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A Survey of Divide-and-Conquer Techniques
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Abstract— In the field of system identification and control
a mismatch exists between the available theoretical tools and
most of the problems encountered in practice. On the one hand,
researchers developed plenty of theoretical analysis and methods
concerning linear systems; on the other hand practitioners are
often confronted with the apparent nonlinearity of the real world.
Although several nonlinear identification and control techniques
have been proposed in the last decades, these still appear to be less
robust and reliable than their linear counterparts. An appealing
approach to bridge the existing gap consists in decomposing
a complex nonlinear control problem in a number of simpler
linear problems, each associated with a restricted operating
region. This paper will review a number of divide-and-conquer
techniques proposed in the nonlinear control literature and
more recently in the machine learning community to address
the problem of linearly controlling a nonlinear system. Two
families of divide-and-conquer approaches will be taken into
consideration: analytical approaches which require the knowledge
of the system dynamics and learning approaches which rely on
powerful approximators to estimate a model from input/output
data.
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Index Terms— Nonlinear control, divide-and-conquer ap-
proaches, lazy learning.

I. INTRODUCTION

THE idea of adopting a linear approach for nonlinear
problems is not new in the literature. The persisting use

of linear techniques, as the PID controllers [24], in a large
part of industrial plants is an obvious demonstration of the
effectiveness and the reliability of linear control theory for a
number of real tasks. Anyway, in most cases these control
systems require the plant to be in a stationary regime and are
inefficient in transient operating conditions.

In recent years, the issue of controlling nonlinear plants over
a wide range of operating conditions has made of divide-and-
conquer approaches an appealing solution. These approaches
decompose a complex nonlinear control problem in a number
of simpler problems, each associated with a restricted oper-
ating region. This can often give a more manageable and
transparent representation of the control system, leaving at
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elles Brussels, Belgium. [gbonte@ulb.ac.be (G. Bontempi), mbiro@ulb.ac.be
(M. Birattari)]

Publisher Item Identifier S 1542-5908(05)10106-7/$20.00
Copyright c©2003-2005 Yang’s Scientific Research Institute, LLC.
All rights reserved. The online version posted on October 16, 2003 at
http://www.YangSky.com/ijcc31.htm

the same time the opportunity of reusing conventional linear
techniques in nonlinear tasks.

This paper provides the reader with a state-of-the-art of the
methods that reuse the linear approach for nonlinear problems
and surveys the existing divide-and-conquer control strategies.
For the sake of clarity, we will distinguish between two
main classes of approaches to divide-and-conquer control:
the analytical approaches and the learning approaches. While
the first group of approaches requires the knowledge of the
analytical form of the dynamical system to be controlled, the
learning approaches aim at synthesizing a control policy only
on the basis of a number of input-output observations.

Three main analytical divide-and-conquer approaches will
be discussed and compared in the paper (Figure 1):

Linearization: this is the most intuitive and historically
the first approach to reuse linear techniques in a
nonlinear control setting [13].

Gain scheduling: this is probably the most systematic ap-
proach to the control of nonlinear systems in prac-
tice [46], [42]. Along the years, it remains an attrac-
tive control strategy for its experimented advantages
in terms of simple design and low computational
complexity.

Feedback linearization: this control strategy, introduced in
recent years [48], [29], transforms the closed-loop
problem in a linear control problem, more manage-
able in theoretical and practical terms.

When no analytical model is available but the assumption of
linearity is reasonable, linear system identification techniques
are used to estimate the system on the basis of observed
data [26]. Linear techniques have been also employed to
deal with nonlinear dynamics by making use of adaptive
algorithms [17]. Here an on-line identification algorithm (Re-
cursive Least Squares) updates a linear approximation of the
system, using a forgetting factor in order to track variations
in the dynamics. However, such an approximation provides a
satisfactory performance only if the operating regime changes
slowly. The idea of learning techniques (Figure 2) is to approx-
imate the unknown relation between state of the system and
control actions by using nonlinear approximation techniques.
The traditional approach to supervised learning is global mod-
eling. Global models make the assumption that the relationship
between the inputs and the output values can be described by
an analytical function over the whole input domain. Examples
of functional estimators are linear models, nonlinear statistical
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Divide-and-Conquer Control Techniques

Analytical Approaches:
-linearization
-gain scheduling
-feedback linearization

Learning Approaches:
-modular methods
-local methods

Fig. 1. A pictorial representation of the taxonomy of the divide-and-conquer control techniques discussed in the paper. A more exhaustive classification of
supervised learning techniques is proposed in Figure 2.

Supervised Learning Techniques

Global:
-linear models
-generalized linear models
-nonlinear regression
-neural networks

Divide-and-Conquer:

Modular:
-fuzzy inference systems
-radial basis functions
-local model networks
-classification and

regression trees
-mixture of experts

Local:
-nearest neighbor
-locally weighted learning
-lazy learning

Fig. 2. A pictorial representation of the taxonomy of the supervised learning techniques.

regressions [45], and Neural Networks [43].
The divide-and-conquer paradigm in supervised learning

originates from the idea of relaxing the global modeling
assumptions. It attacks a complex problem by dividing it into
simpler problems whose solutions can be combined to yield
a solution to the original problem. This principle presents
two main advantages. The first is that the choice of the
model complexity (structural identification) and the estimation
of parameters (parametric identification) can rely on linear
techniques, well studied and developed over the years. The
second is that the learning method can better adjust to the
properties of the available dataset.

The divide-and-conquer idea has taken two different forms:
the modular architectures and the local modeling approach.

Modular techniques replace a global model with a modular
architecture where the modules cover different parts of the in-
put space. This is the idea of operating regimes which assume
a partitioning of the operating range of the system in order
to solve modeling and control problems [20]. Fuzzy Inference
Systems [50], Radial Basis Functions [30], [38], Local Model
Networks [31], Classification and Regression Trees [12], and
Mixture of Experts [23] are well-known examples of this
approach. Although modular architectures are a combination
of local models, their identification is still performed on the
basis of the whole dataset. Hence, the learning procedure
remains a function estimation problem, with the advantage
that the parametric identification can be made simpler by
the adoption of local linear modules. However, in terms of
structural identification the problem is still nonlinear and
requires the same procedures used for generic global models.

An alternative example of divide-and-conquer methods are
local modeling techniques [16], which turn the problem of

q x

y

x

y

Fig. 3. Local modeling of the input/output relationship between the input
variable x and the output variable y, on the basis of a finite set of observations
(dots). The value of the variable y for x = q is returned by a linear model
(solid line) which fits the samples in a neighborhood of the query point (bigger
dots).

function estimation into a problem of value estimation. The
well-known nearest neighbor method can be considered the
prototype for this class of techniques: Local methods do not
aim to return a complete description of the input/output map-
ping but rather to approximate the function in a neighborhood
of the point to be predicted (Figure 3). The local feature
makes possible the adoption of linear techniques both in
parametric and structural identification with a gain in terms
of analytical tractability and fast design. Locally weighted
learning techniques [3] are well-known instances of local
modeling. Among them we mention the Lazy Learning (LL)
algorithm for modeling and control developed by the authors
in [10], [11], [7]

Consistently with the above classification we will present
in this survey two learning approaches to divide-and-conquer
control.
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Local modular approach: the idea consists in approximating
the dynamics of the system by using a modular
locally-linear representation and in exploiting this
information to control the system by adopting locally
linear techniques. Local Model Networks [20], [21]
and the techniques of Fuzzy Control [35] belong to
this category. Three ways of combining the local lin-
ear representations (local controller, local gain sched-
uler and self-tuning controller) will be reviewed.

Lazy Learning approach: this approach combines a Lazy
Learning approximator, which performs the on-line
local linearization of the system, with conventional
linear control techniques (minimum variance, pole
placement, optimal control). To make the presenta-
tion more concise, we will limit ourselves to present
a LL self-tuning approach. Other examples of LL
approaches are presented in [10], [4]. Note that each
LL approach can be considered as an intrinsically
adaptive control methods. This derives from the fact
that, at each time step, the input/output observation is
added at no computational cost to the stored dataset,
adapting the control policy to changing dynamics. It
is important to remark that the adaptive feature re-
quires no modification of the control algorithm unlike
nonlinear global techniques where heavy recursive
formulations are generally necessary to cope with
sequential stream of data.

This is the outline of the survey paper: After an introductory
statement on the nonlinear control problem in Section II,
Section III discusses the linearization method. Section IV
and V introduces gain scheduling and feedback linearization,
respectively.

Local modular approaches will be described in Section VI.
A self-tuning Lazy Learning regulator will be described in
Section VII. A summary comparison of the approaches ac-
cording to a series of criteria is presented in Section VIII.

II. NONLINEAR SYSTEMS AND EQUILIBRIUM POINTS

A continuous nonlinear dynamic system [27] is represented
by a set of differential equations in the form

ẋ = f
(

x(t), u(t), t
)

, (1)

where f is a [n× 1 ] nonlinear vector function f : R
n ×R

m ×

R → R
n, x is the state vector in R

n and u ∈ R
m is the

control input vector.
Linear systems can be seen as a special class of nonlinear

systems. The dynamics of linear systems is represented by

ẋ = A(t)x(t) + B(t)u(t), (2)

where A(t) is a [n× n] matrix and B(t) is a [n×m] matrix.
A linear system can be classified as either time-varying

(LTV) or time-invariant (LTI), depending on whether the
system matrix A varies with time or not. In the nonlinear
context, these terms are replaced by “autonomous” and “non-
autonomous”.

Definition 1 (Autonomous systems): The nonlinear
system (1) is said to be autonomous if the function f

does not depend explicitly on time, i.e., if the system’s state
equation can be written in the form

ẋ = f(x, u), (3)

Otherwise, the system is called non-autonomous.

III. LINEARIZATION

Linearization methods are the simplest way to adopt linear
control techniques in a nonlinear setting. In this section, we
will distinguish between linearization about an equilibrium
point and linearization about a trajectory.

A. Linearization About an Equilibrium Point

We introduce first the definition of equilibrium point:
Definition 2 (Equilibrium point): The pair (x0, u0) is an

equilibrium of the system (3) if once x(t) is equal to x0 and
u(t) is equal to u0 for all future time, x(t) remains equal to
x0 for all future time. In mathematical terms this means that

f(x0, u0) = 0 . (4)
Consider the autonomous system (3), and assume that f is
continuously differentiable at the equilibrium (x0, u0). Then,
the system dynamics can be written as

ẋ(t) = f
(

x(t), u(t)
)

=

= f(x0, u0) + G1f (x0, u0)
(

x(t) − x0

)

+G2f (x0, u0)
(

u(t) − u0

)

+ r
(

x(t), u(t)
)

, (5)

where r
(

x(t), u(t)
)

stands for higher-order terms in
(

x(t), u(t)
)

and G1f and G2f are defined in Appendix . Define
the deviation from equilibrium terms as

x̃(t) = x(t) − x0, (6)

ũ(t) = u(t) − u0. (7)

Then, the system

˙̃x(t) = G1f (x0, u0)x̃(t) + G2f (x0, u0)ũ(t) (8)

is called the linearization (or linear approximation) of the
original nonlinear system (3) about the equilibrium point
(x0, u0).

B. Linearization About a Trajectory

Let x = x∗(t) and u = u∗(t) satisfy the equation (3)
with f continuously differentiable, that is ∀t : ẋ∗(t) =
f
(

x∗(t), u∗(t)
)

. We call
(

x∗(t), u∗(t)
)

a trajectory of the
nonlinear system.

We examine the behavior of the system near this trajectory
and we define

x̃(t) = x(t) − x∗(t),

ũ(t) = u(t) − u∗(t).
(9)

The function f near the trajectory may be approximated by

f(x(t), u(t)) ≈ f
(

x∗(t), u∗(t)
)

+ G1f

(

x∗(t), u∗(t)
)

x̃(t)

+G2f

(

x∗(t), u∗(t)
)

ũ(t) (10)

then leading to the linear time-varying dynamics:

˙̃x(t) = G1f

(

x∗(t), u∗(t)
)

x̃(t)+G2f

(

x∗(t), u∗(t)
)

ũ(t). (11)
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In the next section, we show that the linearized dynamics (8)
and (11) may be used to infer properties of the nonlinear
system in a neighborhood of an equilibrium point and of a
known trajectory, respectively.

C. Linearization and Local Stability

In this section we report the conditions of stability for
a dynamic system, when a linearization about a point or a
trajectory is given.

As seen in the previous sections, a linearization about an
equilibrium returns a time invariant linear dynamics while a
linearization about a trajectory returns a linear time-varying
(LTV) system. Different stability analysis are then required.

1) Linearization About an Equilibrium and Local Stability:
Consider the equilibrium x0 of an unforced system

ẋ(t) = f
(

x(t)
)

(12)

that satisfies f(x0) = 0. The following result makes precise
the relationship between the stability of the linearized system
and the original nonlinear system [48].

Theorem 1 (Lyapunov’s linearization method):

• If the linearized system is strictly stable (i.e. all of the
eigenvalues of G1f (x0) have negative real parts), then
the equilibrium point x0 is asymptotically stable for the
nonlinear system.

• If the linearized system is unstable (i.e. at least one of
the eigenvalues of G1f (x0) is in the right-half complex
plane), then the equilibrium point x0 is unstable for the
nonlinear system.

• If the linearized system is marginally stable (i.e. all of
the eigenvalues of G1f (x0) have negative real parts but
at least one is on the imaginary axis), then one cannot
conclude anything from the linear approximation about
the stability of the nonlinear system.

2) Linearization About a Trajectory and Local Stability:
The stability analysis of the linearization of an autonomous
system about a trajectory can be reduced to the analysis
of the linearization of a non-autonomous system about the
equilibrium point. As in the equilibrium case, consider an
unforced system (12) for which a solution x∗(t), with initial
condition x∗(0) = x∗

0
, is available.

Let us now perturb the initial condition to be x(0) = x∗

0
+

δ x0 and study the associated variation of the motion error

x̃(t) = x(t) − x∗(t). (13)

Since both x∗(t) and x(t) are solutions of (12), we have
that x̃(t) satisfies the following non-autonomous differential
equation

˙̃x(t) = g(x̃, t), (14)

whose equilibrium point is at the origin. Then each particular
nominal motion of an autonomous system corresponds to
an equivalent non-autonomous system. Therefore, we will
refer to the theorems concerning the linearization method for
non-autonomous systems about the origin. Let A(t) be the
linearization of the system (14) around the equilibrium 0. Then
the following theorem states:

Theorem 2: If the linearized system A(t) is uniformly
asymptotically stable, then the equilibrium point 0 of the orig-
inal non-autonomous system is also uniformly asymptotically
stable.

D. Some Considerations on Linearization

Linearization methods are easy to interpret and shed a light
on the behavior of a nonlinear system about some operating
conditions. However, they present some drawbacks:

• a control design based on the linearized dynamics could
have stability problems when operating away from the
equilibrium or trajectory;

• the equilibrium points and/or the trajectories must be
known in advance and this knowledge is often not avail-
able.

In the next section, we will present a design approach which
addresses the restrictions of linearization: the gain scheduling.

IV. GAIN-SCHEDULED CONTROL DESIGN

The idea of gain scheduling [46], [42] consists in breaking
the control design process into two steps. The first step
designs a set of local linear controllers at different equilibria,
called operating points. In the second step, a global nonlinear
controller is obtained by interpolating (scheduling) the set of
local controllers. The resulting global controller is called a
gain scheduler.

Let us see this approach in detail. Consider the nonlinear
system

ẋ(t) = f(x(t), u (t), s), (15)

y(t) = g(x(t)), (16)

where y(t) denotes the measured output, and s, called the
scheduling variable, is a continuous and measurable quantity.
The gain scheduling approach consists in

1) defining a finite set S = {s1, s2, . . . sm} of m represen-
tative values of the variable s,

2) decomposing the original system in m local subsystems
parameterized by the variable s,

3) designing a controller for each local system and
4) controlling the system by interpolating or switching

between the m controllers.
A typical application of gain scheduling is flight control, where
the state x of the system contains the position and speed of the
aircraft and the scheduling variable s measures the velocity of
the external wind.

In real cases, a main issue is how to find suitable scheduling
variables. This is normally done based on the knowledge
of the physics of the system and considering the following
alternatives.

• State variables or a subset of them.
• Exogenous variables: these are variables that would be

state variables in an extended system which is not gen-
erally modeled because of its complexity.

• Reference state trajectories: in this case it is implicit the
assumption that the system state is near to the reference
command.
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Once scheduling variables have been chosen, the controller
parameters are designed at a number of operating conditions,
using some suitable design method.

Assume that the family of equilibrium points (xeq, ueq) is
parameterized by the variable s, i.e.

0 = f
(

xeq(s), ueq(s)
)

. (17)

For each value sj , j = 1 , . . . , m, gain scheduling linearizes
the original system about the equilibrium xeq(sj). We obtain
a family of m linearizations, also called frozen configurations,

˙̃x(t) = A(sj)x̃(t) + B(sj)ũ(t), (18)

ỹ = C(sj)x̃(t), (19)

with

A(sj) = G1f

(

xeq(sj), ueq(sj)
)

, (20)

B(sj) = G2f

(

xeq(sj), ueq(sj)
)

, (21)

C(sj) = Gg

(

xeq(sj)
)

, (22)

x̃(t) = x(t) − xeq(sj), (23)

ũ(t) = u(t) − ueq(sj), (24)

ỹ(t) = y(t) − g
(

xeq(sj)
)

. (25)

Once a linearized system is detectable and stabilizable, a
linear controller can be designed by using a variety of linear
design methods. The result is a parameterized family of linear
controllers:

ż(t) = Ā(sj)z(t) + B̄(sj)y(t), (26)

u(t) = C̄(sj)z(t) + D̄(sj)y(t). (27)

Upon operation of the control system, the variable s is
measured and used to infer to which of the m conditions the
system is nearest. Two are the methods of proceeding:

Discontinuous (switching) In this case the domain of s is
divided into a set of regions Rj , j = 1 , . . . , m, each
containing a representative value sj of the scheduling
variable. As a consequence, the control system shifts
between a finite number of controllers indexed by the
respective scheduling value.

Smooth For each value of s the controller matrices are
obtained by interpolating the m local controllers. The
contribution of the jth controller is a function of the
distance between s and sj .

Note that although each controller (26) is designed for a fixed
value of s (frozen design) and is based on a linear time-
invariant approximation to the plant, the resulting controller is
time-varying. This causes some difficulties in terms of stability
analysis.

A. Gain Scheduling and Stability

For each fixed value of the scheduling variable, the designer
can guarantee the desired properties of stability, performance
and robustness of the closed loop system. However, being the
resulting control system time-varying, it does not necessarily
inherit any of the frozen time properties. This means that one
cannot assess a priori the properties of the gain scheduled

design starting from the frozen time design but that a further
analysis is required.

Shamma [46] introduced the formalism of linear parameter-
varying systems (LPV) to study the behavior of gain scheduled
control systems. A linear parameter varying system is defined
as a linear system whose coefficients depend on an exogenous
time-varying parameter θ(t):

ẋ = A
(

θ(t)
)

x(t) + B
(

θ(t)
)

u(t), (28)

y(t) = C
(

θ(t)
)

x(t). (29)

The exogenous parameter θ is unknown a priori; however it
can be measured or estimated upon operation of the system.
This distinguishes LPV from LTV systems where the time
variations are known beforehand.

The evident similarity between (18) and (28) makes of LPV
a useful paradigm for the study of stability gain-scheduled
controller. Gain scheduled controllers fix a set of controllers
for a set of parameters values {θ1, . . . θm} such that for all
frozen values of the parameters, the closed loop has desired
feedback properties. Since the parameters are actually time-
varying, none of these properties need carry over to the overall
closed loop system.

Shamma summarized the conditions which guarantee that
the closed loop retain the feedback properties of the frozen
time design. Suppose that one has carried out the gain sched-
uled design procedure. Then along any particular parameter
vector trajectory, the closed loop unforced dynamics are of
the form

ẋ = Ac(t)x(t), (30)

where Ac represents the closed loop dynamics matrix. Let us
make the following assumption:

Assumption 1: The dynamics matrix Ac : R
+ → R

n×n is
bounded and globally Lipschitz continuous with constant LA,
i.e.

‖Ac(t) − Ac(τ)‖ ≤ LA‖t − τ‖ ∀t, τ ∈ R
+. (31)

Then the following theorem can be stated.
Theorem 3: Consider the linear system of (30) under the

assumption (1). Assume that at each instant: (1) Ac(t) is stable
and (2) there exist µ and λ ≥ 0 such that

‖eAc(τ)t‖ ≤ µe−λ t, ∀t, τ ≥ 0. (32)

Under these conditions, given any η ∈ [0, λ],

LA ≤
(λ − η)2

4µ ln µ
⇒ ‖x(t)‖ ≤ µe−η t‖x0‖ ∀t ≥ 0, x0 ∈ R

n.

(33)
The above theorem states that a time-varying system retains
its frozen-time exponential stability provided that the time-
variations of the dynamics are sufficiently slow.

The reasoning behind the theorem is that a time varying
dynamics stabilized for a set of frozen time instants can be
approximated by a piecewise constant dynamics. On each
piecewise constant interval, the linear system can be decom-
posed in a LTI stable system and a time-varying perturbation.
Along this time interval, the state will decay exponentially
but may experience a certain amount of amplification before
its eventual decay. The final global behavior is related to
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µ µ

|x|

t
−η

τ1 τ2 τ3 τ4

e t
−λe

t

Fig. 4. Gain scheduling: stable closed loop for a stable frozen design at the
instants τi. The sequence of stable dynamics with sufficient decays (dashed
lines) induces a global behavior of state x (solid line) which is bounded by
a stable trajectory (dotted line).

|x|

τ1 τ4 τ5 τ6τ2 t

Fig. 5. Gain scheduling: unstable closed loop for a stable frozen design
at the instants τi. The sequence of stable dynamics with insufficient rate of
decay causes a global unstable behavior (solid line) of the state x.

how the sequence of amplifications/decays are combined.
The system will result exponentially stable only if each LTI
approximations will be long enough to allow sufficient decay
(see Fig. 4 for a stable case and Fig. 5 for an unstable case).
The eventual amplification is related to the parameter µ, called
overshoot. In the special case of µ = 1 none of the frozen-
time systems experience any amplification. It follows that in
this case the time variations can be arbitrarily fast with no
instability occurring.

It is possible to have a sufficient condition for stability
inferred from the worst-case values of µ and λ. Shamma [46]
presented some experimental design where the Lyapunov
method and the Matrix Exponential Method are used to test
the overall stability of the gain scheduled controller.

B. Considerations on Gain Scheduling

The gain scheduling approach was the first approach in
control design literature to address these relevant issues:

• how to extend linear methods to nonlinear control,
• how to control on larger operating regions than the

neighborhood of a single equilibrium,
• how to solve the problem of introducing time variations

in the overall control systems.

However, there are also a number of shortcomings and limi-
tations associated with this approach:

• the designer must know a priori the location of the
equilibrium points,

• the state of the nonlinear system must be close to one of
the equilibrium points.

In the following sections we will see alternative approaches
to the idea of extending linear control techniques to nonlinear
control.

V. FEEDBACK LINEARIZATION

Feedback linearization is an approach to nonlinear control
design which has attracted a great deal of research in recent
years [48], [29]. The main idea behind feedback linearization
is to transform the nonlinear system model into a fully, or
partially, linear model so that linear control techniques can be
applied.

The idea of canceling the nonlinearities and imposing a
desired linear dynamics, can be simply applied to a class of
nonlinear systems described by the so-called companion form
or controllability canonical form represented by

ẋ = f(x) + b(x)u, (34)

where x is the state vector and u is the scalar control input.
The dynamics (34) is linear in terms of the control input u

but nonlinear in the states. Hence, by using the control input

u =
1

b
(v − f), (35)

we can cancel the nonlinearities and obtain a simple in-
put/output relation. When a nonlinear dynamics is not in the
controllability canonical form, one may use algebraic transfor-
mations to first put the dynamics into the controllability form.
Consider, for instance, a single input nonlinear system of the
form

ẋ = f(x, u). (36)

The technique of input-state linearization solves this problem
in two steps. First one finds a state transformation z = w(x)
and an input transformation u = g(x, v) so that the nonlinear
system dynamics is transformed into an equivalent linear time-
invariant dynamics

ż = A z + bv. (37)

Second, one uses standard linear techniques to design v. A
number of remarks should be made on this approach:

• The result, though valid in a large region of the input
space, may not return a global solution. This may be due
to the existence of singularity points.

• The input-state linearization is achieved by a combination
of a state transformation and an input transformation
with state feedback. It should be noted that this is a
linearization by feedback, fundamentally different from
the Jacobian linearization (5) which holds for small range
operations.

• In general feedback linearization relies on the system
model (34) both for the controller design and for the
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computation of z. If there were uncertainty in the model,
this would produce an inaccurate control action.

The feedback design can be extended also to general nonlinear
systems. Consider the system in the state space form:

ẋ = f(x, u), (38)

y = h(x), (39)

and assume that our goal is to make y(t) track a reference
trajectory. The idea of input/output linearization is to find a
direct relation between the system output y and the control
input u. It consists basically in differentiating the output of a
system d times, where d is called the relative degree, in order
to generate an explicit relationship between the output and the
input. Once this relation is established, one of the feedback
methods sketched above can be applied.

A. Feedback Linearization and Stability

The effects of input/output linearization on the system dy-
namics has to be examined carefully. By means of input/output
linearization the dynamics of a nonlinear system is decom-
posed into an external input/output part and an internal, not
observable part. The latter will be called the internal dynamics
because it cannot be seen from the external input/output
relationship. If this dynamics is stable the input/output lin-
earization solves the tracking problem, otherwise the control
design is not effective.

In general, it is very difficult to determine the stability of
the internal dynamics, due to nonlinear, non-autonomous and
coupling effects. So far, global results have been obtained
only by defining proper Lyapunov functions for the internal
dynamics [48].

B. Considerations on Feedback Linearization

Feedback linearization can be used for stabilization and
tracking control problems in SISO and MIMO configurations.
So far, feedback linearization has been successfully applied to
a number of practical nonlinear control problems. However,
the method has a number of important limitations:

• it cannot be used for all nonlinear systems,
• the state has to be measured,
• no robustness is guaranteed in the presence of parameter

uncertainty or unmodeled dynamics.

The approaches discussed so far demand a knowledge of the
analytical form of the system dynamics in order to apply a
linear control strategy. The remaining part of the survey will be
dedicated to learning methods for divide-and-conquer control,
which require no information about the system apart from a
limited amount of input-output observations. The philosophy
of these methods is to identify a nonlinear model of the system
which could be easily and efficiently exploited by a linear
controller.

VI. LOCAL MODULAR CONTROL

The local modular approach to control consists of two step:
first, the identification of a locally-linear representation of

the system dynamics and, second, the synthesis of a control
strategy based on the adoption of locally linear techniques.

The idea of local modular control appeared first in literature
thanks to the research on Fuzzy Control Systems [35].

Fuzzy control was initially proposed as an heuristic-based
design technique [28]. The motivation for a fuzzy design of
controllers is given by the fact that many industrial processes
are typically controlled in one of the following two ways:

• a manual control by an human operator,
• an automatic control supported by a human operator.

In these situations it is useful to model the human control
action in terms of fuzzy if-then rules in order to obtain a
similar or better control system. However, this approach im-
plies that a control algorithm or an a priori expert knowledge
should pre-exist to the fuzzy design. Also, it is admitted in the
literature that an heuristic-based design has a low reliability
in MIMO problems, which represents the largest part of
challenging applications. Finally, the heuristic-based design
lacks systematic and formally verifiable tuning techniques,
and the study of stability can only be done via extensive
simulations.

Our survey will neglect the fuzzy heuristic approach and
will focus instead on data driven modular techniques where
the only information about the plant comes from a set of in-
put/output observations. Local Model Networks is an example
of identification method which combines the local modular
philosophy with learning algorithms. This technique is briefly
introduced in the following section.

A. Local Model Networks

Local Model Networks (LMN) were first introduced by Jo-
hansen and Foss [20] to model complex nonlinear relationships
by generalizing the idea of Basis Function Networks [39]. Let
us consider an unknown input-output mapping f : R

n → R

where φ ∈ Φ ⊂ R
n is the input variable and y ∈ R is the

output. A Local Model Network uses an approximator of the
function f(·) having the form

ŷ(φ) =

m∑

j=1

ρj(φ, ηj)hj(φ, αj), (40)

where the shape of functions ρj(·) and hj(·), the number m

of basis functions and the set of parameters ηj and αj have
to be estimated on the basis of a set of N training data.

The terms ρj(·) are denoted as basis or activation functions
and are constrained to satisfy

m∑

j=1

ρj(φ, ηj) = 1 ∀φ ∈ Φ. (41)

This means that the basis functions form a partition of unity of
the input domain Φ. This ensures that every point in the input
space has equal weight, so that any variation in the output
over the input space is due only to the models hj(·) [31].

The smooth combination provided by the LMN formalism
enables the representation of complex nonlinear mappings on
the basis of simpler modules. See the example in Fig. 6 which
shows the combination in a two dimensional input space of
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Fig. 6. A Local Model Network with m = 3 local models: the nonlinear input/output approximator in (c) is obtained by combining the three local linear
models in (a) according to the three basis functions in (b).
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three local linear models whose validity regions is represented
by Gaussian basis functions.

In general, the local models hj(·, α) in Eq. (40) can be
of any form: linear, nonlinear, physical models or black-box
parametric models. In the case of local linear models

hj(φ, αj) =

n
∑

i=1

ajiφi + bj , (42)

where the vector of parameters of the local model is αj =
[aj1, . . . , ajn, bj ] and φi is the ith term of the vector φ.
Note that this kind of LMN architecture returns one further
information about the input/output phenomenon: the local
linear approximation hlin of the input/output mapping about
a generic point φ

hlin(φ) =

m
∑

j=1

ρj(φ, ηj)

(

n
∑

i=1

ajiφi + bj

)

. (43)

The learning of a LMN from a training dataset requires two
steps: structural identification and parametric identification.
The structural identification step aims to find the optimal num-
ber and shape of the basis functions ρj(·). Once the structure
of the network is defined, the parametric identification searches
for the optimal set of parameters ηj of the basis functions (e.g.
center and width in the Gaussian case) and the optimal set of
parameters αj of the local models (e.g. linear coefficients in
the case of local linear models). For more information on LMN
learning, we refer the reader to [32].

The following sections will discuss how a local modular
representation of the system dynamics can be integrated in
a divide-and-conquer control architecture. In particular, Sec-
tion VI-B, VI-C and VI-D will present three applications of
modular techniques to control design. As we will see, these
architectures differ for the domain on which the partitioning is
made and for the composition method of the local controllers.

B. The Local Controller Technique

The local controller approach is characterized by three steps
(Fig. 7):

1) the plant is modeled by a modular architecture, e.g. a
Local Model Network (40) composed of m local linear
models,

2) a feedback controller is designed for each local model
in order to guarantee local properties of stability and
robustness,

3) a global controller is obtained by composing the m local
controllers according to the weighting functions in (40).

At a first sight the local controller approach appears identical
to the gain scheduling technique, described in Section IV. In
fact, two are the main differences:

1) in the local controller approach the local linear models
are not linearizations about equilibria points but about
generic operating points

2) unlike gain scheduling, the local controller technique
requires no analytical description of the plant.

LOCAL
MODEL

LOCAL
MODEL

LOCAL
MODEL

LOCAL
CONTROLLER

LOCAL
CONTROLLER

LOCAL
CONTROLLER

SYSTEM
NONLINEAR

CONTROLLER

Fig. 7. The local controller approach. From top to bottom: the plant is
modeled by a modular architecture made of m local models, a controller is
designed for each local model, the outputs of the controllers are weighted to
form the global controller.

The local controller approach requires only the existence
of a modular description (40) of the nonlinear autonomous
system (3) to be controlled. The modular description can be
given by the designer or identified from a set of observed data.

We consider a modular architecture made of a set of m local
linear models, where the jth one describes the model dynamics
within the region specified by the j th validity function. The
dynamics of the overall system is then represented by the
following expression:

ẋ =

m
∑

j=1

ρj(x)(Ajx + Bju), (44)

where
• ρj : R

n
→ [0 , 1], j = 1 . . . m, is the validity function of

the jth local region with
m

∑

j=1

ρj(x) = 1; (45)

• ẋ = Ajx + Bju is a linear model describing the system
dynamics in the jth region.

Once the plant is represented in the form (44), the local
controller technique returns a controller architecture which
combines a set of m control rules

u = Kkx, (46)

where Kk is the feedback gain of the linear control law
which stabilizes the linear dynamics in the kth region, k =
1, . . . , m. The overall controller, obtained by aggregating the
m controllers, is given by:

u =

m
∑

k=1

ρk(x)Kkx, (47)
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where ρk : R
n
→ [0, 1 ], k = 1 . . . m, is the validity region

of the kth controller. Replacing (47) in (44), we obtain the
expression for the closed loop system

ẋ =

m
∑

j= 1

m
∑

k= 1

ρj(x)ρk(x)(Aj + BjKk)x (48)

and further, denoting (Aj + BjKk) by Ajk, we can write

ẋ =

m
∑

j= 1

m
∑

k= 1

ρj(x)ρk(x)Ajkx. (49)

This controller architecture was presented as the FLC1 archi-
tecture in [35].

1) Stability of the Local Controller: The dynamics of the
closed loop system is nonlinear due to the nonlinearities
introduced by ρj(x) and ρk(x). However, results from [51]
show that the global stability is independent of the weights
ρj(x) and ρk(x), as stated by the following theorem:

Theorem 4: The equilibrium of a control system (49) is
globally asymptotically stable if there exists a common posi-
tive definite matrix P such that

(Ajk)T P + PAjk < 0. (50)
This theorem establishes a sufficient condition. Therefore the
system (49) may be globally asymptotically stable though it is
not possible to find a common positive definite matrix which
satisfies (50).

An important issue is whether the system (49) may be
stable when all the Ajk are stable matrices. Unfortunately, the
answer is no in general. An example is reported by Tanaka
and Sugeno [51] who present a control system (49) which is
not globally asymptotically stable though all the Ajk matrices
are stable.

For that reason a complex procedure is generally required
to design stable local controller architectures.

2) Design of a Local Controller: The design of a stable
local controller architecture is strictly related to the problem
of finding a set of gains Kk such that a common matrix
P satisfying the theorem 4 exists. Unfortunately, this is a
conservative property and no systematic procedure is provided
in the existing literature. Recently, a number of Lyapunov
methods for the definition of the matrix P , aimed specifically
at local linear controller architectures, have received a lot
of attention. They are based on the use of well-behaved
numerical convex optimization methods to search for Lya-
punov stabilizing functions. These methods focus on Lyapunov
functions having arbitrary structure, as long as the conditions
on positive and negative definiteness are true. In particular, in
fuzzy control it is common to consider the following types of
Lyapunov function:

• quadratic Lyapunov functions,
• piecewise quadratic Lyapunov functions ,
• piecewise affine Lyapunov functions.

An interesting overview of Lyapunov methods for piecewise
models is presented in [22].

C. The Local Gain Scheduler

The local version of the gain scheduling approach was
first proposed in fuzzy control literature by Palm and Re-
hfuess [36]. This local architecture has been also presented
as the FLC2 architecture in [35].

As in the local controller approach, this method linearizes
the original system in m operating points

ẋ = A(xj , uj)(x − xj) + B(xj , uj)(u − uj)

= Aj(x − xj) + Bj(u − uj),

j = 1 , . . . , m (51)

and derives the control laws

u = K(xk, uk)(x−xk)+uk = Kk(x−xk)+uk k = 1 , . . . , m

(52)
that stabilize each local model.

If we assume that the equilibrium point (xe q , ue q ) is in the
neighborhood of the operating points, the system dynamics
can be approximated by

ẋ =

m
∑

j= 1

ρj(xe q )
(

Aj(x − xe q ) + Bj(u − ue q )
)

. (53)

Note that, once fixed a certain xe q , all the ρj return a constant
value and consequently the model (53) is linear.

The resulting control action is then

u =

m
∑

k= 1

ρk(xe q )
(

Kk(x − xe q ) + ue q

)

. (54)

Hence, by replacing (54) in (53) we obtain the equation for
the closed-loop configuration

ẋ =

m
∑

j= 1

m
∑

k= 1

ρj(xe q )ρk(xe q )(Aj + BjKk)(x − xe q ). (55)

By comparing the above equation with Eq. (48) a substantial
difference between the local gain-scheduler approach and the
local controller approach emerges. In local gain-scheduling the
validity functions ρk, k = 1 , . . . , m, measure the “ appropriate-
ness” of the kth control law for controlling the system about
a given equilibrium xe q ; in the local controller approach they
measure the “ appropriateness” of the kth control law for a
given operating condition.

1) Stability and Design of the Local Gain Scheduler Con-
troller: In order to derive the conditions under which (55)
is asymptotically stable, some results about robust stability
have to be introduced. Consider a linear system with linear
perturbations

ẋ = Ax +

m
∑

j= 1

kjδAjx, (56)

where A is a Hurwitz matrix, δAj are constant matrices of
the same dimensions as A, and kj are uncertain parameters
with values in an arbitrary interval around zero. Let P be the
unique solution of the Lyapunov equation

AT P + PA = −2I , (57)
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and let us define the matrices Pj as

Pj =
δAT

j P + PδAj

2
. (58)

Then the following theorem holds
Theorem 5: [53] The linear system (56) is asymptotically

stable if
m∑

j=1

‖kj‖σma x (Pj) < 1, (59)

where σma x is the largest singular value.1

This theorem can be used for a stable design of the local gain
scheduler [35]. First of all, we denote by A the common closed
loop matrix which can be obtained with a proper feedback of
each local Aj . That is

A1 +B1K1 = A2 +B2K2 = · · · = Am +BmKm = A, (60)

where the matrices Kj are designed by a pole assignment
technique [2] which assigns the same set of desired poles to
the m local closed loop systems. By putting

A + δAjk = Aj + BjKk = Ajk (61)

we can easily obtain the matrices Pjk. Since∑m

j=1

∑m

k=1
ρj(xe q ) = 1, the system (55) can be written in

the form

ẋ = A(x−xe q )+

m∑

j=1

m∑

k=1

ρj(xe q )ρk(xe q )δAjk(x−xe q ). (62)

According to Theorem 5 the linear system (62) is asymptoti-
cally stable if

m∑

i=1

m∑

k=1

ρj(xe q )ρk(xe q )σma x (Pjk) < 1. (63)

The above condition holds if the stronger condition
m∑

i=1

m∑

k=1

σma x (Pjk) < 1 (64)

is satisfied. Hence, in order to verify whether the gain matrices
Kj satisfy condition (64) we have to compute the set of
singular values for each Pjk. If condition (64) holds we have
a stable design, otherwise the gain Kj have to be redesigned
over and over until the condition is met.

D. The Local Self-tuning Controller

In the two previous approaches the overall controller is
obtained by synthesizing a local controller for each rule and
then combining their outputs. In this section we discuss an
indirect control approach where the combination is made at
the modeling level and not at the controller level (Fig. 8). We
suppose that the plant is described by a parametric model:

ẋ = f(x(t), u(t), ϑ, t). (65)

An indirect control scheme [2], [34] combines a parameter
estimator, which computes an estimate ϑ̂ of the parameter ϑ

1Refer to [40] for the computation of singular values.
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Fig. 8. The local self-tuning approach. From top to bottom: the plant
is modeled by a modular architecture made of m local models, a local
linearization is obtained by composing the m local models, a feedback
controller is designed to stabilize the local linearization.
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Fig. 9. The self-tuning regulator architecture. The parameters of the controller
are updated by an identification module.

in (65) with a control law u = K(x, ϑ) implemented as a func-
tion of ϑ. In the adaptive version, the estimator generates the
estimate ϑ̂(t) at each time instant by processing the observed
input/output behavior. This estimate is then assumed to be a
specification of the real plant and used to compute the con-
trol law u = K(x, ϑ̂(t)) (certainty equivalence assumption)
(Fig 9). A controller of this type is also called a self-tuning
regulator (STR) to emphasize that the controller automatically
tunes its parameters to obtain the desired properties of the
closed-loop system. In conventional adaptive control theory, to
make the problem analytically tractable, the plant is assumed
to be a linear time-invariant system with unknown parameters.

Local self-tuning control addresses nonlinear configurations
by combining a divide-and-conquer model with conventional
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linear control techniques. The main difference with respect to
conventional adaptive control techniques lies in the parameter
estimation scheme. In the linear self-tuning regulators, identi-
fication is performed by a recursive parameter estimator which
updates the same linear model each time an input/output sam-
ple is observed. In local self-tuning control there is not a global
linear description but at each time-step the system dynamics
is linearized by a modular architecture in the neighborhood of
the current state. It is important to remark that in this case the
linearization is performed also in configurations which are far
from the equilibrium locus.

The modular architecture is made of a set of local models

ẋ = Ajx + Bju + bj j = 1 , . . . , m , (66)

where bj represents the offset term in the validity region ρj .
The dynamics of the overall system is then modeled by

ẋ =

m
∑

j=1

ρj(x)(Ajx + Bju + bj). (67)

Unlike previous approaches, the local self-tuning controller
is not a combination of local feedback gains. Instead, the
model (67) is used to return at each instant a local linearization
of the global dynamics. For instance, suppose that at time t̄

the state is x̄. In a neighborhood of x̄ the system dynamics
can be represented by the linear model

ẋ =

m
∑

j=1

ρj(x̄)(Ajx + Bju + bj). (68)

Once this description is available, a linear control technique,
as minimum variance (MV) or pole placement (PP) [2] can
be used to stabilize the system (68). However, these design
techniques require a model formulation in the form

ẋ = Ax + Bu, (69)

while the local STR approach performs linearizations (68) also
in configurations which are far from the equilibrium locus.
This means that the local STR architecture returns in the
neighborhood of a state x̄ a local description in the form

ẋ = Ax + Bu + b, (70)

where b is an offset term. This requires a slight modification to
the equations of MV and PP controllers. The formulas for MV
and PP controllers which take into account the offset term b in
the case of a discrete-time system, are derived in Appendix A
and B, respectively.

1) Stability of the Local Self-tuning Control: In the local
STR approach a nonlinear plant is parameterized as a linear
system whose parameters change with the current state x̄:

ẋ =

m
∑

j=1

ρj(x̄)Ajx +

m
∑

j=1

ρj(x̄)Bju +

m
∑

j=1

ρj(x̄)bj

= A(x̄)x + B(x̄)u + b(x̄) (71)

This configuration reminds both the linear parameter varying
(LPV) configuration introduced by Shamma and Athans [47]
in their analytical study of gain scheduling controllers, and the
state-dependent models presented by [41].

In our stability analysis of the local STR approach, we
assume that there exists a LPV model which represents in
a sufficiently accurate manner the nonlinear system. Another
important assumption is the stabilizability of the system [18],
i.e. we assume that for each linearized model (71) the hypoth-
esis of complete controllability holds. This is an assumption
usually required in adaptive control theory for deriving proof
of stability for indirect control schemes.

Hence, the closed-loop system may be put into the state-
space form

ẋ = Ac(x̄)x, (72)

which makes easier the analysis of stability. If the regulator is
designed such that the eigenvalues of Ac are stable, then the
system (72) will be asymptotically stable for any fixed value
of x̄ (frozen time stability). However, this is not a sufficient
condition for uniform asymptotic stability of the system. A
sufficient condition for uniform stability, once we know the set
of values assumed by the matrix Ac(x̄), is given in Theorem 3.

In particular, if Ac(x̄) = Ac for all the future values of x̄,
i.e. the closed loop transfer function is kept fixed and stable,
it follows that the controlled system is globally asymptotically
stable.

VII. LAZY LEARNING FOR DIVIDE-AND-CONQUER

CONTROL

The modular techniques presented in the previous section
identify models which are made of several simple modules
covering different parts of the state space. Notwithstanding
their modularity, these techniques produce a functional de-
scription of the system for all the possible operating regimes.
Local modeling techniques, on the contrary, do not aim to
return a complete description of the system but rather to
estimate a reliable prediction and local linearization of the
system once a specific operating point is given. Lazy Learning
(LL) is a local modeling algorithm which has been proposed
and applied by the authors to several practical problems in
control, data analysis and time series prediction [9].

We will first introduce the Lazy Learning algorithm in
Section VII-A. The integration of the algorithm within a
self-tuning regulator control strategy will be presented in
Section VII-B.

A. The Lazy Learning Method

Given two variables φ ∈ R
n and y ∈ R, let us consider

the mapping f : R
n → R, known only through a set of N

examples {(φi, yi)}
N

i=1
obtained as follows:

yi = f(φi) + εi, (73)

where ∀i, εi is a random variable such that E[εi] = 0 and
E[εiεj] = 0 , ∀j 6= i, and such that E[εr

i ] = µr(φi), ∀r ≥ 2,
where µr(·) is the unknown rth moment of the distribution of
εi and is defined as a function of φi.

Given a query point φq , the parameter β
1

of a local first-
degree polynomial approximating f(·) in a neighborhood of
φq , can be obtained solving the local polynomial regression:

N
∑

i=1

{

(yi − φ′

iβ)
2
K

(

D(φi, φq)

h

) }

, (74)
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where, given a metric on the space R
n, D(φi, φq) is the

distance from the query point to the ith example, K(·) is a
weight function, h is the bandwidth, and where the vectors
φi have been obtained by pre-appending a constant value 1
to each vector φi in order to consider a constant term in the
regression.

Once obtained the local first-degree polynomial approxima-
tion β̂, a prediction of yq = f(φq), is finally given by

ŷq = φ′
qβ̂. (75)

By exploiting the linearity in the parameters of the local
approximator, a leave-one-out cross-validation estimation of
the error variance E[(yq − ŷq)

2] can be obtained without any
significant overload. In fact, using the PRESS statistic [33],
it is possible to calculate the leave-one-out error ecv

j = yj −

φ′
jβ̂

−j

, without explicitly identifying the regression parameters

β̂
−j

with the jth case set aside.
If a rectangular weight function K(·) is adopted, the opti-

mization of the parameter h can be conveniently reduced to
the optimization of the number k of neighbors to which a
unitary weight is assigned in the local regression evaluation.
In other words, we reduce the problem of bandwidth selection
to a search in the space of h(k) = D(φ(k), φq), where φ(k)
is the kth nearest neighbor of the query point.

The main advantage deriving from the adoption of an indica-
tor weight function, is that, simply by updating the parameter
β̂(k) of the model identified using the k nearest neighbors,
it is straightforward and inexpensive to obtain β̂(k + 1). The
recursive algorithm described in [6], [11] returns for a given
query point φq , a set of predictions ŷq(k) = φ′

qβ̂(k), together
with a set of associated leave-one-out error vectors ecv (k).

On the basis of this information a local linearization (and
consequently the prediction ŷq of the value of the regression
function) in φq can be obtained in two different ways: the first
is based on the selection of the best approximator according
to a given criterion, while the second returns a prediction as
a combination of more local models.

If the selection paradigm, frequently called winner-takes-
all, is adopted, the most natural way to extract the best
local linearization β̂(k̂) consists in comparing, on the basis
of the classical mean square error criterion, the prediction
obtained for each value of k, given the degree d of the local
approximator.

ŷq = φ′
qβ̂(k̂), with k̂ = a rg m in

k ∈ K
mse

cv (k); (76)

where K is a range, defined by the analyst, from which the
optimal number of neighbors is selected.

A variant of the method consists in adopting the local com-
binations of estimates [52], [37] as an alternative to the winner-
takes-all paradigm. In this case the resulting linearization is
obtained as a weighted average of the best b models, where
b is a parameter of the algorithm. Suppose the predictions
ŷq(k) and the error vectors ecv (k) have been ordered creating
a sequence of integers {ki} so that mse

cv (ki) ≤ mse
cv (kj),

∀i < j. The prediction of yq is given by

ŷd ,q =

b
∑

i= 1

ζi ŷq(ki)

b
∑

i= 1

ζi

, (77)

where the weights are the inverse of the mean square errors:
ζi = 1/mse

cv (ki). The corresponding combination rule ap-
plied to the linear parameters β̂ returns the linearization of
f(·) in φq .

The LL algorithm is made publicly available by the authors
as a MATLAB toolbox [5].2 For more information on theoret-
ical aspects and practical applications of the method, we refer
the reader to [10], [11], [7].

B. The Lazy Learning Self-tuning Control

This section will discuss a divide-and-conquer method,
based on the Lazy Learning technique, for the control design
of nonlinear discrete-time systems in the input/output form.

The reasons for focusing on discrete-time configurations are
essentially two: the growing importance of digital computers
in practical applications and the fact that a discrete-time
configuration makes easier the extension of the Lazy Learning
approach to control design.

For the sake of simplicity, we will restrict to consider single-
input single-output (SISO) discrete-time dynamic systems
whose equations of motion are expressed in the form:

y(t) = f
(

y(t−1), . . . , y(t−ny), u(t−d), . . . , u(t−d−nu),

w(t − 1), . . . , w(t − ne)
)

+ w(t), (78)

where t ∈ N denotes the discrete time, ny, nu and ne are
positive numbers, y(t) is the system output, u(t) the input,
w(t) is a zero-mean disturbance term, d > 0 is the input/output
time delay and f(·) is some nonlinear function. This model is
known as the NARMAX (Nonlinear AutoRegressive Moving
Average with eXternal input) model [25].3 Let us assume we
have no a priori information about the function f(·) except
a training set DN made of N pairs 〈u(t), y(t)〉. Defining the
information vector as

φ(t−1) =
[

y(t−1), . . . , y(t−ny), u(t−d), . . . , u(t−d−nu),

w(t − 1), . . . , w(t − ne)
]

, (80)

the system (78) can be written in the form:

y(t) = f (φ(t − 1)) + w(t). (81)

2http://iridia.ulb.ac.be/∼lazy
3It is demonstrated [25] that models (78) can describe the input/output

behavior of general state-space nonlinear dynamic systems:

x(t + 1 ) = g (x(t), u (t)) + wx(t)

y(t) = h (x(t)) + wy(t),
(79)

where x ∈
n is the state vector, wx ∈

n and wy ∈ are zero-mean
disturbances, and g : n+1

→
n, h : n

→ are some nonlinear
functions.
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1) Acquisition of the vector (83).
2) Linearization of the function f(·) about (83). The

linearization is computed by the Lazy Learning
algorithm.

3) Derivation of the polynomials A, B, C and the
offset b (see Appendix ) from the linearized model.

4) Design of a MVG/PP controller which satisfies the
required properties (stability, accuracy, speed. . . )
of the closed loop behavior.

5) Computation of the control signal.
6) Updating of the database by storing the new

input/output observation.
Repeat these steps at each sampling period.

Fig. 10. The Lazy Learning self-tuning controller algorithm.

We consider a locally linear indirect control scheme where
the Lazy Learning technique is used to return the set of linear
parameters which describe locally the nonlinear plant (81).

In linear control theory the plant is typically modeled in the
input/output parametric form

A(z)y(t) = z−dB(z)u(t) + C(z)w(t), (82)

where the matrices A, B and C are the set of parameters.
The indirect control scheme consists in combining a parameter
estimator, which computes an estimate ϑ̂ of the unknown
plant parameters, with a control law u(t) = K(φ(t), ϑ)
implemented as a function of the real plant parameters. Once
the parameters in (82) have been estimated, conventional linear
control employs methods like the minimum-variance (MV) or
the pole-placement (PP) control techniques [2].

The idea of the LL self-tuning (LL-ST) controller consists
in first linearizing the system dynamics in the neighborhood
of the current operating point, then in computing the linear
control law. The current operating point is represented by the
information vector (80). Note that the selection of neighbors
in the Lazy Learning identification procedure (Section VII-A)
is made considering only the subset vector

φs(t−1 ) =
[

y(t−1 ), . . . , y(t−ny), u(t−2 ), . . . , u(t−nu),

w(t − 1 ), . . . , w(t − ne)
]

, (83)

of the information vector (80). The reason is that u(t − 1 )
cannot be available as it is the expected outcome of the
procedure. Anyway, the local weighted regression is performed
in the space of the complete information vector (80).

Once the linear parameters in Eq. (82) are returned by the
Lazy Learning identification module, a linear control algorithm
is used to implement the controller. The resulting control
algorithm is described in detail in Fig. 10. An experimental
validation of the LL-ST control strategy can be found in [10],
[7], [8]. Other applications of LL to practical control problems
can be found in [4].

C. Lazy Learning Self-tuning Control Analysis

In the Lazy Learning self-tuning regulator, the nonlinear
plant (81) is parameterized as a linear system where the

parameters are changing with the observable state. This means
that the nonlinear model can be written as a linear parameter
varying (LPV) model (71) where the parameters vary with the
state of the system.

In a discrete-time formulation the models can be represented
as follows:

A(φ(t))y(t) = z−dB(φ(t))u(t) + C(φ(t))w(t). (84)

Let us now assume that there exists a LPV model which
represents in a sufficiently accurate manner the nonlinear sys-
tem (81). If we make the hypothesis of complete controllability
and observability, the closed-loop system may be put into the
state-space form

x(t + 1 ) = F
(

φ(t)
)

x(t) + v(t). (85)

This representation allows us to analyze the stability of the
LL-ST controller. If the regulator is designed such that the
eigenvalues of F (φ(t)) are stable, then the system (85) will
be asymptotically stable for any fixed value of φ (frozen
time stability). However, this is not a sufficient condition for
uniform asymptotic stability of the system. If we consider
the set of values assumed by the matrix F (φ(t)) a sufficient
condition for uniform stability [51] is that it exists a common
matrix P > 0 such that:

F (φ(t))T PF (φ(t)) − P < 0 for all t. (86)

With the pole placement technique we can impose the same
stable closed loop transfer function for all t. It follows that
there exists a matrix P that satisfies the equation (86). Then
the following theorem holds

Theorem 6: If
1) the system (81) is completely controllable and

observable;
2) the system (81) can be put in the form (84);
3) the approximation error of the Lazy Learning

identifier is negligible;
then the equilibrium of the nonlinear system (81) controlled
by the LL PP self-tuning controller is globally asymptotically
stable.

D. Considerations on Lazy Learning Controllers

Lazy Learning is an example of supervised techniques
which allows the reuse of a number of results and techniques
of linear control in a nonlinear setting. Since, as showed in
this paper, this is not a prerogative of the LL approach it
is interesting to present a comparative analysis of the Lazy
Learning approach with the other data driven methods outlined
in the paper.

Lazy Learning vs. linear adaptive control: Conventional
adaptive control is based on a recursive
identification procedure which updates on-line
a linear approximation to the plant on the basis
of upcoming observations. In order to cope both
with nonlinear and time-varying configurations
a forgetting factor, which weights more the
latest observations, is introduced in the recursive
computation [49].
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y(t)

u(t-2)

Fig. 11. Recursive Least-Squares with forgetting factor (dotted) vs. Lazy
Learning (solid) identification of the model y(t) = f(u(t − 2 )) in the
neighborhood of the configuration 6. The figure compares the linearizations
returned by the two models when the input/output samples 1 to 5 have
been collected (the sequence of numbers represents the temporal sequence
of the states in the state space). While the RLS is adversely affected by the
interference between the previous states and the actual one, the Lazy Learning
algorithm makes a better use of the past observations.

Unlike conventional adaptive control, the Lazy
Learning approach treats separately nonlinear and
time-varying configurations.
In nonlinear tasks, LL fits a local linear model
by using the samples which are the most repre-
sentative ones of the current operating point. This
approach returns different local models for different
operating regimes and avoids the problem of data
interference [19] [44] — a.k.a. stability-plasticity
dilemma [14]. Consider, as illustrative example, the
simple nonlinear dynamics y(t) = f(u(t − 2))
of which we plot six input/output observations in
Fig. 11. Let the numbers represent the temporal
order with which we observed the samples. If the
system is identified with a forgetting factor recursive
approach, when the entry no. 6 is encountered, the
linear model (dotted line) has lost memory of the
dynamics existing in the neighborhood of the points
1 and 2. As a result, the accuracy of the RLS
approximation (dotted line) in 6 is poor due to its
limited tracking speed. On the other hand, the Lazy
Learning approach is not affected by any interference
phenomenon (from data 4 and 5) and returns a better
local approximation (solid line).
As far as nonstationarity is concerned, the LL tech-
nique deals with time-varying configurations with
minor changes. It is sufficient to extend the input
domain by adding the current time variable t to the
set of input features. Once a linearization is required,
the nearest samples in space and time are used to fit
the local model.

Lazy Learning vs. modular control: The two approaches
share the common idea of decomposing a difficult
problem into simpler local problems. The main dif-
ferences concern the model identification procedure.
Modular methods (Section VI) return a piecewise

description which covers the whole system operating
domain, whereas local modeling techniques focus
exclusively on the current operating point. Modular
techniques are more time consuming in identification
but faster in prediction. However when new data
are observed, the updating of a modular architecture
requires the repetition of the whole modeling process
from scratch. On this matter Lazy Learning takes
an advantage from the absence of a global model:
once a new input/output example is observed, it is
sufficient to update the database which stores the set
of input/output pairs.

VIII. CONCLUDING REMARKS

This paper surveyed a set of control design techniques
which share the same idea of decomposing a nonlinear com-
plex problem into a set of simpler linear problems. However,
notwithstanding the common underlying principle, divide-and-
conquer control techniques can still differentiate for a number
of reasons:

Analytical assumptions: Some methods, like linearization,
gain scheduling and feedback linearization, require
an analytical description of the system, while others,
like modular control and lazy learning, are based on
parametric models identified from data.

Locus of linearization: On this matter, the main distinction
is between methods that linearize in the neighbor-
hood of equilibrium points (e.g. gain scheduling)
and methods that linearize off equilibria (e.g. local
controller).

Range of validity of local representations: In linearization
there is an intuitive notion of proximity to the
equilibrium point, in gain scheduling the notion is
extended to consider a set of equilibrium points, in
modular architecture previous knowledge or iden-
tification from data determine the local regions of
validity.

How the local controllers are combined: We range from
discontinuous switching in gain scheduling, compo-
sition of controllers in local controller architecture,
composition of local models in local self-tuning
control to the local linearization of Lazy Learning.

Adaptation of local models:While analytical methods do
not take into consideration the availability of in-
put/output observations, the performance of data
driven techniques is strictly related to the capacity
of updating the local descriptions once new data are
collected.

Table 12 can be used as a concise summary of the techniques
illustrated in the survey according to the above mentioned
criteria.
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Method Analytical Off-equilibrium Combination Adaptation
Gain scheduling YES NO switching/smooth NO
Feedback lin. YES NO NO NO
Local controller NO YES at control level difficult
Local self-tuning NO YES at model level difficult
Lazy Learning NO YES local linearization easy

Fig. 12. Taxonomy of divide-and-conquer methods for nonlinear control
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APPENDIX

Let f : R
n → R

r be a function which maps vectors in R
n

to values in R
r. In terms of individual components,

f(x) =





f1(x1, . . . , xn)
. . .

fr(x1, . . . , xn)



 (87)

where the xi are scalar components of the R
n vector x, and

the fi are scalar valued functions of R
n. The Jacobian matrix

of f is denoted by Gf and is defined as the [r × n] matrix of
partial derivatives

Gf =





∂ f1

∂ x 1

. . . ∂ f1

∂ x n

. . . . . . . . . . . . . . .
∂ fr

∂ x 1

. . . ∂ fr

∂ x n



 (88)

In case f is continuously differentiable at x0, then the
Jacobian matrix can be used to approximate f . A multivariable
Taylor series expansion takes the form

f(x) = f(x0) + Gf (x0)(x − x0) + ρ(x) (89)

where the remainder, ρ(x), represents higher-order terms
which satisfy

lim
h→0

|ρ(x0 + h)|

|h|
= 0 (90)

Now let f : R
n × R

m → R
r be a function which maps a

pair of vectors in R
n and R

m, respectively, to values in R
p.

The notations G1f and G2f denote the Jacobian matrices with
respect to the first variable and second variables, respectively.
Thus, if

f(x, u) =





f1(x1, . . . , xn, u1, . . . um)
. . .

fr(x1, . . . , xn, u1, . . . um)



 (91)

then G1f denotes the [r × n] matrix

G1f =





∂ f1

∂ x 1

. . . ∂ f1

∂ x n

. . . . . . . . . . . . . . .
∂ fr

∂ x 1

. . . ∂ fr

∂ x n



 (92)

and Gf2 denotes the [r × n] matrix

G1f =





∂ f1

∂ u 1

. . . ∂ f1

∂ u m

. . . . . . . . . . . . . . .
∂ fr

∂ u 1

. . . ∂ fr

∂ u m



 (93)

The minimum variance (MV) control algorithm was first
formulated in [1]. Since then, the MV technique has had many
practical applications and significant theoretical developments.
Let us consider a linear discrete-time process (82) and suppose
we want to regulate it to yre f = 0 . The MV control technique
seeks the control law which minimizes the variance of the
error. However, the MV controlled closed loop system is stable
only if B has all of its roots inside the unit circle (minimum
phase). Therefore, more complex formulations are needed in
the case of a tracking problem or in the case of non minimum-
phase systems. This is the case of Generalized minimum vari-
ance (GMV) which selects properly the controller parameters
in order to make the closed loop system asymptotically stable.

Pole placement (PP) design is an alternative technique to
deal with non minimum-phase configurations. The procedure
requires first to choose the desired closed loop pole positions
and then to calculate the appropriate controller.

Both these design techniques have been developed to deal
with a linear model of the system in the form (82). When the
linearization of the nonlinear plant is around configurations
far from the equilibrium locus, the linear descriptions takes
the form

A(z)y(t) = z−dB(z)u(t) + C(z)w(t) + b (94)

where the offset term b is nonzero. Hence, a proper modifi-
cation of the GMV and PP control formulas is required. The
derivation of the off-equilibrium control laws is given in the
following section.

A. Generalized Minimum Variance Design with an Offset Term

Clarke and Gawthrop [15] developed the Generalized
Minimum-Variance Controller (GMVC) by introducing the
reference signal and the control variable into the performance
index

J = E

[

(

P (z)y(t + d) + Q(z)u(t) − yre f(t)
)2

]

, (95)

where P (z) = PN (z)
PD(z) and Q(z) = QN (z)

QD(z) are the polynomial
terms which weight the contribution of the output and the
input, respectively. Suppose that data are generated according
to model (94). Multiplying both sides of (94) by P we obtain

PN (z)

PD(z)
y(t) =

PN (z)

PD(z)

(

B(z)

A(z)
u(t − d) +

b

A(z)
+

C

A(z)
w(t)

)

.

(96)
By setting ỹ = Py, ỹre f = yre f − Qu, Ã = PDA, B̃ = PNB,
C̃ = PNC and b̃ = PNb:

Ã(z)ỹ(t) = z−dB̃(z)u(t) + C̃w(t) + b̃. (97)
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Fig. 13. The MV self-tuning architecture with an offset term. Note the
presence of the additional term bL(z) due to the offset b 6= 0 .

Let the polynomial W (z) and F̃ (z) be the solution of the
equation:

C̃(z) = Ã(z)W (z) + z−dF̃ (z). (98)

commonly known as the Diophantine equation [2]. Multiply-
ing both sides of (97) by zdW (z) gives:

Ã(z)W (z)ỹ(t + d) = B̃(z)W (z)u(t) + C̃w (t + d) + b̃W (z).
(99)

From (98) we have:

C̃(z)ỹ(t+d) = B̃W (z)u(t)+C̃w (t+d)+ b̃W (z)+F̃ (z)ỹ(t).
(100)

The control law that minimizes the cost (95) is then

C̃(z)

(

yref −

QN

QD

u(t)

)

= B̃W (z)u(t)+ b̃W (z)+ F̃ (z)ỹ(t),

(101)
that is equivalent to

PD(z)QD(z)C(z)yref −QN (z)PD(z)C(z)u(t) =

QD(z)F̃ (z)y(t) + QD(z)PD(z)B(z)W (z)u(t)

+QD(z)PD(z)bW (z) (102)

in the plant polynomials. The control law is then

u(t) =
H(z)yref − F (z)y(t)− bL(z)

G(z)
(103)

with G = QNPDC + QDPDBW , L = QDPDW and
H = PDQDC, F = QDF̃ . The control system architecture
is presented in Fig. 13. The result for the basic minimum
variance controller can be obtained by setting PN = PD =
QD = 1 and QN = 0 .

B. Pole Placement Design with an Offset Term

In the pole-placement formulation the designer fixes the
desired closed-loop function by:

Hm(z) =
Bm(z)

Am(z)
(104)

The PP regulator is characterized by one output u and two
inputs: the reference signal yref and the measured output y. A
general structure for the regulator is typically represented by

u(t) =
T (q)

R(q)
yref(t)−

S(q)

R(q)
y(t)−G(q) (105)

where R, T , G and S are polynomials in the forward-shift
operator q. The input/output relationship for the closed-loop
system is obtained by eliminating u between Equations (94)
and (104). Hence:

y =
BdT

AR + BdS
yref +

R(b−GBd)

AR + BdS
+

CR

AR + BdS
w . (106)

with Bd = z−dB. Requiring that this input/output relation be
equivalent to (104) gives

BdT

AR + BS
=

Bm

Am

, (107)

b = GBd. (108)

The pole-placement design problem with an offset term is
then equivalent to the conventional one, once the additional
requirement (108) is satisfied.
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