. A screenshot of the simulated version of the robot swarm with 20 robots.

Table IV. A Comparison between Model Checking
and Simulation

N Model Checking Simulation
10 0.95 100/100
20 0.86 96/100
50 0.77 89/100
Note: The table presents the probability of E1 (model
checking) compared to the experimental results over
100 runs (simulation). Note that Property 2 is always
satisfied in simulation; therefore, it is not listed in
the table.

We implement the robot swarm using the ARGoS simulator [Pinciroli et al. 2012].
Figure 3 presents a screenshot of the simulated robot swarm.

We perform three different sets of experiments, one for each swarm size. To validate
the prescriptive model, we measure the time necessary to form a complete aggregate on
100 runs with different values of pmin−ac. The robots are deployed in a random position
at the beginning of each experiment. Each experiment is halted when a complete
aggregate is formed or after 10,000 seconds.

As reported in Figure 4, for all the three swarm sizes, the best results are obtained
with the value pmin−ac predicted using the prescriptive model. The results obtained in
simulation are slightly better than those predicted with the model. Table IV provides
a comparison.

Three sets of experiments were also performed to test Property 2. We perform 100
runs of the simulated experiments for 10,000 seconds with the three swarm sizes. In
the experiments, we measure whether the robot swarm satisfies Property 2—that is,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:11

Fig. 4. The results obtained with the ARGoS simulator. The graphs show the time at which the experiment
is stopped—that is, either when an aggregate is obtained (all values lower than 10,000 seconds) or when the
time limit of 10,000 seconds has been exceeded. Results are presented for different pmin−ac over 100 runs for
10, 20, and 50 robots.

whether a complete aggregate, once formed, lasts more than 10 seconds. In all cases in
which a complete aggregate was formed before 10,000 seconds, Property 2 was satisfied.

Videos of the simulated experiments are available in the supplementary material
[Brambilla et al. 2014].

Phase Four: Robots. We perform 10 experiments with a swarm of 10 e-pucks in an
arena identical to the simulated one. An overhead shot of an experiment can be seen
in Figure 5. Figure 6 shows a comparison between the time necessary for achieving

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:12 M. Brambilla et al.

Fig. 5. An overhead shot of an experiment performed with 10 e-puck robots.

Fig. 6. A graph showing the empirical cumulative distribution Fn (x) of the time necessary to achieve
aggregation obtained with robots (10 runs) and in simulation (100 runs). In both cases, N = 10 and pmin−ac =
0.22.

aggregation with the robots and in simulation. A video of a run is available in the
supplementary material [Brambilla et al. 2014].

In 10 runs out of 10, both Property 1 and Property 2 were satisfied. The results
obtained with the robots are in line with those obtained in simulation.

The robot swarm that we designed is able to aggregate satisfying the required prop-
erties. For this reason, there is no need to further update the prescriptive model, and
we can declare the process completed.

5.2. Foraging

In the second case study, we tackle foraging. In the simplest form of foraging, robots
harvest objects and store them in the nest. The objects can be scattered in random

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:13

positions or located in specific areas called sources. Foraging can be seen as an abstrac-
tion of more complex and realistic applications, such as search and rescue, land mine
removal, waste cleaning, and automated warehouse operation.

The number of objects retrieved typically depends on the number of robots: a single
robot can perform foraging alone, but additional robots could be added to increase the
performance of the swarm, as robots working in parallel are able to retrieve more
objects per time unit than a single robot. However, when the density of the robots in
the environment increases, the performance of each single robot may be reduced due
to interference [Lerman and Galstyan 2002; Pini et al. 2009].

In this case study, we assume that the robotic platform is given: the task must be
tackled using e-pucks [Mondada et al. 2009]. The e-puck does not have the manipulation
capabilities to interact with physical objects, so we consider an abstract version of for-
aging: instead of interacting with objects, e-pucks interact with TAM devices [Brutschy
2014]. The TAM is a device similar to a booth, in which a robot can enter. It has a sys-
tem of light barriers to sense the presence of a robot, as well as an LED that can be
used to communicate information about its internal state. In this case study, TAMs are
used to simulate the manipulation of objects: an e-puck can enter in a TAM, wait a
fixed amount of time, and leave to simulate harvesting or storing an object.

The arena comprises 20 TAMs: 5 TAMs on the north wall act as the nest, and each
of these TAMs is a storing location; 15 TAMs on the other walls act as sources, or
locations where objects can appear. At any given time, there are O objects available
in the arena—that is, a new object appears as soon as one is harvested by a robot.
We perform experiments in which O ∈ {2, 4, 6, 8, 10}. The number of available storing
locations depends on the number of robots currently storing an object: it can vary from
5, when no robot is using a storing location, to 0, if all are in use.

The state of a TAM is encoded using colors: green when the TAM is available for
storage; blue when the TAM has an object available for harvesting; red when the TAM
is busy—that is, a TAM in which a robot is currently harvesting or storing an object;
and off/black when the TAM is unavailable.

The environment is a 2m × 2m square (see Figures 7 and 12). Note that there is
no globally perceivable clue in the environment that informs the robots of the position
of the nest, which is different from many other foraging studies (see Brambilla et al.
[2013] for a review including work on foraging).

To allow robots to see the TAMs, we use e-pucks equipped with an omnidirectional
camera.3 Using the omnidirectional camera, robots can see the LEDs of the TAMs
within a range of 0.5m.

In the following discussion, we will apply the four-phase process presented in
Section 4. In the foraging case study, we use the continuous-time version of the Markov
chain model so that we can model the duration of some actions, such as harvesting and
storing an object.

Phase One: Properties. In foraging, the main requirement is that the swarm retrieves
at least a certain number of objects within a fixed time. We define the following event
of interest,

E3 ≡ obj ret[C ≤ 600],
and property,

E(E3) ≥ k. (3)
where obj ret is the number of objects retrieved and C ≤ 600 indicates that we are
interested in the cumulative value over 600 seconds. The desired property is that the

3See http://www.gctronic.com for more details.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

http://www.gctronic.com

17:14 M. Brambilla et al.

Fig. 7. A screenshot of the simulated version of foraging using 20 robots. Green-colored TAMs signal storage
locations, red-colored TAMs signal that the object is busy, blue-colored TAMs signal objects to be taken, and
dark TAMs are not available.

Table V. The Value of k Necessary to Satisfy Property 1 for Different Values of N;
the Number of Robots Composing the Swarm; and Values of O, the Number

of Objects Available in the Environment at Any Given Time

N O k
20 2 45
20 4 55
20 6 65
20 8 75
20 10 85

N O k
10 6 40
20 6 65
50 6 90

100 6 75

expected number of objects retrieved in less than 600 seconds (E(E3)) is greater than
or equal to k. E is the expected value.

The number k of objects that we wish to retrieve depends on N, the number of robots
composing the swarm, and on O, the number of objects available in the environment
at any given time (Table V). We specify k for two scenarios: one in which the number of
robots is fixed while O changes, and one in which O is fixed and the number of robots
changes. From Table V, it can be noticed that the number of objects that we want to
retrieve does not increase linearly with the number of robots. This choice has been made
because we want to test the scalability of the system, but at the same time, we expect
that the effects of interferences between robots will become more and more significant
as the swarm size increases, reducing the number of object retrieved [Hamann 2013].

Another requirement is on the worst-case performance—that is, we want to ensure
that the robot swarm is able to retrieve at least a minimum number of objects in
600 seconds. Model checking allows us to formally verify this condition, as we can
compute not only the expected value but also its cumulative distribution (or, conversely,
the density function).

We define the following event of interest,

E4 ≡ [F ≤ 600obj ret > 40],

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:15

and property,

P(E4) ≥ 0.90. (4)

In natural language, Property 4 can be expressed as such: is it true with probability
greater than or equal to 0.90 (P ≥ 0.90) that at least 40 objects are retrieved (obj ret >
40) in less than or equal to 600 seconds (F ≤ 600)? To simplify the discussion, we verify
Property 4 only in the case where N = 20 and O = 6.

Phase Two: Model. To build the prescriptive model, we consider the different actions
that a robot must perform. We then associate a state of the Markov chain model to each
of these actions.

A robot searches for objects by performing a random walk in the environment (So
state). Once an object is found, the robot tries to harvest it (H state); in case of multiple
objects in range, the robot goes toward the closest one. If the harvest action is unsuc-
cessful, because, for instance, another robot harvests the object, the robot goes back
to searching. When the object is reached, the robot waits inside the TAM for a fixed
amount of time until the object is harvested (Hw state). Once the robot has harvested
an object, it proceeds to search for the nest by performing a random walk (Sn state).
As soon as an available storage location is found, the robot tries to store the carried
object (ST state); also in this case, the closest storage location is approached if multiple
storing locations are seen. If the store action is unsuccessful, the robot searches for
another storage location until the object is stored. Similar to the harvest operation, in
this case the robot waits inside a TAM for a fixed amount of time until the object is
stored (STw state). A successful store operation (transition from STw to So) increases the
object counter (obj_ret). The robot then searches for a new object to harvest.

Robots always try to avoid collisions with obstacles and other robots. Practically, this
produces two behaviors: when a robot is trying to enter a TAM (state H or state ST), it
follows a vector that is the sum of a vector pointing to the desired destination and a
vector pointing away from the closest obstacle. When a robot is performing a random
walk without a specific destination instead (state So or state Sn), if it encounters an
obstacle or another robot, it starts turning on the spot for a random number of steps and
then begins again to move straight. This random number of steps follows a geometric
distribution. We model these different reactions in two different ways. In the first
case, the action of the robot is not significantly disturbed, as the robot performs only a
slight change of trajectory towards its goal. For this reason, this first kind of obstacle
avoidance affects only the time to complete the action but does not change the behavior
of the robot. In the second case, instead, the robot completely changes its direction to
avoid a collision, resulting in a significant change in its behavior and its chance to find
objects or the nest. For this reason, the second kind of obstacle avoidance is modeled
by adding two states: state Ao in case the robot is avoiding a collision when searching
for an object, and state An in case the robot is avoiding a collision when searching for
the nest.

Figure 8 provides a graphical representation of the prescriptive model.
We now have the structure of the behavior that the robots should follow. We need to

assign values to the transition rates. We compute the transition rates considering the
behavior of a single robot. For the macroscopic model, the rates are then multiplied
by the current number of robots in the corresponding state, as illustrated in Figure 8.
Note that here we use continuous-time Markov chains, so the transitions are defined
as rates that take values in [0,+∞).

All rates involved in the definition of the model depend on the geometrical charac-
teristics of the environment and/or on the behavior of the robots. Unfortunately, differ-
ently from the previous case study, we cannot completely define them a priori since it is

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:16 M. Brambilla et al.

Fig. 8. The continuous-time Markov chain used to model foraging. H is the harvest state; Hw is the wait to
harvest state; So is the search object state; Ao is the avoid (while searching for an object) state; ST is the
store state; STw is the wait to store state; Sn is the Search nest state; and An is the Avoid (while searching
for the nest) state. Transitions are labeled with their respective rates multiplied by the number of robots
currently in that state: λi→j is the rate at which an individual robot moves from state i to state j; and Ni
is the number of robots currently in state i. To compute the expected number of objects retrieved, we keep
track of the number of times that the transition from STw to So happens.

impossible to identify the correct value of the parameters involved in their definition
without experimental data. In the following, we make some working hypotheses about
the system that can be subject to refinements or changes in the subsequent phases,
should they prove not to be sufficiently accurate or correct. Since we do not have exper-
imental data, the model that we are creating is largely arbitrary. Other valid choices
could have been made. In particular, parameters will be fitted once experimental data
are available—that is, in phase three. Note that the goal of this phase is not to create
a model that is as precise as possible, but one that can be used to develop and later
improve the desired robot swarm.

In the following discussion, we present how each rate is defined. We define λSo→H, the
rate at which a robot finds an object, as proportional to the density of available objects
in the environment:

λSo→H = α
O

Aarena
,

where O is the number of objects available at any given time, Aarena is the area of the
environment, and α is a parameter.

We define λSo→Ao, the rate at which a robot searching for an object finds another robot
and then performs obstacle avoidance, as proportional to the density of robots in the
environment:

λSo→Ao = β
N

Aarena
,

where N is the total number of robots in the environment and β is a parameter.
Rates λSn→ST and λSn→An are defined similarly, considering the number of storage

locations instead of the number of objects:

λSn→ST = γ
D

Aarena
,

λSn→An = δ
N

Aarena
,

where D is the number of storage locations and γ and δ are two parameters.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:17

Rates λAo→So and λAn→Sn depend on the time necessary for a robot to perform obsta-
cle avoidance. As said previously, if a robot encounters an obstacle or another robot
while searching for objects or for the nest, it performs obstacle avoidance by turning
on the spot for a random number of steps distributed geometrically and then starts
again searching for objects or the nest. The rate at which a robot moves from obstacle
avoidance back to search is thus

λAo→So = λAn→Sn = poa,

where poa is the parameter of the geometric distribution.
We define λH→Hw and λST→STw, the rates at which a robot going toward an object-TAM

or a storage-TAM manages to enter it, as the reciprocal of the time necessary to get in
the TAM, counted from the instant in which the robot sees it:

λH→Hw = λST→STw =
(r

s

)−1
,

where r is the range at which a robot sees a TAM and s is the forward speed of a robot.
A robot trying to enter a TAM is not always successful: other robots may “steal”

its object by occupying the TAM before it can do it. This means that not all robots
going toward a TAM enter it. Some are interrupted by other robots and thus are forced
to search for another available TAM. This is modeled by the transitions H → So and
ST → Sn. We define λH→So and λST→Sn, the related rates, as proportional to the density
of robots in the environment:

λH→So = ε
N

Aarena
,

λST→Sn = η
N

Aarena
,

where ε and η are parameters. We expect ε and η to have different values, as storage
locations are all next to each other, generating more interference, whereas objects to
harvest generally are evenly distributed along the walls of the environment.

The last rates that we need to define are λHw→Sn and λSTw→So, the rates at which robots
in a TAM complete their operations and exit. These rates are the reciprocal of the time
spent by a robot in a TAM:

λHw→Sn = λSTw→So = (tTAM)−1 ,

where tTAM is the time spent by a robot in a TAM.
Since we do not have empirical data to estimate the parameters, at this point we

cannot use model checking to compute the expected number of objects retrieved, or
whether the desired properties are satisfied. However, even without empirical data,
we can use the model to improve the behavior of the robots. For example, by analyzing
the model, we can observe that increasing the rate at which the robots find objects
or storage locations—that is, increasing λSo→H and λSn→ST—results in an increase of
objects retrieved.

To increase these rates, we cannot modify the number of objects available at any
given time or the number of storage locations, as they are given. We could act on the
parameters, but it is not clear how to change the behavior of the robots to increase
these parameters. Even though we cannot change the dimensions of the environment,
we can change the size of the area effectively covered by the robots. In other terms, we
can change the behavior of the robots so that they do not cover the whole environment
when searching for objects or storage locations. In particular, we could let robots avoid
places where they know they will not find anything useful.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:18 M. Brambilla et al.

Fig. 9. The modification of the behavior used to reduce interference and reduce the area searched by a robot.
A robot (depicted as a green circle with a yellow arrow on top) carrying an object performs obstacle avoidance
(full arrow) as soon as it sees another object, instead of reaching to the wall (dotted arrow). The light blue
circular sections represent the areas in which a robot sees an object. The same applies to robot searching for
the nest, even though this is not displayed in the figure.

In the behavior defined earlier, robots searching for objects and for the nest go
straight until they find an obstacle such as a wall or another robot. This means that
robots carrying an object while searching for the nest may go close to other available
objects, interfering with robots not carrying objects. Similarly, robots searching for
objects often go close to the storing locations, interfering with the other robots. A
possible solution is that robots searching for objects avoid storing locations as soon as
they see them, and similarly, robots searching for the nest avoid objects as soon as they
see them. This improved behavior is depicted in Figure 9.

This improvement in the behavior can be modeled by decreasing the value of Aarena.
The rates are updated in the following way:

λSo→H = α
O
Ao

,

where Ao is the area explored by the robots searching for objects and avoiding storage
locations, with Ao < Aarena;

λSn→ST = γ
D
An

,

where An is the area explored by the robots searching for storage locations and avoiding
objects, with An < Aarena; and all other rates are left unchanged, since, on average,
the density of the robots involved in their definition does not change. For example,
consider λSo→Ao. This rate depends on the number of robots N in the total area Aarena.
The area involved in the definition of this rate is reduced and becomes Ao, as explained
previously. However, the number of robots considered changes as well: the number of
robots considered in this new version is the number of robots currently searching for
objects in the area Ao, which is less than N. In other words, even though the area
considered is reduced, on average the density of robots does not change.

More complex improvements, such as task allocation mechanisms, could be imple-
mented to further increase the performance of the system, should the obtained per-
formance not be sufficient. However, for the sake of brevity and clarity, we limit our
design process to the simple improvement presented earlier.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:19

Table VI. The Numerical Parameters Used in the Foraging Prescriptive Model

Symbol Description Value
O Number of available objects at any given time O ∈ {2, 4, 6, 8, 10}
N Number of robots composing the swarm N ∈ {10, 20, 50, 100}
D Number of storage locations 5
Aarena Area of the environment 4 m2

α Coefficient of λSo→H 4 × 10−2

β Coefficient of λSo→Ao 1 × 10−2

γ Coefficient of λSn→ST 3.9 × 10−2

δ Coefficient of λSn→An 9 × 10−3

poa Coefficient of λAo→So and λAn→Sn 0.20
r Coefficient of λH→Hw and λST→STw 0.5 m
s Coefficient of λH→Hw and λST→STw 0.1 m s−1

ε Coefficient of λH→So 6.5 × 10−2

η Coefficient of λST→Sn 1.01 × 10−1

tTAM Time spent in a TAM to perform an action 3 s
Ao Coefficient of λSo→H 3 m2

An Coefficient of λSn→ST 3.7 m2

Note: The values are obtained from the experimental data obtained in phase three.

Phase Three: Simulation. In this phase, we implement the foraging robot swarm
using the ARGoS simulator [Pinciroli et al. 2012].

The prescriptive model developed in phase two provides us with a detailed blueprint
to implement the robot swarm: the behavior of the individual robot can be implemented
using a finite state machine that resembles the Markov chain defined in phase two.
Nonetheless, some implementation details, such as how robots stop inside a TAM, have
been ignored in the prescriptive model to focus on the more important details at design
time and have to be programmed explicitly at this moment.

We measured the number of objects retrieved over 600 seconds on 100 runs. We first
performed experiments using the initial behavior and then using the improved one, as
explained in the previous phase.

Using the data obtained from all simulation experiments, we estimate the values of
the parameters of the model. Table VI shows the parameters used for model checking
derived from the experimental data. We can now compute the expected number of
objects retrieved in 600 seconds using model checking on the developed model and com-
pare these values with the results obtained from the simulated experiments. Figure 10
shows the results obtained in simulation together with the expected results predicted
by the prescriptive model. These results have been obtained using 20 robots with
different values of O, which is the number of objects available at any time. Figure 11
shows the results obtained with O = 6 and different numbers of robots. Table VII
shows whether Property 3 is satisfied.

From Figure 10, it is possible to observe that indeed the improvement introduced
in phase two significantly increases the number of objects retrieved. The improved
behavior is always significantly better than its counterpart—Wilcoxon test with p <
0.01.

The correspondence between the results obtained from the prescriptive model and
those obtained from the simulations is quite good, although not perfect. In particular,
it seems that the model is not capable of fully capturing the effects of physical interfer-
ence between the robots. This leads to overestimating the results with small swarms
and underestimating them with large swarms. However, for our goals and purposes,
the model qualitatively captures the behavior of the robot swarm, and thus it is not
necessary to further refine it.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:20 M. Brambilla et al.

Fig. 10. A comparison between the results obtained using 20 robots with the original behavior and with
the improved one for different values of O, which is the number of objects available at any time. Box plots
show results obtained over 100 experimental runs using the ARGoS simulator, whereas diamonds show the
expected results obtained with PRISM.

Fig. 11. A comparison between the results obtained using O = 6 with the original behavior and with the
improved one for different swarm sizes. Box plots show results obtained over 100 experimental runs using
the ARGoS simulator, whereas diamonds show the expected results obtained with PRISM.

We also verify Property 4 using model checking and compare it with the results
obtained from the simulations. Model checking tells us that Property 4 is not satisfied
in the prescriptive model of the original behavior with 20 robots and O = 2: the
probability to retrieve more than 40 objects is 0.86. This matches the experimental
results, where 15 runs out of 100 resulted in fewer than 40 objects retrieved. Instead,
with the improved behavior, Property 4 is satisfied: the probability to retrieve more
than 40 objects is 0.99. This matches the experimental results, where only 2 runs out
of 100 resulted in less than 40 objects retrieved.

All experimental data can be found in the supplementary material [Brambilla et al.
2014].

Phase Four: Robots. We performed 10 experiments with a swarm of 20 e-pucks in an
arena identical to the simulated one. An overhead shot of an experiment can be seen
in Figure 12. Videos of the performed experiments can be found in the supplementary

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:21

Table VII. A Table Presenting Whether the Developed Behaviors Are Able to Satisfy Property 3

N O k Original (MC) Improved (MC) Original (Sim) Improved (Sim)
20 2 45 ✗ (37) � (46) ✗ (43) � (48)
20 4 55 � (56) � (65) � (58) � (63)
20 6 65 � (65) � (74) ✗ (64) � (71)
20 8 75 ✗ (72) � (80) ✗ (70) � (78)
20 10 85 ✗ (77) � (85) ✗ (75) � (85)
10 6 40 � (48) � (54) � (41) � (43)
20 6 65 � (65) � (74) ✗ (64) � (71)
50 6 90 ✗ (78) � (91) ✗ (87) � (101)
100 6 75 ✗ (73) � (87) � (76) � (97)
Note: k is the threshold on the expected number of objects retrieved. Property 3 is satisfied if the
values obtained are greater than or equal to k. The results are presented both for the original and the
improved behavior, showing whether Property 3 is satisfied (�) or not satisfied (✗) and the value of the
related event of interest. Columns marked with (MC) refer to the results obtained using PRISM, whereas
columns marked with (Sim) refer to the results obtained using ARGoS.

Fig. 12. An overhead shot of an experiment performed with 20 e-puck robots and O = 6. Green colored
TAMs signal storage locations, red-colored TAMs signal that the object is busy, blue colored TAMs signal
objects to be taken, dark TAMs are not available.

material [Brambilla et al. 2014]. Figure 13 shows that the results obtained with real
and simulated robots are quite similar. Property 4 is satisfied. There is no need to
update the model, and thus we can declare the process completed.

5.3. Discussion

The two case studies presented in this article show that using property-driven design,
we were able to develop two robot swarms that tackle successfully aggregation and
foraging: all required properties are satisfied.

As shown, with property-driven design, it is possible to analyze and develop behaviors
characterized both by numerical and nonnumerical parameters. For example, in the
aggregation case study, we analyzed the effects of changing the probability to leave
a black area, whereas in the foraging case, we analyzed the effects of changing the
exploration behavior.

One of the main advantages of property-driven design is that it allows the developer
to focus on the design of the system rather than on its implementation: by focusing the
efforts on the abstract model of the system, the developer can concentrate on creation
of important aspects of the system. This is important because “whereas a simulation

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:22 M. Brambilla et al.

Fig. 13. A graph showing the empirical cumulative distribution Fn(x) of the number of object retrieved
using robots (10 runs) and in simulation (100 runs). In both cases, N = 20 and O = 6.

should include as much detail as possible, a good model should include as little as
possible” [Smith 1978]. As an example, in the foraging case study, we leveraged the
prescriptive model developed in phase two of property-driven design to identify possible
improvements of the partially realized system: we were able to identify the important
aspects of the system being designed, which allowed us to avoid wasting time on
improving other nonrelevant aspects.

Another advantage of property-driven design is the reduced risk of developing a robot
swarm that does not satisfy the requirements. Up to now, there was no clear way to
specify the requirements of a robot swarm. In property-driven design, requirements
are specified in a formal way at the beginning of the development process in terms
of desired properties. Moreover, thanks to model checking, it is possible to evaluate
whether the robot swarm fulfills such properties at each step of the design and devel-
opment process. This advantage of property-driven design has been highlighted in both
case studies.

Finally, property-driven design also addresses the problem of low reusability of be-
haviors in swarm robotics. Usually, behaviors for robot swarms are developed in a
disposable way. This is because there is no clear distinction between the design and
the implementation. Thus, if a different hardware platform is available, or a slightly
different task is tackled, it is necessary to start from scratch. With property-driven
design, however, the prescriptive model developed in phase two can be partially or
completely reused: (1) the model is hardware independent, so it can be adapted to the
available robots, or even guide the process of deciding the best robot to use, and (2)
the model can be extended to deal with new properties and verify if they are satisfied
even without testing the system in simulation or with robots. The reusability of the
prescriptive model reduces the risk that designers “reinvent the wheel” each time they
develop a robot swarm. For example, the model of foraging developed in the presented
case study could be easily adapted to robots with more sophisticated manipulation ca-
pabilities. In the future, it is also possible to imagine a set of publicly available models
for swarm robotics applications that can be reused and modified by other developers.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:23

The development process of the case studies presented in this article highlights some
issues with property-driven design.

The main issue is that ultimately the step from the prescriptive model to its im-
plementation remains in the hands of the developer: property-driven design does not
offer an automatic way to identify the behavior of the individual necessary to obtain
a desired collective behavior. Nonetheless, the prescriptive model can be used as a
blueprint for the implementation process, providing the developer with a valuable tool
to obtain robot swarms with provable properties.

Another issue is the strong reliance on modeling. This strong reliance on modeling
might limit the applicability of property-driven design to those systems that can be
described using mathematical models and to properties that can be specified using
probabilistic temporal logics. Additionally, modeling robot swarms is a difficult task on
its own: robot-to-robot interactions, spatial and temporal features, and interference are
difficult to completely describe using models. Luckily, modeling robot swarms has been
the focus of a large number of studies (see two reviews of the literature by Brambilla
et al. [2013] and Lerman et al. [2005]) that provide a solid theoretical foundation on
which to base property-driven design.

6. CONCLUSIONS

Property-driven design is a top-down design method based on prescriptive modeling
and model checking: the desired robot swarm is first described using a set of properties.
Subsequently, a prescriptive model of the robot swarm is created, and the prescriptive
model is used as a blueprint for the implementation of the robot swarm first in simu-
lation and then with robots.

Property-driven design is conceived to be part of swarm engineering: the systematic
application of scientific and technical knowledge to specify requirements, design, re-
alize, verify, validate, operate, and maintain a swarm intelligence system. Up to now,
the design and development of a robot swarm has been performed using a code-and-fix
approach based completely on the ingenuity and experience of the developer who has
little scientific or technical support in his activity. Property-driven design aims at pro-
viding such scientific and technical support, with many advantages compared to the
traditional unstructured approach.

In this article, we demonstrated, by tackling two different case studies, that property-
driven design is an effective method for the design and development of robot swarms.
In the future, we plan to apply property-driven design to different and more complex
tasks, possibly using different modeling approaches. In addition, we aim to integrate
this design method with automatic design approaches, such as evolutionary robotics
or automatic modular design [Francesca et al. 2014a, 2014b], to automatically obtain
robot swarms that satisfy some desired properties. This could provide a solution to the
open problem of deriving the individual behaviors from a swarm-level model. Addi-
tionally, to further promote the use of model checking in swarm robotics, we plan to
provide guidelines on how to apply model checking to design and analyze robot swarms.
In particular, we plan to provide guidelines on how to choose the best suited modeling
and specification languages for different collective behaviors. Finally, we plan to study
whether model-driven design [Miller and Mukerji 2003], an approach to software engi-
neering where software is designed through a series of transformations from platform-
independent models to executable platform-specific models, can be used together with
property-driven design to further ease the design and development of robot swarms.

APPENDIX

Property-driven design is based on prescriptive modeling and model checking. Model
checking requires two components: a model of the system to check and a set of properties

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:24 M. Brambilla et al.

that the system must satisfy. Among the several possible languages and tools, we chose
Markov chains and probabilistic temporal logics. In this appendix, we give a short
introduction to Markov chains, probabilistic temporal logics, and model checking.

I. The Model: Markov Chains

A common way to model swarm robotics systems is through the use of Markov chains
[Lerman et al. 2005]. Markov chains are used to model the behavior of the robots:
states might represent an action that a robot performs, such as random walk or grasp
object, or they might represent an area in which a robot is located, such as in the
nest. Transitions link two states and are activated through transition conditions like
obstacle seen and object grasped.

Markov chains can be used to model a swarm robotics system in two ways: as a
microscopic Markov model (i.e., a model that considers each individual robot) and as a
macroscopic Markov model (i.e., a model that considers the swarm as a whole).

A microscopic Markov model describes the behavior of the individual robots and of
their interactions. In a microscopic Markov model, the collective behavior of the swarm
is the and-composition of the individual Markov chains.

A macroscopic Markov model describes the swarm as a whole, without considering
the individual robots composing it. In general, as explained by Lerman et al. [2005], a
macroscopic Markov model is composed of an augmented Markov chain: the Markov
chain describing the behavior of a generic individual of the swarm is augmented by
associating a counter to each state. Counters are used to keep track of the number of
robots that are in the associated state in any given moment. This is different from rate
equations, in which only the ratio is tracked. Examples of macroscopic Markov models
can be found in Section 5, particularly in Figures 2 and 8.

When compared to macroscopic Markov models, microscopic Markov models give
a finer description of the robots and their interactions. However, in a microscopic
Markov model, the number of states grows exponentially with the number of robots,
making microscopic Markov models computationally intractable in most cases. Since
microscopic Markov models are difficult to analyze, the great majority of models in
swarm robotics are macroscopic [Brambilla et al. 2013; Lerman et al. 2005].

Time in Markov chains can be modeled in two different ways: discrete and continuous.
In discrete-time Markov chains (DTMCs), time assumes only values in Z

+, whereas in
continuous-time Markov chains (CTMCs), time can assume any value in R

+. Practically,
one of the main differences between DTMC and CTMC is in what transition parameters
represent. In DTMC, transition parameters represent the probability p of moving from
one state to another; for this reason, transition parameters for DTMC must be in the
interval [0, 1]. In CTMC, instead, transitions parameters represent the rate λ at which
the event of moving from one state to another happens—that is, the time taken to move
from one state to another follows an exponential distribution of parameter λ ∈ (0, inf).

The choice of how to model time depends on the system to describe: in case time is
not the main aspect and can be easily discretized, DTMCs are more convenient; on
the contrary, when it is important to keep precisely track of time, CTMCs should be
preferred. Note that generally it is possible to model the same system using a DTMC
or a CTMC without losing expressive power [Serfozo 1979].

II. The Properties: Probabilistic Temporal Logics

The most common way to formally express properties for model checking is through the
use of logic predicates. Among the many formal logic systems, we consider probabilistic
computation tree logic (PCTL).

PCTL [Hansson and Jonsson 1994] is based on the concept of computation tree, a
potentially infinite rooted tree in which the root is the initial state of a corresponding

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

Property-Driven Design for Robot Swarms 17:25

Fig. 14. A simple Markov chain (on the left) and part of its computation tree (on the right).

Markov chain, and each node is a possible state of the system. Edges link a state
with its next possible states. Each path on the tree represents a possible execution of
the system. Since a sequence of nodes represents the time evolution of a system, the
transition from one node to a following one is usually called a timestep. In DTMCs, this
timestep is fixed, whereas in CTMCs, this timestep is exponentially distributed with a
parameter depending on the current state. An example of a simple Markov chain and
its computation tree is displayed in Figure 14.

A computation tree can be used to express temporal properties, such as eventually
the system will reach state X, or if the system starts from state α, then it will never reach
state β. Such properties can be expressed using computation tree logic (CTL).

PCTL extends CTL by introducing probabilities. It is thus possible to express prop-
erties such as α will eventually become true with probability 0.45, or there is a 0.7
probability that α will hold true for 10 seconds. A formal introduction to the syntax of
PCTL can be found in the work of Ciesinski and Größer [2004].

Understanding the details of PCTL is not essential to understand the general prin-
ciples of the work presented in this article. Nonetheless, we think that a simple for-
mal introduction (based on Hansson and Jonsson [1994] and Ciesinski and Größer
[2004]) can be useful to those interested in using PCTL for model checking in swarm
robotics. The syntax of PCTL is composed of state formulas, generally identified by
the lowercase Greek letter φ, and path formulas, generally identified by the upper-
case Greek letter
. Path formulas are infinite sequences of states ordered over time
(i.e.,
k = φ0 → φ1 → · · · → φi → · · ·). The standard logic constants and operators
are available (e.g., 	, ∧, ⇒, ¬) together with operators for probabilistic and temporal
properties. Formulas like ∀φ and ∃φ are replaced by P(φ) � p, where P indicates the
probability operator p ∈ [0, 1] ⊂ R is a probability limit and � is a placeholder for
{>,≥,≤,<}. Consider, for example, P(φ) ≥ p, which asserts that the probability that
φ holds true is at least p. Two temporal operators are available in PCTL: X, called
Next, and U≤k, called bounded until. Xφ denotes that φ holds in the next state, whereas
φ1U≤kφ2 denotes that φ1 has to hold from now until, within at most k time units, φ2
becomes true. This implies that φ2 will eventually become true in the future. Other
useful temporal operators can be derived from these two. Of particular interest are F,
eventually, and G, always.

Probabilistic and temporal operators make PCTL a flexible and powerful logic that
can be used to express many interesting properties of particular interest to swarm
robotics systems.

III. Model Checking: Complete and Statistical Model Checking

Having defined a model and a set of properties, we now have all of the elements to
perform model checking.

Model checking can be used in safe-critical applications in which simulations and
experiments might not be enough to guarantee the correctness of a system. In fact,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

17:26 M. Brambilla et al.

simulations and experiments can only test a subset of all possible execution scenarios
of a system. Model checking, instead, formally verifies that a property holds true for
all possible executions of a system.

Model checking has several advantages compared to more traditional ways of ana-
lyzing models of swarm robotics systems, such as fluid flow analysis [Zarzhitsky et al.
2005].

Not only does model checking allow the user to verify that a model satisfies a specific
probabilistic property, such as P(φ) ≥ 0.75? TRUE), but it also allows the user to obtain
quantitative results—that is, to compute with which probability the model satisfies it
(P(φ)? 0.86). This characteristic is useful to find the best parameters of a model that
maximize the probability of satisfying a specific property. Moreover, it is possible to
augment a Markov chain using rewards, real valued quantities that can be assigned
to states or transitions. Using model checking, it is possible to compute not only the
steady-state value of these rewards but also their probability distribution. This would
be impossible with analysis based on rate equations, as they only provide the expected
value of the observed variable. Model checking can also be used to produce counter
examples: traces of execution of a system in which a property is not satisfied. Addi-
tionally, the use of PCTL allows the developer to express properties that are difficult
or even impossible to express using algebraic mathematics.

A limit of model checking is that generally it is computationally unfeasible to analyze
models composed of a high number of states. State-of-the-art model checkers cannot
handle models larger than 1010 states [Kwiatkowska et al. 2004]. A way to overcome
this problem is statistical model checking. Statistical model checking, also known as
approximate model checking, is a novel approach to model checking [Nimal 2010].
Compared to traditional model checking, statistical model checking does not completely
explore the state space of a model. Instead, it samples a large but limited number of
executions of the model and uses statistical estimators to compute the result.

Using statistical model checking, it is thus possible to perform model checking on
very large models, such as microscopic models of swarm robotics systems. In Massink
et al. [2013], we have applied statistical model checking to a model of a swarm robotics
system and have showed that the obtained results were consistent with those obtained
using other approaches, such as physics-based simulation, Monte Carlo simulation,
and ordinary differential equations.

REFERENCES

C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT Press, Cambridge, MA.
W. Banzhaf and N. Pillay. 2007. Why complex systems engineering needs biological development. Complexity

13, 2, 12–21.
K. Beck. 2003. Test-Driven Development: By Example. Addison-Wesley, Boston, MA.
S. Berman, A. Halasz, M. A. Hsieh, and V. Kumar. 2009. Optimized stochastic policies for task allocation in

swarms of robots. IEEE Transactions on Robotics 25, 4, 927–937.
S. Berman, V. Kumar, and R. Nagpal. 2011. Design of control policies for spatially inhomogeneous robot

swarms with application to commercial pollination. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’11). 378–385.

R. H. Bordini. 2009. Multi-Agent Programming: Languages, Tools and Applications, Vol. 2. Springer,
New York. NY.

M. Brambilla, M. Dorigo, and M. Birattari. 2014. Property-Driven Design for Robot Swarms A Design
Method Based on Prescriptive Modeling and Model Checking. Supplementary material available at
http://iridia.ulb.ac.be/supp/IridiaSupp2014-003/index.html.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. 2013. Swarm robotics: A review from the swarm
engineering perspective. Swarm Intelligence 7, 1, 1–41.

M. Brambilla, C. Pinciroli, M. Birattari, and M. Dorigo. 2012. Property-driven design for swarm robotics.
In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’12). 139–146.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

http://iridia.ulb.ac.be/supp/IridiaSupp2014-003/index.html

Property-Driven Design for Robot Swarms 17:27

A. Brutschy. 2014. The TAM: A Device for Task Abstraction in Swarm Robotics Research. Technical Report
TR/IRIDIA/2010-015.005. IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

F. Ciesinski and M. Größer. 2004. On probabilistic computation tree logic. In Validation of Stochastic Systems.
Lecture Notes in Computer Science, Vol. 2925. Springer, 333–355.

C. Dixon, A. Winfield, and M. Fisher. 2012. Towards temporal verification of swarm robotic systems. Robotics
and Autonomous Systems 60, 11, 1429–1441.

M. Dorigo, M. Birattari, and M. Brambilla. 2014. Swarm robotics. Scholarpedia 9, 1, 1463.
G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, T. Soleymani, M.

Salvaro, C. Pinciroli, V. Trianni, and M. Birattari. 2014a. An experiment in automatic design of robot
swarms. In Swarm Intelligence. Lecture Notes in Computer Science, Vol. 8667. Springer, 25–37.

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. 2014b. AutoMoDe: A novel approach
to the automatic design of control software for robot swarms. Swarm Intelligence 8, 2, 89–112.

D. Goldberg and M. J. Matarić. 2001. Design and evaluation of robust behavior-based controllers for dis-
tributed multi-robot collection tasks. In Robot Teams: From Diversity to Polymorphism. A. K. Peters,
Natick, MA, 315–344.

A. Gutiérrez, A. Campo, M. Dorigo, J. Donate, F. Monasterio-Huelin, and L. Magdalena. 2009. Open e-puck
range & bearing miniaturized board for local communication in swarm robotics. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA’09). 3111–3116.

H. Hamann. 2013. Towards swarm calculus: Urn models of collective decisions and universal properties of
swarm performance. Swarm Intelligence 7, 2–3, 145–172.

H. Hamann and H. Wörn. 2008. A framework of space–time continuous models for algorithm design in
swarm robotics. Swarm Intelligence 2, 2, 209–239.

H. Hansson and B. Jonsson. 1994. A logic for reasoning about time and reliability. Formal Aspects of Com-
puting 6, 5, 512–535.

R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost, and G. Theraulaz. 2005. Self-
organized aggregation in cockroaches. Animal Behaviour 69, 1, 169–180.

S. Kazadi, J. R. Lee, and J. Lee. 2009. Model independence in swarm robotics. International Journal of
Intelligent Computing and Cybernetics: Special Issue on Swarm Robotics 2, 4, 672–694.

S. Konur, C. Dixon, and M. Fisher. 2012. Analysing robot swarm behaviour via probabilistic model checking.
Robotics and Autonomous Systems 60, 2, 199–213.

M. Kwiatkowska, G. Norman, and D. Parker. 2004. Probabilistic symbolic model checking with PRISM: A
hybrid approach. International Journal on Software Tools for Technology Transfer 6, 2, 128–142.

K. Lerman and A. Galstyan. 2002. Mathematical model of foraging in a group of robots: Effect of interference.
Autonomous Robots 13, 2, 127–141.

K. Lerman, A. Martinoli, and A. Galstyan. 2005. A review of probabilistic macroscopic models for
swarm robotic systems. In Swarm Robotics. Lecture Notes in Computer Science, Vol. 3342. Springer,
143–152.

M. Massink, M. Brambilla, D. Latella, M. Dorigo, and M. Birattari. 2013. On the use of Bio-PEPA for
modelling and analysing collective behaviours in swarm robotics. Swarm Intelligence 7, 2–3, 201–228.

J. Miller and J. Mukerji. 2003. MDA Guide V1.0.1. Retrieved November 2, 2014, from http://www.omg.org/cgi-
bin/doc?omg/03-06-01.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano,
and A. Martinoli. 2009. The e-puck, a robot designed for education in engineering. In Proceedings of the
9th Conference on Autonomous Robot Systems and Competitions, Vol. 1. 59–65.

V. Nimal. 2010. Statistical Approaches for Probabilistic Model Checking. MSc Mini-Project Dissertation.
Oxford University Computing Laboratory, Oxford, UK.

C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante, G. Di
Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and M. Dorigo. 2012. ARGoS: A modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 4, 271–295.

G. Pini, A. Brutschy, M. Birattari, and M. Dorigo. 2009. Interference reduction through task partitioning in a
robotic swarm. In Proceedings of the 6th International Conference on Informatics in Control, Automation,
and Robotics (ICINCO’09). 52–59.

E. Şahin. 2005. Swarm robotics: From sources of inspiration to domains of application. In Swarm Robotics.
Lecture Notes in Computer Science, Vol. 3342. Springer, 10–20.

R. F. Serfozo. 1979. An equivalence between continuous and discrete time Markov decision processes. Oper-
ations Research 27, 3, 616–620.

J. M. Smith. 1978. Models in Ecology. Cambridge University Press, Cambridge, MA.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

http://www.omg.org

17:28 M. Brambilla et al.

A. F. T. Winfield, J. Sa, M. C. Fernandez-Gago, C. Dixon, and M. Fisher. 2005. On formal specification of
emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems 2,
4, 363–370.

M. Wooldridge and N. R. Jennings. 1998. Pitfalls of agent-oriented development. In Proceedings of the 2nd
International Conference on Autonomous Agents. 385–391.

F. Zambonelli, N. Jennings, and M. Wooldridge. 2001. Organisational abstractions for the analysis and design
of multi-agent systems. In Agent-Oriented Software Engineering. Lecture Notes in Computer Science,
Vol. 1957. Springer, 407–422.

D. Zarzhitsky, D. Spears, D. Thayer, and W. Spears. 2005. Agent-based chemical plume tracing using fluid
dynamics. In Formal Approaches to Agent-Based Systems. Lecture Notes in Computer Science, Vol. 3228.
Springer, 146–160.

Received January 2014; revised September 2014; accepted September 2014

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 17, Publication date: December 2014.

