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Abstract

The traditional approach to supervised learning is global mod-
eling which describes the relationship between the input and the
output with an analytical function over the whole input domain.
What makes global modeling appealing is the nice property that
even for huge datasets, a parametric model can be stored in a small
memory. Also, the evaluation of the parametric model requires a
short program that can be executed in a reduced amount of time.
Nevertheless, modeling complex input/output relations often re-
quires the adoption of global nonlinear models, whose learning
procedures are typically slow and analytically intractable. In par-
ticular, validation methods, which address the problem of assess-
ing a global model on the basis of a finite amount of noisy samples,
are computationally prohibitive.

For these reasons, in recent years, interest has grown in pursu-
ing alternatives to global modeling techniques. A demonstration is
the popularity which approaches based on the divide-and-conquer
strategy have gained in the research community. The divide-and-
conquer strategy consists in attacking a complex problem by di-
viding it into simpler problems whose solutions can be combined
to yield a solution to the original problem.

Instances of the divide-and-conquer approach are local model-
ing techniques. These techniques do not fit the whole dataset but
perform the prediction of the output for specific test input values,
also called queries. For that purpose, the database of observed in-
put/output data is always kept in memory and the output prediction
is obtained by interpolating the samples in the neighborhood of the
query point.
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This chapter presents a set of novel local modeling techniques,
called Lazy Learning techniques, and their application to a number
of experimental problems.

We show that, once a Lazy Learning perspective is adopted,
the use of conventional linear techniques in nonlinear settings is
easy and effective. A local Lazy Learning technique makes possi-
ble the adoption of linear methods to the widest range, not simply
in the parametric identification procedure but also in the model
validation step.

In terms of applications, we show that promising areas of ap-
plication for these algorithms are regression modeling and data
mining. Experimental results on simulated and real-world tasks,
as well as the successful participation to two international compe-
titions for learning techniques, demonstrate that these new tech-
niques are competitive with existing methods and can be consid-
ered as a potential alternative to state-of-the-art approaches in a
number of practical domains.

1 Introduction

The subject of this chapter is the automatic design of models from data.
In particular, we focus on supervised learning problems, where the goal
is to model the relation between a set of input variables, and one or more
output variables, which are considered somewhat dependent on the in-
puts.

The idea of extracting useful knowledge from volumes of data is common
to many disciplines, from statistics to machine learning, from economet-
rics to system identification and adaptive control. The procedure for find-
ing useful patterns in data is called with different names by different
communities; examples are knowledge extraction, pattern analysis, data
processing. More recently, the set of computational techniques and tools
to support the modeling of large amount of data has been grouped under
the more general label of data mining (Fayyad et al., 1996).

Modeling from data is often viewed as an art, mixing the insight of the
expert with the information contained in the observations. Typically, a
modeling process is not a sequential process but is better represented
as a sort of loop with a lot of feedbacks and a lot of interactions with
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the model designer. Different steps are repeated several times aiming to
reach, through continuous refinements, a good description of the phe-
nomenon underlying the data.

The process of modeling is made of a preliminary phase which brings the
data from their original form to a structured configuration, and a learning
phase which aims to select the model, or hypothesis, that best approxi-
mates the data (Fig. 1).

PRELIMINARY
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Figure 1. The modeling process and its decomposition in preliminary phase and learning
phase.

The preliminary phase can be decomposed in the following steps:

Problem formulation. This is the first and somewhat the most impor-
tant step of a learning procedure. Here, the model designer chooses
a particular application domain, a phenomenon to be studied, and
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hypothesizes the existence of an unknown dependency which is to
be estimated from experimental data.

Experimental design. This procedure returns a dataset which is ex-
pected to be a representative sample of the phenomenon and to
maximize the performance of the modeling process.

Pre-processing. In this step, raw data are cleaned to make learning eas-
ier. Pre-processing includes a large set of actions on the observed
data, as noise filtering, outlier removal, missing data treatment, fea-
ture selection, and so on.

Once the preliminary phase has returned the dataset in a structured in-
put/output form, called training set (Fig. 2), the learning phase begins.
This chapter will focus exclusively on this second phase assuming that
the preliminary steps have already been performed by the model de-
signer.
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Figure 2. A training set for a learning problem with one input variable and one output
variable. The dots represent the observed samples.

The learning procedure is essentially a search, in a space of possi-
ble model configurations, of the model which best represents the phe-
nomenon underlying the data. As any other search task, the learning pro-
cedure requires both a search space, where the solution has to be found,
and some assessment criterion which measures the quality of the solu-
tions in order to select the best one.

The search space is defined by the designer using a set of nested classes
with increasing complexity. For our introductory purposes, it is sufficient
to consider here a class as a set of input/output models (e.g. the set of
polynomial models) with the same model structure (e.g. second order
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degree) and the complexity of the class as a measure of the set of in-
put/output mappings which can approximated by the models belonging
to the class.

As far as the assessment of a model is concerned, in this chapter we con-
sider only quantitative criteria. We will assume that the goal of modeling
is to attain a good generalization. This means that the selected model is
expected to return an accurate prediction of the dependent variable when
new values (i.e. not present in the training set) of the independent vector
are presented.

Once the classes of models and the assessment criteria are fixed, the
search for the best model starts. The search algorithm is made of two
nested loops: structural identification and parametric identification.

Structural identification is the outer loop which seeks the model struc-
ture, i.e. the class, which is expected to have the best performance. It is
composed of a validation phase, which assesses each model structure on
the basis of the chosen assessment criterion, and a selection phase which
returns the best model structure on the basis of the validation output.
Parametric identification is the inner loop which returns the best model
for a fixed model structure. The two procedures are intertwined since the
structural identification requires the outcome of the parametric step in or-
der to assess the goodness of a class. A well-known technique which iter-
ates parametric identifications and validations is cross-validation (Stone,
1974).

In these terms, the learning process could appear as a standard problem
of optimization. Unfortunately, reality is far more complex. In fact, since
the amount of data is finite, there exists a strong correlation between the
parametric and the structural steps, which makes non-trivial the problem
of assessing and finally choosing the predictor.

In statistical literature, a learning procedure is commonly interpreted in
terms of the bias/variance dilemma (Geman et al., 1992). Results in sta-
tistical learning theory show that the generalization error of a learning
machine is made of two components: a bias term, which measures the
lack of representational power of the class of models and a variance term,
which accounts for the sensitivity of the approximator to the noise in the
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data. It follows that a complex model (e.g. a neural network with many
layers) guarantees low bias at the cost of a large variance, while a sim-
ple model (e.g. a linear model) reduces the variance at the cost of an
increased bias. The goal of structural identification is to find the optimal
trade-off between nonlinearity and noise on the basis of a finite amount
of data.

The considerations made so far are somewhat independent of the family
of models taken into consideration. It is indeed evident that a learning
procedure is quite sensitive to the class of models taken into considera-
tion for fitting the data. For that reason, along the years statisticians and
machine learning researchers have proposed a number of model architec-
tures, with the aim of finding approximators able to combine high gen-
eralization with effective learning procedures. An outline of the learning
architectures we will take into consideration in the next section is pre-
sented in Figure 3.

MODELS
GLOBAL

DIVIDE-AND-CONQUER
MODELS

LOCAL
MODELING

ARCHITECTURES
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LINEAR

SPLINES

NEURAL NETWORKS
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NEAREST NEIGHBOR

LAZY LEARNING

Figure 3. A panorama of learning architectures. For introductory purposes, a number
of learning approaches (in italics) existing in literature have been grouped into more
explicative families of approximators (in boldface).

2 From global to local modeling

A family of models traditionally used in supervised learning is the fam-
ily of global models which describes the relationship between the input
and the output values as a single analytical function over the whole in-
put domain (Fig. 4). In general, this makes sense when it is reasonable
to believe that a physical-like law describe the data over the whole set of
operating conditions. Examples of well-known global parametric models
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Figure 4. A global model (solid line) which fits the training set (dotted points) for a
learning problem with one input variable (x-axis) and one output variable (y-axis).

in literature are linear models (Draper & Smith, 1981), nonlinear statis-
tical regressions (Seber & Wild, 1989), Splines (Boor, 1978) and Neural
Networks (Rumelhart et al., 1986).

A nice property of global modeling is that, even for huge datasets, a para-
metric model can be stored in a small memory. Moreover, the evaluation
of the model requires a short program that can be executed in a reduced
amount of time. These features have undoubtedly contributed to the suc-
cess of the global approach in years when most computing systems im-
posed severe limitations on users.

The problem of learning a parametric global model from a set of ob-
served input/output data can be seen as a problem of function estimation,
which consists in choosing from a given domain of parametric functions,
the one which best approximates the unknown data distribution. Unfortu-
nately, when only a finite amount of data is available the task of selecting
the approximator which guarantees the best generalization is not trivial.
For a generic global model, the parametric identification consists in a
nonlinear optimization problem which is not analytically tractable due
to the numerous local minima and for which only a suboptimal solution
can be found through a slow iterative procedure. Similarly, the problem
of selecting the best model structure in a generic nonlinear case cannot
be handled in analytical form and requires time consuming validation
procedures.

For these reasons, in recent years, alternatives to global modeling tech-
niques, as the divide-and-conquer approach, gained popularity in the
modeling community. The divide-and-conquer principle consists in at-
tacking a complex problem by dividing it into simpler problems whose
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solutions can be combined to yield a solution to the original problem.
This principle presents two main advantages. The first is that simpler
problems can be solved with simpler estimation techniques; in statistics
this means to adopt linear techniques, well studied and developed over
the years. The second is that the learning method can better adjust to the
properties of the available dataset. Training data are rarely distributed
uniformly in the input space. Whenever the distribution of patterns in the
input space is uneven, a proper local adjustment of the learning algorithm
can significantly improve the overall performance.

Two are the main instances of the divide-and-conquer principle: the mod-
ular approach, which originated in the field of system identification, and
the local modeling approach, which was first proposed in the statistical
nonparametric literature.

Modular architectures are input/output approximators composed of a
number of modules which cover different regions of the input space. This
is the idea of operating regimes which proposes a partitioning of the op-
erating range of the system as a more effective way to solve modeling
and control problems (Johansen & Foss, 1993). Fuzzy Inference Sys-
tems (Takagi & Sugeno, 1985), Local Model Networks (Murray-Smith,
1994), Radial Basis Functions (Moody & Darken, 1989), Classification
and Regression Trees (Breiman et al., 1984), and Hierarchical Mixture
of Experts (Jordan & Jacobs, 1994) are well-known examples of this ap-
proach.

Although these architectures are a modular combination of local mod-
els, their learning procedure is still performed on the basis of the whole
dataset. Hence, learning in modular architectures remains a functional
estimation problem, with the advantage that the parametric identification
can be made simpler by the adoption of local linear modules. However,
in terms of structural identification the problem is still nonlinear and re-
quires the same procedures used for generic global models.

A second example of divide-and-conquer methods are local modeling
techniques (Cleveland & Loader, 1995), which turn the problem of func-
tion estimation in a problem of value estimation. The goal is not to
model the whole statistical phenomenon but to return the best output for
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a given test input, hereafter called the query. The motivation is simple:
why should the problem of estimating the values of an unknown func-
tion at given points of interest be solved in two stages? Global modeling
techniques first estimate the function (induction) and second estimate the
values of the function using the estimated function (deduction). In this
two-stage scheme one actually tries to solve a relatively simple problem
(estimating the values of a function at given points of interest) by first
solving, as an intermediate problem, a much more difficult one (estimat-
ing the function).

PREDICTIONDATA

MODEL

Induction Deduction

Transduction

Figure 5. Function estimation (model induction + model evaluation) vs. value estima-
tion (direct prediction from data).

Local modeling techniques take an alternative approach, defined as trans-
duction by Vapnik (1995) (Fig. 5). They focus on approximating the
function only in the neighborhood of the point to be predicted. So doing
the approach requires to keep in memory the dataset for each prediction,
instead of discarding it as in the global modeling case. At the same time,
local modeling requires only simple approximators, e.g. constant and/or
linear, to model the dataset in a neighborhood of the query point. An ex-
ample of local linear modeling in the case of a single-input single-output
mapping is presented in Fig. 6.

Many names have been used in the past to label variations of the
local modeling approach: memory-based reasoning (Stanfill & Waltz,
1987), case-based reasoning (Kolodner, 1993), local weighted regres-
sion (Cleveland, 1979), nearest neighbor (Cover & Hart, 1967), just-in-
time (Cybenko, 1996), lazy learning (Aha, 1997), exemplar-based, in-
stance based (Aha, 1990),... These approaches are also called nonpara-
metric in the literature (Hastie & Tibshirani, 1990; Scott, 1992), since
they relax the assumptions on the form of a regression function, and let
the data search for a suitable local description of the available data. Lo-
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Figure 6. Local modeling of the input/output relationship between the input variable g
and the output variable h , on the basis of a finite set of observations (dots). The value of
the variable h for gjilk is returned by a linear model (solid line) which fits the samples
in a neighborhood of the query point (bigger dots).

cal modeling techniques have also a long history of applications. They
have been used for prediction (Farmer & Sidorowich, 1987), classifi-
cation (Cover & Hart, 1967), regression (Cleveland, 1979), and con-
trol (Atkeson, 1989; Moore, 1991).

The following section will focus on the application of local modeling to
the regression problem.

3 Local modeling for regression

The idea of local regression arose independently at different times and
in different countries in the mon th century. The early literature on smooth-
ing by local fitting focused on one independent variable with equally
spaced values. For an historical review of early work on local regres-
sion see (Cleveland & Loader, 1995). The modern view of smoothing by
local regression has origins in the mpnrqts ’s and monvuvs ’s in the kernel meth-
ods introduced in the density estimation setting. As far as regression is
concerned, the first modern works on local regression were proposed by
Nadaraya (1964) and Watson (1969).

3.1 Nadaraya-Watson estimators

Consider an independent variable wyx{z}|�~j� and a dependent output� x���|�~ .
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Suppose that a training set

����� ��� w	��
 � ���
 � w���
 � ����
�������
 � w � 
 � � � � (1)

made of � pairs
� w���
 � ��� x�� � z � � independent and identically

distributed (i.i.d), has been observed.

Let � be a real-valued function

���v~ � � ~ � � ~ �"! ~ � (2)

where the first argument is a # -dimensional input, the second argument
is typically called the center and the third argument, called bandwidth or
smoothing parameter, controls the size of the local neighborhood. As-
sume that � satisfies

s%$&��' w(
*)�
*+-,.$ m (3)

��'/)�
*)0
1+-, � m (4)

The Nadaraya-Watson kernel regression estimator is given by

2�43 �65
�
�879� ��' w:�;
*)0
1+-, � �
5
�
�879� ��' w:�;
*)0
1+-, (5)

where � is the number of samples in the training set. The idea of ker-
nel estimation is simple. Consider the case of a rectangular kernel in one
dimension ( # � m ). In this case the estimator (5) is a simple moving aver-
age with equal weights: the estimate at point ) is the average of observa-
tions � � corresponding to the w�� ’s belonging to the window <=)?>@+@
*)BAC+ED .
If +F! G then the estimator tends to the average H �JILKMONQP�R M� and thus
for mappings ST'VUW, which are far from constant the bias become large. If +
is smaller than the pairwise distance between the sample points w9� then
the estimator reproduces the observations H(' wB�/, � � � . In this extremal
case the bias tends to zero at the cost of high variance. In general terms,
by increasing + we increase the bias of the estimator, while by reducing
+ we obtain a larger variance. The optimal choice for + corresponds to
an equal balance between bias and variance.
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The Nadaraya-Watson estimator suffers from a series of shortcomings: it
has large bias particularly in regions where the derivative of the regres-
sion function S ' w9, is large or the input density distribution is nonuniform.
A more severe problem is the large bias which occurs when estimating at
a boundary region (Hastie & Loader, 1993).

Once the weakness of the local constant approximation was recognized,
a more general local linear regression appeared in the late mon � s ’s (Cleve-
land, 1979; Stone, 1977; Katkovnik, 1979). Work on local regression
continued throughout the mon��vs ’s and mpnvnvs ’s, focusing on the applica-
tion of smoothing to multidimensional problems (Cleveland & Devlin,
1988). Local linear regression is an attractive method both from the the-
oretical and the practical point of view. In practice, it adapts easily to
various kinds of input distributions (e.g. random, fixed, highly clustered
or nearly uniform) and it is not affected by boundary effects.

3.2 Parameter identification in local linear regression

Local linear regression uses a weighted least-squares regression (Myers,
1994), where weights are assigned to observed data according to Eq. (3).
Local regression estimates can be expressed as

2�43 � )�� 2� � )��T'	�
�������� ,�� � �
������ � (6)

where implicitly the assumption that the inverse of � � � � ��� exists is
made.

3.3 Structural identification in local regression

While the parametric identification in a local regression problem is quite
simple and reduces to a weighted least-squares, there are several choices
to be made in terms of model structure. Structural identification in lo-
cal modeling involves, among other things, the selection of a family of
local approximators (e.g. constant or linear), the selection of a metric
to evaluate which examples are more relevant, and the selection of the
bandwidth which indicates the size of the region in which the data are
correctly modeled by members of the chosen family of approximators.

In formal terms, we say that structural identification in local modeling
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addresses the local bias/variance dilemma where the bias accounts for the
portion of error due to the nonlinearity of the mapping and the variance
term accounts for the sensitivity of the approximator to the noise in the
data.

These are the most relevant parameters in local structure identification:

� the kernel function � ,

� the order of the local polynomial,

� the bandwidth parameter,

� the distance function,

In the following sections, we will present in detail the importance of these
structural parameters and finally we will discuss the existing methods for
tuning and selecting them.

3.3.1 The kernel function

Under the assumption that the data to be analyzed are generated by a
continuous mapping S ' UW, , we want to consider positive kernel functions
��' U 
�U 
1+-, that are peaked at w � ) and that decay smoothly to s as the
distance between w and ) increases.

Some considerations can be made on how relevant is the kernel shape
for the final accuracy of the prediction. First, it is evident that a smooth
weight function results in a smoother estimate. On the other side, for
hard-threshold kernels, as ) changes, available observations abruptly
switch in and out of the smoothing window. Second, it is relevant to
have kernel functions with nonzero values on a compact bounded support
rather than simply approaching zero for

� w%> ) � ! G . This allows faster
implementations, since points further from the query than the bandwidth
can be ignored with no error.

Finally, most authors agree on attributing a low degree of sensitivity of
the final prediction to the shape of the kernel function. Asymptotic results
for nonparametric regression show that the overall form of the weight
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function does not have an appreciable effect with respect to the mean
squared error (Priestley & Chao, 1972). In particular, the kernel selection
is less critical, the more the dimension of the input space increases and
the more accurately the selection is done on the other parameters.

3.3.2 The local polynomial order

In Equation (6) we considered the case of a first-order local polyno-
mial. However, the method can be easily extended to higher degrees.
The choice of the local polynomial degree is a bias/variance trade-off.
Generally speaking, a higher degree will generally produce a less biased,
but a more variable estimate than a lower degree one.

Some asymptotic results in literature assert that a good practice in local
polynomial regression is to adopt a polynomial order which differs of
an odd degree from the order of the terms to be estimated (Fan & Gij-
bels, 1996). In practice, this means that if the goal of local polynomial
regression is to estimate the value of the function in the query point, it is
advisable to use orders of odd degree; otherwise, if the purpose is to esti-
mate the derivatives in the query point it is better to fit with even degrees.
However, others suggest in practical applications not to rule out any type
of degree (Cleveland & Loader, 1995).

In the previous sections, we already introduced some consideration on
degree zero fitting. This choice very rarely appears to be the best choice
in terms of prediction, even if it presents a strong advantage in compu-
tational terms. By using a polynomial degree greater than zero we can
typically increase the bandwidth by a large amount without introducing
intolerable bias. Despite the increased number of parameters the final
result is smoother thanks to an increased neighborhood size.

A degree having an integer value is generally assumed to be the only pos-
sible choice for the local order. However, the accuracy of the prediction
results to be highly sensitive to discrete changes of the degree.

A possible alternative is polynomial mixing, proposed in global paramet-
ric fitting by Mallows (1974) and in local regression by Cleveland and
Loader (Cleveland & Loader, 1995). Polynomial mixings are polynomi-
als of fractional degree �

��� A�� where
�

is an integer and s������ m .
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The mixed fit is a weighted average of the local polynomial fits of degree�
and
� A m with weight m > � for the former and weight � for the latter

S � ' UW, � ' m > ��,S��&'VU ,?A���S�� � ��'VUW, (7)

We can choose a single mixing degree for all w or we can use an adaptive
method by letting � vary with w .

3.3.3 The bandwidth

A natural question is how wide the local neighborhood should be so that
a local approximation holds. This is equivalent to asking how large the
bandwidth parameter should be in the function ��'VUW, . If we take a small
bandwidth + , we are able to cope with the eventual nonlinearity of the
mapping, that is, in other terms, we keep the modeling bias small. How-
ever, since the number of data points falling in this local neighborhood
is also small, we cannot average out the noise from the samples and the
variance of our prediction will be consequently large (Fig. 7). On the
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Figure 7. Local modeling with a too narrow bandwidth. The mapping (dashed line) is
approximated by a linear model (solid line) which fits a too small number of noisy
neighbors (bigger dots). The prediction in k is consequently poor.

other hand, if the bandwidth is too large, we could smooth excessively
the data, then introducing a large modeling bias (Fig. 8).

In the limit case of an infinite bandwidth, for example, a local linear
model turns to be a global linear fitting which, by definition, cannot take
into account any type of nonlinearity.

A vast amount of literature has been devoted to the bandwidth selection
problem. Various techniques for selecting smoothing parameters have
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Figure 8. Local modeling with a too large bandwidth. The mapping (dashed line) is
approximated by a linear model (solid line) which fits an excessively large number of
neighbors (bigger dots). The prediction in k is consequently poor.

been proposed during the last decades in different setups, mainly in ker-
nel density estimation (Jones et al., 1995) and kernel regression.

Two are the main strategies for the bandwidth selection:

Constant bandwidth selection. The bandwidth + is independent of the
training set

���
and the query point ) .

Variable bandwidth selection. The bandwidth is a function +C' � � , of
the dataset

���
. For a variable bandwidth a further distinction

should be made between the local and global approach.

1. A local variable bandwidth + ' �@� 
*) , is not only function of
the training data

���
but also changes with the query point

) . An example is the nearest neighbor bandwidth selection
where the bandwidth is set to be the distance between the
query point and the

e th nearest sample (Stone, 1977).

2. A global variable bandwidth is a function + ' �@� , of the data
set but is the same for all the queries. However, a further de-
gree of distinction should be made between a point-based
case where the bandwidth + ' wB� , changes with the samples
in the training set and an uniform case where + is the same
for all the samples contained in

�@�
.

A constant bandwidth is easy to interpret and can be sufficient if the
unknown curve is not too wiggly, i.e. has an high smoothness. Such a
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bandwidth, however, fails to do a good job when the unknown curve has
a rather complicate structure. To capture the complexity of such a curve
a variable bandwidth is needed. A variable bandwidth allows for differ-
ent degrees of smoothing, resulting in a possible reduction of the bias at
peaked regions and of the variance at flat regions. Further a variable lo-
cal bandwidth can adapt to the data distribution, to different level of noise
and to changes in the smoothness of the function. Fan and Gijbels (1992)
argue for point-based in favor of query-based local bandwidth selection
mainly for computational efficiency reasons.

3.3.4 The distance function

The performance of any local method depends critically on the choice of
the distance function � � ~ � � ~ � ! ~ . In the following we will define
some distance functions for ordered inputs:

Unweighted Euclidean distance

�B' w(
 ) , � ���� �� �
79� ' w

�
> )
�
, � ��� ' w > ) , � ' w > ) , (8)

Weighted Euclidean distance�B' w(
*) , ��� ' wC> ) , �
	 ��	 ' wC> ) , (9)

The unweighted distance is a particular case of the weighted case
for 	 diagonal with

�
���
� m .

Unweighted  � norm (Minkowski metric)

�B' w(
*) , ��� �� � 79� � w
�
> )
�

� � P�
(10)

Weighted  � norm It is computed through the unweighted norm�B' 	 w(
 	 ) , .
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It is important to remark that when an entire column of 	 is zero, all
points along the corresponding direction get the same relevance in the
distance computation. Also, notice that once the bandwidth is selected,
some terms in the matrix 	 can be redundant parameters of the local
learning procedure. The redundancy can be eliminated by requiring the
determinant of 	 to be one or fixing some element of 	 .

Atkeson et al. (1997) distinguish between three ways of using distance
functions:

Global distance function. The same distance is used at all parts of the
input space.

Query-based distance function. The distance measure is a function of
the current query point. Examples are in (Stanfill & Waltz, 1987;
Hastie & Tibshirani, 1996; Friedman, 1994).

Point-based local distance functions. Each sample in the training set
has an associated distance metric (Stanfill & Waltz, 1987). This is
typical of classification problems where each class has an associ-
ated distance metric (Aha, 1989; Aha, 1990).

3.3.5 The selection of local parameters

As seen in the previous sections, there are several parameters that affect
the accuracy of the local prediction. Generally, they cannot be selected
and/or optimized in isolation as the accuracy depends on the whole set
of structural choices. At the same time, they do not all play the same role
in the determination of the final estimation. It is common belief in local
learning literature that the bandwidth and the distance function are the
most important parameters. The shape of the weighting function, instead,
plays a secondary role.

In the following we will mainly focus on the methods existing for band-
width selection. They can be classified in

Rule of thumb methods. They provide a crude bandwidth selection
which in some situations may result sufficient. Examples of rule
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of thumb is provided in (Fan & Gijbels, 1995) and in (Hardle &
Marron, 1995).

Plug-in techniques. The exact expression of optimal bandwidth can
be obtained from the asymptotic expressions of bias and vari-
ance (Ruppert & Wand, 1994; Fan & Gijbels, 1996), which unfor-
tunately depends on unknown terms. The idea of the direct plug-in
method is to replace these terms with estimates. This method was
first introduced by (Woodrofe, 1970) in density estimation. Exam-
ples of plug-in methods for non parametric regression are reported
in (Ruppert et al., 1995).

Data-driven estimation. It is a selection procedure which estimates the
generalization error directly from data. Unlike the previous ap-
proach, this method does not rely on the asymptotic expression but
it estimates the values directly from the finite data set. To this group
belong methods like cross-validation, Mallow’s � � , Akaike’s AIC
and other extensions of methods used in classical parametric mod-
eling.

The debate on the superiority of plug-in methods over data-driven meth-
ods is still open and the experimental evidences are contrasting. Re-
sults on behalf of plug-in methods come from (Woodrofe, 1970; Rup-
pert et al., 1995; Park & Marron, 1990). On the other side Loader (1987)
showed how the supposed superior performance of plug-in approaches is
a complete myth. The use of cross-validation for bandwidth selection has
been investigated in several papers, mainly in the case of density estima-
tion (Jones et al., 1995). In regression, an adaptation of Mallow’s � � was
introduced by Rice (1984) for constant fitting and by Cleveland and De-
vlin (1988) in local polynomial regression. Cleveland and Loader (1995)
suggested local � � and local PRESS for choosing both the degree of local
polynomial mixing and the bandwidth.

Plug-in methods are built on a series of assumptions on the statistical
process underlying the data set and on theoretical results which are more
reliable the larger is the number of points. We believe that in a common
black-box configuration where no a priori information is available, the
adoption of data driven techniques can be a promising approach to the
problem.
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In the following we will focus on the automatic choice of the bandwidth
from data, neglecting any a priori information. There are several ways
in which data-driven methods can be used for structural identification.
Atkeson et al. (1997) distinguish between

Global tuning. The structural parameters are tuned by optimizing a
data driven assessment criterion on the whole data set. An ex-
ample is the General Memory Based Learning (GMBL) described
in (Moore et al., 1992).

Query-based local tuning. The structural parameters are tuned by opti-
mizing a data driven assessment criterion query-by-query.

Point-based local tuning. A different set of structural parameters is as-
sociated to each point of the training set.

4 The lazy idea

A particular class of local modeling algorithms are the so-called lazy
techniques (Aha, 1997). They are query-based local learning algorithms,
i.e. they defer the whole learning process until a specific query needs
to be answered. Once the prediction is returned, they discard both the
answer and the constructed model.

All the local modeling approaches perform a certain amount of opera-
tions when a prediction for a specific query is required. However, we
wish to distinguish between simple computational processing, such as
finding the set of neighbors in the dataset and more complex learning pro-
cedures, such as performing locally the structural identification. While
the former is in some sense analogous to the kind of operations we find
in other parametric models (e.g. the propagation of the values in a Neu-
ral Networks or the activation of the kernel functions in a Basis Function
Network), the latter is in our view more distinctive of lazy methods. It
is possible to encounter different degrees of “laziness” in local learn-
ing algorithms. For instance, a

e
Nearest Neighbor (k-NN) algorithm is

hardly a lazy approach since, after the query is presented, it requires only
a reduced amount of learning procedure, namely the computation of an
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average. On the contrary, a local method, which waits for the query to se-
lect the number of neighbors and/or other structural parameters, presents
in our view a higher degree of laziness.

5 The Lazy Learning algorithm

This section will present our Lazy Learning (LL) algorithm for local
learning in regression problems (Bontempi et al., 1999e; Birattari et al.,
1999). In particular, the data analysis problems we want to address with
our approach have these characteristics

� Supervised learning problems with multi dimensional input.

� Finite amount of training data.

� Unequally spaced observations in the input domain.

� Condition of realistic noise on data. In particular we assume the
data to be generated as follows:

� � � S ' w:��,?A��.��
 (11)

where
���

, �.� is a random variable such that �C<�� � D � s and
� <��.���

�
D � s , �
	��� �

, and such that � <�� �� D ��
�&' w:� , , � � ���

,
where


�&' UW, is the unknown

� th moment of the distribution of � �
and is defined as a function of w � . In particular for

� ���
, the last

of the above mentioned properties implies that no assumption of
global homoscedasticity is made.

� No further knowledge on S and/or � is available a priori.

In this real, even pessimistic, situation the analyst cannot rely on his in-
sight to perform the set of choices that characterize a local learning pro-
cedure. As a consequence we will focus only on a data driven scenario
where parametric and structural identification are performed on the basis
of the available training set.

The original Lazy Learning method we introduce is:
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1. a local modeling approach which locally combines constant (Fig.9)
and linear models (Fig.10),

2. a lazy method where the structural identification is repeated each
time a query is presented.
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Figure 9. Local constant model. The constant model estimates the value of the function
in k by fitting the

:
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In terms of the parametric identification procedure, the Lazy Learning
method adopts standard techniques of linear regression, analogously to
other local modeling techniques.

The novelty of the LL approach stays mainly in its structural identifica-
tion procedure. It is well-known that the performance of a local approxi-
mator is quite sensitive to the structural identification choices performed
by the designer. We saw in Section 3.3 that the structural parameters do
not all play the same role in the determination of the final accuracy and
that a common belief is that the bandwidth and the distance metric be the
most relevant parameters.
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Our novel Lazy Learning method proposes a lazy structural identification
which selects the bandwidth parameter in order to minimize the general-
ization error of the resulting approximator.

The query-by-query bandwidth selection method we propose consists of
three steps:

1. the generation of local candidates,

2. the local validation through linear cross-validation, and

3. the final prediction obtained either by selection or combination.

Each time a prediction is required for a specific query point, a set of
local models, each including a different number of neighbors, is gener-
ated and identified. The model identification is based on the recursive
least-squares algorithm. This is an appealing and efficient solution to
the intrinsically incremental problem of identifying a sequence of local
models, centered in the query point, each including a growing number
of neighbors. So doing, we reduce the bandwidth selection problem to
the selection of the number

e
of neighboring examples which are given

a non-zero weight in the local modeling procedure.

Once the candidate models have been generated, the generalization abil-
ity of each of them is assessed through a local cross-validation proce-
dure. Here we use the leave-one-out PRESS statistic (Allen, 1974). It
is worth noticing that this leave-one-out procedure does not involve any
significant computational overload, since the PRESS statistic uses partial
results returned by the recursive least-squares algorithm.

Finally two possible variants in local model selection are proposed: a
competitive approach and a cooperative approach.

The competitive approach is based on the winner-takes-all strategy,
which selects among the local candidates the best model in terms of
cross-validation performance.

The cooperative approach is based on the application of the combination
of estimators technique to local modeling. The rationale is to combine the
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outputs of the generated local models in order to increase the accuracy of
the final prediction, by reducing the variance of the estimators.

6 Local model generation

Goal of the model generation procedure is to generate a set of candidate
model structures among which the best one is to be selected. The more
this procedure is effective, the easier will be the selection of a power-
ful structure at the end of the whole identification. Traditionally there
have been a number of popular ways to search through a large collec-
tion of model structures. Maron and Moore (1997) distinguish between
two main methods of model generation: (i) brute force methods, which
require a heavy computational effort to perform an exhaustive search in
the space of model structures and (ii) search methods which generate a
number of possible candidates in a space defined with respect to some
structural parameter (e.g. the number of neurons in a Feed Forward Neu-
ral Network or the number of basis functions in a BFN).

Here, we will adopt a search approach where the structural parameter is
the bandwidth + of the kernel. Let us assume that

1. a metric on the input space ~ � is given (Section 3.3.4),

2. the quantity �B' w(
*) , denotes the distance from the query point to
the w point,

3. the pair
� w ' e ,�
 � ' e ,� is the

e th nearest neighbor of the query point
in the training set, i.e. that�B' w ' � ,�
*) ,.$ �B' w ' 	 ,�
*) , ��� $ 	 (12)

4. the bandwidth + is defined as a function of the neighbors location,
e.g. + is equal to the distance of the query point to the

e th neighbor

+ ' e , � �B' w ' e ,�
*) , (13)

5. the bandwidth + ' e , is allowed to range over a domain, whose
lower bound is the minimum number

e
� of neighbors and upper

bound is the maximum number
e��

of neighbors.
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Hence, the problem of local structural identification can be seen as a
problem of bandwidth selection, and the problem of bandwidth selection
as a search problem in the space of + ' e , , where the number of neighbors
e

takes value between a minimum
e
� and a maximum

e �
.

By ranging the quantity
e

over the interval < e � 
 e � D , the local model
generation procedure returns a set of local models, whose parameters are
fitted on the set of neighbors selected by the bandwidth +C' e , .
We will consider both a set of constant fitting models

���
,
e �

e��
� 
�������
 e��� , (Fig. 11) and a set of linear fitting models � � , e �

e��
� 
�������
 e��� (Fig. 12)1. The parametric estimation requires the computa-

�	 
�
�

������

����������
�� ��

�� ��������� !�!"�"#$
%�%& '�'(�( )* +, -.

/�/0�0 12
34

x

y

56
789�9:;�;<�<
=> ?@ A�AB�B CD EF GHI�IJ

C4

C2 C3

q

Figure 11. Generation of local constant models. The figure represents three constant
models KML , having different number of neighbors ( N iPORQTSRQTU ), which estimate the
value of the function in k .
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Figure 12. Generation of local linear models. The figure represents four linear models� L , having different number of neighbors ( N i�ORQTSRQTUMQ�� ), which estimate the value of
the function in k .
tion of Eq. (5) for each constant model

���
and of Eq. (6) for each linear

1For the sake of simplicity, we will not distinguish between the constant and the linear
indices NM� and N¡  in the rest of the chapter. However, the distinction will result useful in
the description of the experiments.
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model � � . This is an heavy computational task which can be speeded
up thanks to some nice properties of linear least-squares methods. An
example is the adoption of the recursive least-squares algorithm to per-
form an incremental parametric identification of the set of local models� �

and � � . The recursive least-squares technique for local model gen-
eration (Bontempi et al., 1998; Bontempi et al., 1999b; Birattari et al.,
1999) will be discussed in detail in the following section.

6.1 Recursive least-squares for model generation

Recursive least-squares (RLS) algorithms have been developed in model
identification and adaptive control literature (Goodwin & Sin, 1984).
Typically, RLS are used to identify a linear model when data are not
available as a batch but are observed sequentially in time.

Here, we have not a temporal sequence, nevertheless query neighbors
can be ordered according to the distance �B' w9�;
 ) , so to provide a spatial
sequence (12). Once the neighbors have been ordered, a standard RLS
can be used, not to update a model from time

�
to time

� A m , but to
obtain the parameters of the model fitted on the

e A m nearest neighbors
by updating the parameters of the model with

e
examples. In this context,

we will then speak of recursive least-squares in space as opposed to the
more traditional recursive least-squares in time.

The main assumption to be made for using a recursive approach in the
local model generation is the adoption of an uniform weight kernel

�6' w:�;
*)0
1+-, �
� m if �B' w:� 
 ) , $ + ,

s otherwise;
(14)

The main advantage deriving from the adoption of the weight function
defined in Eq. (14), is that, simply by updating the parameters of the
model identified using the

e
nearest neighbors, it is straightforward and

inexpensive to obtain the parameters for the model with the
e A m nearest

neighbors.

Let us see the details for the constant and the linear case.
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6.1.1 Recursive constant model generation

Consider a set of local constant models
� �

, an uniform kernel (14) and
a bandwidth (13) which ranges over

e � e
� 
�������
 e � . Fixed a value of

e
, the parametric identification of the constant model

� �
is performed by

computing the mean of the outputs of the
e

nearest neighbors. Hence, the
prediction returned by

� �
is

2� �3 ' e , � 5
�
�879� � ' � ,
e (15)

where � ' � , is the output value of the
�����

nearest neighbor of ) in the
training set.

If we aim to identify the parameters of the model
� �
� � on the basis of the

parameters of
� �

, a recursive formulation is straightforward

2� �3 ' e A m , �
e 2� �3 ' e ,?A � ' e A�m ,

e A�m (16)

where � ' e A m , is the output of the ' e A m , ��� nearest neighbor.

6.1.2 Recursive linear model generation

In the linear case, given a query point ) , and under the hypothesis of a
local homoscedasticity of � � , the parameter

2�
of a local linear approx-

imation of S 'VU , in a neighborhood of ) can be obtained by solving the
local polynomial regression:

2� �����
	������
��
�879�

��� � ' � ,T> w ' � , � ��� � �6' w ' � ,�
*)0
1+-,�� 
 (17)

where ��'VU , is the kernel function, + is the bandwidth, and where a con-
stant value m has been appended to each vector w9� in order to consider a
constant term in the regression.

In matrix notation, the solution of the above stated weighted least-squares
problem is given by

2� � ' � � � � � � , � � � � � � � � � '�� � �&, � � � ��� ��� � ��� 
 (18)
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where � is a matrix whose
�����

row is w ' � , � , � is a vector whose
�����

element is � ' � , , � is a diagonal matrix whose
� ���

diagonal element
is �.� � � � �6' w ' � ,�
*)0
1+-, , � � ��� , � � � � , and the matrix
� � � � ��� � � � � is assumed to be non-singular so that its inverse� � '�� � � , � � is defined.

Given the local least-squares parameter
2�
, the prediction in ) is finally

given by:
2� �3 � ) � 2� � (19)

Consider now a set of local linear models � � , an uniform kernel (14) and
a bandwidth (13) which ranges over

e � e
� 
�������
 e � . Fixed a value of

e
,

only the
e

nearest neighbors of ) are considered in Eq. (17) to identify the
vector of parameters

2�
. In matrix notation this means that the

e
diagonal

terms of the matrix � which correspond to the
e

nearest neighbors take
a unit value while all the other diagonal terms are null.

Let us denote by
2� ' e , the least-squares vector of parameters

2�
identified

with
e

neighbors. The recursive least-squares algorithm provides a fast
way to identify the vector

2� ' e A m , using the
e A m nearest neighbors on

the basis of the vector
2� ' e , identified using the

e
nearest neighbors. By

performing a step of the standard recursive least-squares algorithm we
have: �

����������
����������

� ' e A m , � � ' e , > � ' e , w ' e A�m , w � ' e A�m , � ' e ,
m Ayw � ' e A m , � ' e , w ' e A m ,� ' e A m , � � ' e A�m , w ' e A�m ,� ' e A m , � � ' e A m ,T> w �T' e A m , 2� ' e ,2� ' e A m , � 2� ' e ,?A � ' e A m , � ' e A m ,2� �3 ' e A m , � ) � 2� ' e A�m ,

(20)

where
� ' e , � '�� � � , � � , w ' e A m , is the ' e A m , th nearest neighbor of the

query point, and
2� �3 ' e , denotes the prediction in the query point returned

by a linear model estimated on the basis of the
e

nearest neighbors.

Once an initialization
2� ' s , � ��

and
� ' sQ, � ��

is given, Eq. (20) recur-
sively evaluates, for different values of

e
, (i) a first order approximation
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2� ' e , of the regression function S ' UW, in ) and (ii) a prediction
2� �3 ' e , of the

value of the regression function in the query point.

Notice that
��

is an a priori estimate of the parameter and
��

is the co-
variance matrix that reflects the reliability of

��
(Bierman, 1977). If a

priori information is not available, the following initializations are usu-
ally adopted:

�� � s and
�� �����

, with
�

large and where
�

is the identity
matrix.

7 Local model validation

In the previous section we introduced recursive least-squares as an effec-
tive method for generating local model candidates. These models have
now to be validated in order to proceed to the final model selection. We
will consider in the following sections some alternative methods for val-
idating the set of candidates.

7.1 Leave-one-out for local models

This section focuses on the adoption of leave-one-out for cross-validated
assessment of local constant and linear models in the case of the uniform
kernel (14) and the bandwidth (13).

The formula of leave-one-out for constant models can be easily derived.
Since the constant fit with the

	 th point set aside is

2� �
�
� 5 ���7

�
� ' � ,

e > m (21)

the
	 th element of the leave-one-out vector error is

���	�
�
�
' e , � � ' 	 , > 5 ���7

�
� ' � ,

e > m
� e

� ' 	 , > 2� �3 ' e ,
e > m (22)

where
2� �3 ' e , is given in (15) and

e
is the number of neighbors used to

estimate the constant model. A recursive formulation of the � �	���
�
' e , quan-

tity, which directly obtains � �	�
�
�
' e , from � �	���

�
' e > m , with no intermediate

step (15), is given in (Birattari & Bontempi, 1999).
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As far as linear models are concerned, an efficient computation of the
leave-one-out error is given by the PRESS statistic (Allen, 1974) , which
is a fast way to compute the leave-one-out assessment of a linear approx-
imator. The main strength of this formulation is that the assessment of a
local linear model can be obtained as a by-product of the model identifi-
cation, at a reduced computational cost.

Using the PRESS statistic, it is possible to calculate the l-o-o error with-
out explicitly identifying the parameters

2�
�

�
' e ,

���	�
�
�
' e , � �

�
> w �
� 2�
�

�
' e , �

� ' 	 , > w ' 	 , � 2� ' e ,
m >��

���
(23)

where �
� �

is the
	 th diagonal element of the Hat matrix � � � � � � �� '�� � � , � � � � .

By (23) and (20) we have a formulation of the PRESS statistic which
takes advantage of the recursive formulation of the model generation pro-
cedure:

� �	���
�
' e , � � ' 	 , > w ' 	 , � 2� �

�
' e , �

� ' 	 , > w ' 	 , � 2� ' e ,
m > w ' 	 , � � ' e , w ' 	 ,�
	 � �B' w � 
*) , $ +C' e , (24)

It is easy to show that the model generation procedure described in the
previous section returns as a by-product all the elements necessary for
the leave-one-out computation. Equation (16) contains all that is required
in (22) for the constant leave-one-out computation. At the same time
Equation (20) returns the matrix

� ' e , and the vector
2� ' e , which make

possible, by Equation (24), the direct calculation of the linear leave-one-
out cross-validation errors without the need of any further model identi-
fication.

To make easier the following analysis it is useful to define, for each value
of

e
, the following quantities:

1. the < e � m�D vector

���	�
� ' e , ��� ���	���
�
' e ,�� 	 � m 
�������
 e (25)
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that contains all the leave-one-out errors (24) associated to the
model identified with the

e
nearest neighbors,

2. the cross-validated mean squared error

MSE �	�
� ' e , � 5
��
79���

� � � �	�
�
�
' e , � �

5
��
79���

�
(26)

which estimates the generalization error of the local model fitted
on the

e
nearest neighbors.The weights �

�
are used to discount the

contribution of the
	 ���

error � �	�
�
�
' e , according to the distance of the	 ���

neighbor from the query point (Atkeson et al., 1997).

8 Local model selection

The model generation procedure, described in the previous section, re-
turns, for the number

e
of neighbors ranging between

e
� and

e �
, a

set of constant model predictions
2� �3 ' e , and a set of linear model pre-

dictions
2� �3 ' e , , each associated with the respective leave-one-out error

vectors � �	��� ' e , , e � e
� 
�������
 e � .

The goal of local model selection is to use all this information in order
to return a final prediction

2� 3 of the value of the regression function in
the query point. Two main paradigms deserve to be considered: the first is
based on the selection of the best approximator according to a predefined
criterion, the second returns the prediction as a combination of different
local models.

8.1 The winner-takes-all approach

The winner-takes-all selection paradigm consists in comparing the whole
set of models

� �
and � � , e � e

� 
�������
1� � and in selecting the local
model which presents the minimum estimated generalization error (26).
The final prediction

2� 3 will be the one returned by the selected local
model.

A classical error criterion to assess the performance of a local model is
the cross-validated estimate of the mean squared error criterion. Then
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the predicted output
2� 3 is the output of the model

� � x � � � 
 � � � e � e
� 
�������
 e � �

where

� � �����
	 �  ������ ��� MSE �	��� ' e , (27)

where MSE �	��� ' e , is defined in (26). In this approach the only information
extracted from the vector of leave-one-out errors is the sample mean,
intended as the most relevant statistic describing the error distribution. In
alternative, to select the bandwidth of the neighborhood region we could
use the information contained in the � �	�
� vectors to a greater extent, e.g.
by using an empowered statistical procedure. This alternative winner-
takes-all method is discussed in (Bontempi et al., 1998; Bontempi, 1999)

8.2 The local model combination

An alternative to the winner-takes-all paradigm is provided by the local
combinations of estimates (Wolpert, 1992). The idea of combination is
common to a large amount of literature in neural networks and machine
learning (Breiman, 1996). What is original here is the application of this
idea to a local modeling setting. The set of estimators is not made of a
number of global models but of a subset of the local models

� �
and � �

generated as in Section 6.

By adopting the mean squared error criterion, the final prediction
2��3 is

obtained as a weighted average of the best � models, where � is a parame-
ter of the algorithm2. Suppose the predictions

2� 3 ' e , and the error vectors� �	�
� ' e , have been ordered creating a sequence of integers
� e � � so that

MSE �	�
� ' e ��, $ MSE �	�
� ' e
�
, , ��� � 	 . Assume that the local model predic-

tions are unbiased and uncorrelated. Hence, the combined prediction in
the query point ) is given by

2�43 �F5
	�879��� � 2� 3 ' e �/,
5 	�879��� � 
 (28)

2As an alternative we can decide to combine the best  � constant models and the best   
linear models.
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where the weights are the inverse of the mean squared errors:

� � � m
MSE �	�
� ' e ��,

This is an example of the generalized ensemble method (GEM) (Perrone
& Cooper, 1993).

9 Experiments

A typical issue in machine learning is the assessment of new learning
techniques with respect to more conventional methods.

In this section we present an experimental session, made of
���

supervised
learning benchmarks, which aims to compare under the same operating
conditions the Lazy Learning approach with a number of state-of-the-art
algorithms.

In some cases, as for Regression Trees and Feed Forward Neural Net-
works, we employed commercial softwares; in other cases, as for Basis
Function Networks and Mixtures of Experts, we implemented the learn-
ing algorithms.

For many state-of-the-art approaches the implementation of the parame-
ter identification procedure is relatively standard, nevertheless it is hard
to choose one structural identification procedure among the large amount
of existing approaches. For that reason and the high sensitivity of the fi-
nal accuracy to the structural identification strategy, we decide to adopt
for non-lazy methods the a posteriori best-case approach. This approach
consists in generating a set of alternative structures and then selecting the
one which a posteriori behaves the best on the test set. Note that this pro-
cedure is strongly biased in favor of these techniques, since the portion
of generalization error due to a wrong model selection is not taken into
account. Therefore, the experimental results obtained for these state-of-
the-art approaches can be considered as a sort of optimistic bound for
their real performance.
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9.1 Datasets

The experimental session contains
� �

datasets. The first fifteen datasets
are from the UCI3 Repository of machine learning databases (Merz &
Murphy, 1998), with the exception of the Ozone database provided by
Leo Breiman. These m q datasets are made of input/output samples col-
lected experimentally in real modeling problems.

The � last datasets, forming the so-called Kin family, are from the Delve
(Data for Evaluating Learning in Valid Experiments) repository4. They
were synthetically generated as variations of the same model: a simula-
tion of the forward dynamics of an 8 link all-revolute robot arm. The task
in all the � datasets is to predict the distance of the end-effector from a
target. The inputs are variables like joint positions, twist angles, etc.

The Kin family has been specifically generated for a supervised learning
problem and so the individual datasets span the corners of a cube whose
dimensions represent: (i) the number of inputs (8 or 32), (ii) the degree
of non-linearity (fairly linear or non-linear), and (iii) the amount of syn-
thetic noise in the output (moderate or high). All datasets in this family
have ”Kin” as the base of their name (Kinematics). An underscore ( ) is
appended to this name, followed by:

1. An integer value signifying the number of input attributes in each
case, for example ‘32’.

2. One of the characters ‘f’ or ‘n’ signifying ‘fairly linear’ or ‘non-
linear’, respectively.

3. One of the characters ‘m’ or ‘h’ signifying ‘medium unpredictabil-
ity/noise’ or ‘high unpredictability/noise’, respectively.

A summary of the characteristics of each dataset, in terms of number of
inputs and the number of samples, is presented in Table 1.
3 ���������
	�	����������������������������	������ ��! "$#%	 &�' ()���)*%���+��*$"�,-��������
4 ���������
	�	�������.���/��)* ")*0#��)*1��$�$�%	��2������3)��	
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Dataset Number of examples Number of regressors

Housing 330 8
Cpu 506 13

Prices 209 6
Mpg 159 16
Servo 392 7
Ozone 167 8

Bodyfat 252 13
Pool 253 3

Energy 2444 5
Breast 699 9

Abalone 4177 10
Sonar 208 60
Bupa 345 6
Iono 351 34
Pima 768 8

Kin 8fh 8192 8
Kin 8nh 8192 8
Kin 8fm 8192 8
Kin 8nm 8192 8
Kin 32fh 8192 32
Kin 32nh 8192 32
Kin 32fm 8192 32
Kin 32nm 8192 32

Table 1. A summary of the characteristics of the datasets considered.

9.2 Methods

This section presents the set of learning methods which are evaluated in
the experimental session.

9.2.1 The Lazy Learning method

This method, described in Section 5, adopts the recursive identification
and the local PRESS validation algorithm. We compare alternative strate-
gies for model selection, and alternative types of local models:
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Lb1: Local bandwidth selection for linear local models. The number of
neighbors is selected on a query-by-query basis and the prediction
returned is the one of the best linear model according to the mean
square error criterion MSE ����� (winner-takes-all).

Lb0: Local bandwidth selection for constant local models. The number
of neighbors is selected on a query-by-query basis and the predic-
tion returned is the one of the best constant model according to the
mean square error criterion MSE �	�
� (winner-takes-all).

LbC: Local combination of estimators. This is an example of the
method described in Section 8.2. For each query it combines the
outputs of the best

�
linear local models and the best

�
constant

models.

The number of neighbors for constant models is allowed to range be-
tween

e �
�
� �

and
e �� � mps � , while for linear models between

e �
�
�
�

and
e �� � mos � where �

� #�A m and # is the number of inputs.

The distance function is a weighted Euclidean distance (see Eq. (9)). The
metric is global and weighted by the relative linear influence (relevance)
of the regressors (Friedman, 1994). This means that the metric 	 in (9)
is a diagonal matrix with

	 � � � ���� 2� �
�

5 �
�
79�
2� �
�

(29)

where
2�
�

is the
	 � �

term of the least-squares vector estimated on the
whole training set.

9.2.2 Local modeling methods

They are two local modeling approaches where the number of neigh-
bors is selected not on a query-by-query basis but through a procedure of
cross-validation on the whole training set (see the global tuning approach
described in Section 3.3.5). We consider two approximators:

Gb1: Local modeling technique with linear local models and global
bandwidth selection. The number of neighbors

e
is fixed for all
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the queries and is obtained by minimizing the assessment error in
a
� s -fold cross-validation on the training set.

Gb0: Local modeling technique with constant local models and global
bandwidth selection. As in Gb1, the value of

e
is optimized glob-

ally and kept constant for all the queries.

The bounds on the number of neighbors, the distance function and the
metric are the same we defined in the previous section.

9.2.3 The Regression Tree method: Cubist

Cubist5 is a commercial software, distributed by Prof. Quinlan, which
implements the Regression Tree architecture.

It is a rule-based tool for generating piecewise-linear models on the basis
of input/output data. The software has a number of different options and
features. The results we report are obtained by combining the regression
tree with a nearest-neighbor model (Quinlan, 1993).

9.2.4 Feed Forward Neural Networks

Feed Forward Neural Networks (FNN) are the most common example of
neural networks for supervised learning (Bishop, 1994).

We choose a two-layer architecture with a first sigmoid layer and a
second linear layer, trained by the Levenberg-Marquardt algorithm. As
stated in the introduction, a fair comparison with Feed Forward Neural
Networks should require a state-of-the-art neural selection procedure. In
order to avoid possible criticism on this subject, we decide to perform
no structural identification but to compute the predictions for several dif-
ferent structures and to return the best a posteriori result on the test set.
This allow us to remain independent of the large amount of literature on
neural structure selection and to return an optimistic result for the neural
approximator. In particular we choose as structural parameter the number
of neurons in the first layer and we made it vary over a range between

�
and m � neurons.
5 ���������
	�	������� "����$��� �%���0��
� * �
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The software used to perform the experiments is the set of routines for
Feed-Forward Neural Networks provided in the Matlab

c
�

Neural Net-
work toolbox.

Note that in Table 2 and 3 we report only the results obtained by the best
a posteriori neural structures which are not necessarily the same among
the different datasets.

9.2.5 Mixtures of Experts

We consider a one-level Mixture of Experts (ME) architecture trained
according to the parametric identification method described in (Xu et al.,
1995). The experiments are performed using our own Matlab

c
�

imple-
mentation of the ME learning method.

As in the case of Feed Forward Neural Networks, we perform no struc-
tural identification but we generate several different structures and we
return the best a posteriori result on the test set. The structural parameter
is chosen to be the number of experts at the bottom level, ranging over
< � 
pm � D for the first mpn datasets and over < � 
 �4D for the last four.

9.2.6 Local Model Networks

We consider two local model networks (Johansen & Foss, 1993) with
different membership functions and different initializations:

LMNf It is a local model network with triangular memberships which is
initialized by the fuzzy hyperplane clustering procedure (Babuska,
1996).

LMNk It is a local model network with Gaussian memberships which is
initialized by the k-means clustering procedure (Moody & Darken,
1989).

For both the models, the number of rules is the structural parameter
which is allowed to range over the interval < � 
pm � D for the first mon datasets
and over < � 
��4D for the last four. We choose the a posteriori best-case
strategy for choosing the number of local models.
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The experiments are performed using the Matlab
c

�

toolbox for Neuro-
Fuzzy data analysis6 developed at Iridia (Bontempi & Birattari, 1999).

9.3 The experimental methodology

Each approach is tested on each dataset using the same mos -fold cross-
validation strategy.

Each dataset is first normalized through a Z-score scaling (Masters, 1995)
and then divided randomly into mos groups of nearly equal size. In turn,
each of these groups is used as a testing set while the remaining ones
provide the examples. Thus all the methods perform a prediction on the
same unseen cases, using for each of them the same set of examples.

This guarantees the same experimental conditions for all the approaches.

9.4 Results

We report the results using two synthetic indices of performances and an
exhaustive set of paired comparisons between the learning methods.

In Table 2 we present, for each learning method, the absolute prediction
error averaged over the mos cross-validation groups.

The second index of performance we report is the relative error, defined
as the mean square prediction error on unseen cases, normalized by the
variance of the test set. The relative errors are presented in Table 3 and
show a similar picture to Table 2, although the mean square errors con-
sidered here penalize larger absolute errors.

Since the methods are tested on the same examples under the same con-
ditions, we use the sensitive one-tailed paired test of significance to per-
form an exhaustive paired comparison of all the methods for all the
benchmarks. In what follows, by “significantly better” we mean better
at least at a 5% significance level. The whole amount of paired compar-
isons is reported in (Bontempi, 1999).
6 ���������
	�	%�+"��0����!  ������ !%�/��%��	������%*�#�����	)�0*��$�$�%! ")��	$'�*)� !���	��
	��1������ �
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Dataset Lb1 Lb0 LbC Gb1 Gb0 Cub FNN ME LMNf LMNk

Housing 2.10 2.56 2.06 2.03 2.47 2.14 2.44 2.61 3.01 3.29
Cpu 26.41 34.86 25.97 26.82 29.17 28.33 32.19 28.98 42.95 44.83

Prices 1511.5 1577.4 1525.4 1389.3 1510.1 1377.7 2209 2236 2173.1 2859.1
Mpg 1.87 1.95 1.85 1.91 1.98 1.91 2.06 2.05 2.09 2.57
Servo 0.31 0.29 0.31 0.33 0.33 0.36 0.41 0.68 1.11 1.07
Ozone 3.39 3.42 3.16 3.26 3.18 3.06 3.34 3.17 3.18 3.40

Bodyfat 93e-4 95e-4 87e-4 87e-4 88e-4 87e-4 86e-4 87e-4 85e-4 96e-4
Pool 0.65 0.75 0.63 0.60 0.79 0.63 0.59 0.63 0.60 0.68

Energy 7.83 15.68 8.04 7.91 16.14 10.26 11.38 20.14 18.64 17.88
Breast 0.049 0.042 0.042 0.055 0.048 0.071 0.058 0.048 0.085 0.091

Abalone 1.58 1.55 1.49 1.55 1.49 1.51 1.46 1.54 1.52 1.55
Sonar 0.38 0.18 0.17 0.37 0.22 0.20 0.32 0.68 0.36 4.87
Bupa 0.39 0.38 0.37 0.38 0.43 0.37 0.38 0.40 0.46 0.41
Iono 0.21 0.12 0.11 0.21 0.11 0.14 0.18 0.17 0.42 1.58
Pima 0.31 0.28 0.28 0.31 0.31 0.27 0.32 0.31 0.33 0.33

Kin 8fh 36e-3 39e-3 35e-3 34e-3 36e-3 35e-3 33e-3 35e-3 34.2e-3 34.1e-3
Kin 8nh 0.15 0.15 0.14 0.14 0.15 0.14 0.13 0.15 0.17 0.16
Kin 8fm 11e-3 17e-3 11e-3 11e-3 15e-3 12e-3 9.6e-3 13e-3 14e-3 12e-3
Kin 8nm 86e-3 105e-3 89e-3 87e-3 100e-3 91e-3 70e-3 118e-3 136e-3 129e-3
Kin 32fh 0.22 0.25 0.21 0.23 0.23 0.21 0.20 0.21 0.36 0.36
Kin 32nh 0.38 0.39 0.36 0.39 0.36 0.36 0.32 0.33 0.35 0.37
Kin 32fm 97e-3 152e-3 95e-3 99e-3 0.14 94e-3 79e-3 94e-3 0.32 0.32
Kin 32nm 0.34 0.35 0.32 0.35 0.33 0.32 0.27 0.29 0.33 0.34

Table 2. Mean absolute error obtained on unseen cases.

A concise summary of the comparisons is reported in Table 4, which
counts the number of times that a model was significantly worse than
another during the experimental session. It is evident that the less is the
figure in the table, the better is the global performance on the totality of
datasets.

9.5 Discussion

The first consideration about the experimental session can be done by
taking a look at the summary in Table 4. In this particular ranking, where
the lowest the best, the LL approach LbC is the winner, followed by
Cubist and by FNN. Note that this summary has for only purpose to
give a qualitative indication of the performance of an approach on the
whole amount of benchmarks and that further considerations should be
done by looking in detail at the single tables.

Considering the performances on the single datasets, we remark a differ-
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Dataset Lb1 Lb0 LbC Gb1 Gb0 Cub FNN ME LMNf LMNk

Housing 11.72 20.29 11.60 10.68 17.02 14.72 13.78 19.95 26.49 34.18
Cpu 9.98 35.65 9.78 9.82 14.12 12.61 13.68 30.98 42.61 47.54

Prices 14.06 21.78 16.62 11.88 20.08 11.83 40.31 41.40 39.66 68.86
Mpg 12.64 13.02 11.90 12.69 13.23 12.64 13.26 14.12 14.67 23.05
Servo 16.92 20.67 16.73 17.73 24.85 19.72 27.17 55.42 97.46 90.27
Ozone 31.96 33.44 27.62 29.00 27.55 25.11 29.80 27.95 27.43 33.00

Bodyfat 38.92 38.22 30.84 35.13 33.49 33.57 31.20 33.68 31.80 43.24
Pool 12.29 16.14 12.07 10.31 16.33 11.54 9.85 10.90 10.19 12.97

Energy 0.32 0.71 0.33 0.32 0.75 0.54 0.41 1.17 0.83 1.07
Breast 10.94 14.53 12.83 10.59 11.89 20.56 14.93 14.49 13.39 15.17

Abalone 48.06 48.97 43.77 45.07 44.39 43.90 41.62 44.23 43.65 45.03
Sonar 92.87 46.29 42.80 88.79 52.21 58.36 98.69 � 100 83.35 � 100
Bupa 95.72 98.14 94.00 80.83 85.24 104 88.66 95.69 372 89.04
Iono 50.31 43.31 37.95 47.79 36.66 44.74 50.40 45.92 83.06 � 100
Pima 83.56 82.61 81.07 70.37 70.10 82.96 98.21 86.56 74.08 73.22

Kin 8fh 29.00 33.22 26.71 26.08 28.79 26.48 24.55 26.31 25.90 25.81
Kin 8nh 47.11 52.31 43.42 43.76 48.35 46.00 36.24 51.37 60.42 53.36
Kin 8fm 3.45 8.82 3.32 3.28 6.99 3.91 2.63 5.05 5.99 4.02
Kin 8nm 17.29 26.87 17.87 17.69 25.52 20.71 11.90 34.80 44.99 39.59
Kin 32fh 37.99 47.13 33.91 40.63 40.36 31.89 30.09 32.56 99.41 99.34
Kin 32nh 96.35 97.69 83.12 100.15 83.47 84.29 68.37 73.05 81.64 90.02
Kin 32fm 9.50 23.18 9.00 9.90 19.76 8.94 6.19 8.91 99.11 98.70
Kin 32nm 88.95 90.73 76.46 91.49 78.39 74.92 56.51 63.22 78.91 86.99

Table 3. Relative error (%) obtained on unseen cases.

Method
Number of times the method

was significantly worse than another

Lb1 74
Lb0 96
LbC 23
Gb1 58
Gb0 81
Cub 40
FNN 53
ME 80

LMNf 132
LMNk 145

Table 4. A comparative summary of the performances of the used methods.

ent behavior between real datasets (the first m q ) and synthetically gener-
ated datasets (the last � ). While the LbC approach and Cubist do better
on the first class of data, the FNN approach outperforms the other ones
on the second class.
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A possible explanation is the following: methods like Lazy Learning and
Regression Trees are tailored to configurations with non uniform noise
and with no analytical model underlying the data distribution. On the
contrary, data obtained by simulating a mathematical model, as the kine-
matic model of a manipulator in the Kin family, and distorted with ar-
tificial and uniformly distributed noise are the ideal setting for a global
model, like the FNN. A global model can easily deal with an uniform
disturbance since the totality of data gives information about the noise.
On the contrary, divide-and-conquer approaches exploit only a portion
of data with the consequence of a less reliable tradeoff between signal
detection and noise reduction.

As far as the LL approach is concerned, it is important to compare the
performance of the local combination with respect to the winner-takes-all
approach in the model selection step (Section 8). According to the com-
parative tables, the method LbC results m �

times significantly better than
the winner-takes-all linear Lb1 and

�
times significantly worse. Also,

it results m�� times significantly better than the winner-takes-all constant
Lb0 and s times worse.

As far as local modeling is concerned, an interesting comparison con-
cerns the performance of the LbC method based on a query-by-query
bandwidth selection with respect to local methods based on a global tun-
ing of the number of neighbors (Section 9.2.2). The method LbC is mos
times significantly better than Gb1 and only

�
times significantly worse.

Also, LbC is mpu times significantly better than Gb0 and is never signifi-
cantly worse.

As far as the comparison of the best LL method with Cubist is con-
cerned, the LbC technique performs significantly better than the regres-
sion tree Cubist on � datasets and significantly worse on

�
datasets.

Similar considerations hold for the comparison of LbC with the ME
approach ( m � times better and

�
worse) and the Local Model Network

approaches.

Some words should be spent also about the bad performance of the Local
Model Network approaches. We suspect that the LMN approach suffered
of the high dimensionality of the regression problems taken into consid-
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eration, which made the final performance of the algorithm excessively
dependent on the initialization step.

It is our belief that no experimental result can produce a definitive sen-
tence on the superiority of a learning method over another one. Further-
more, new techniques, like the Lazy Learning method, should be tested
in many real tasks before being claimed as a consolidate method. How-
ever, we think that a rigorous experimental setup, as that presented in this
chapter, can give a qualitative indication whether an algorithm is some-
what a promising tool for model design. In these terms, the examples
given throughout this section highlight that the Lazy Learning approach,
and in particular its version LbC based on the combination of estima-
tors, can be an effective technique for supervised learning, featuring a
generalization accuracy comparable and sometimes significantly better
than those of state-of-the-art algorithms.

Examples of applications of the LL algorithm to real problems are given
in the following section.

10 Lazy Learners at work

The Lazy Learning method is currently applied with success by the Iridia
laboratory to a number of academic and industrial problems. Here we list
some of them:

Financial prediction of stock markets. This is a joint project of Iridia
and the research center of Masterfood, which adopts the Lazy
Learning techniques for the prediction of some market indices.

Prediction of chaotic time series. The Lazy Learning method for iter-
ated time series prediction (Bontempi et al., 1999c) ranked sec-
ond among m � participants to the International Competition on
Time Series organized by the International Workshop on Advanced
Black-box techniques for nonlinear modeling held in Leuven, Bel-
gium (Suykens & Vandewalle, 1998).

Data analysis. The Lazy Learning method took part to the Third Inter-
national Competition of Data Analysis by Intelligent Techniques
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organized by the European Network Erudit, where it was awarded
as a runner-up among

� m participants (Bontempi et al., 1999a).

Non linear control and identification task. The Lazy Learning
method for nonlinear control (Bontempi et al., 1999b; Bontempi
et al., 1999d) is currently tested on a set of benchmarks proposed
in the LTR project FAMIMO (Fuzzy Algorithm for Multi Input
Multi Output processes).

Modeling of industrial processes. The Lazy Learning technique is em-
ployed to model the rolling steel mill process of the FaFer Usinor
steel company in Charleroi, Belgium. It is also the subject of an ac-
tive collaboration of Iridia with the Honeywell Technology Center
in Minneapolis, USA.

Electrical power load forecasting. A joint project of Iridia and
Tractebel Belgium is adopting local techniques for the forecasting
of the electrical power load.

Prediction of economic variables. A joint project of Iridia and Di-
eteren, the first Belgian car dealer, is studying the adoption of Lazy
Learning techniques to predict the annual amount of sales on the
basis of historical data.

11 The importance of being Lazy

Goal of this chapter was to introduce local modeling, and in particular
its Lazy Learning version, as an appealing alternative to existing tech-
niques. Theoretical and algorithmic considerations, joined with a number
of experiments, aimed to raise Lazy Learning techniques not to a privi-
leged status but rather to a parity condition with respect to state-of-the-art
methods.

This final section summarizes the main advantages that derive from
adopting a Lazy Learning technique in a modeling task.

Few assumptions. Lazy Learning assumes no a priori knowledge on the
process underlying the data. The only available information is rep-
resented by a finite set of input/output observations.
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Query-by-query design. Lazy Learning solves the problem of model-
ing an input/output mapping in a local perspective, making no as-
sumption on the existence of a global function describing the data
and making no assumption on the properties of the noise. This
feature is particularly relevant in real datasets where problems of
missing features, non stationarity and measurement errors make
appealing a data-driven and assumption-free approach like Lazy
Learning.

Lazy Learning gives linearity a chance. A lot of powerful techniques
and well-founded theoretical results in linear statistical theory, lin-
ear regression and linear control analysis are reused effectively by
Lazy Learning in a nonlinear setting. This property makes eas-
ier the implementation and the theoretical analysis of a modeling
and/or control method based on Lazy Learning.

Fast design. The learning procedure of Lazy Learning is based on a fast
method to generate a set of candidate models based on a recursive
technique, a fast method to identify the parameters of a local model
based on linear least-squares and a fast technique to validate the
local models - the PRESS - which is obtained at no additional cost
as a by product of the parametric identification.

Statistically informative. By adopting a local modeling technique and
a powerful validation technique, the Lazy Learning returns at the
same cost of the prediction also a statistical description of the un-
certainty affecting the prediction itself. This a relevant property
which is used in the method to combine different local predictors
or that can be effectively employed to combine the Lazy Learning
prediction with other kind of approximators.

On-line learning. The Lazy Learning method can easily deal with on-
line learning tasks where the number of training samples increases
with time. In this case, the adaptiveness of the method is obtained
by simply adding the points to the stored dataset.

Non stationary tasks. The Lazy Learning method can deal with time-
varying configurations where the stochastic process underlying the
data is non stationary. In this case, it is sufficient to mean the no-
tion of neighborhood not in a spatial way but in a spatio-temporal
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sense. For each query point, the neighbors will not be the samples
which have simply similar inputs but the ones that both have simi-
lar inputs and have been collected recently in time. Therefore, the
time variable becomes a further precious feature to consider for
accurate prediction.

Successful applications. Lazy Learning has been successful in address-
ing a number of practical problems, from regression modeling to
time series prediction and nonlinear control.
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