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Abstract

The composition of simple local models for approximating complex nonlinear mappings is a common practice in recent
modeling and control literature. This paper presents a comparative analysis of two di,erent local approaches: the neuro-fuzzy
inference system and the lazy learning approach. Neuro-fuzzy is a hybrid representation which combines the linguistic
description typical of fuzzy inference systems, with learning procedures inspired by neural networks. Lazy learning is
a memory-based technique that uses a query-based approach to select the best local model con0guration by assessing
and comparing di,erent alternatives in cross-validation. In this paper, the two approaches are compared both as learning
algorithms, and as identi0cation modules of an adaptive control system. We show that lazy learning is able to provide
better modeling accuracy and higher control performance at the cost of a reduced readability of the resulting approximator.
Illustrative examples of identi0cation and control of a nonlinear system starting from simulated data are given. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The problem of modeling a process from observed
data has been the object of several disciplines from
nonlinear regression to machine learning and system
identi0cation. In the literature dealing with this prob-
lem, two main opposing paradigms have emerged: the
global versus the local one.
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Global models have two main properties. First, they
cover the whole set of operating conditions of the
system underlying the available data. In general, this
makes sense when it is reasonable to believe that the
system is driven by a physical-like law. However, in
many engineering problems, dealing in a global way
with real processes requires complicated model repre-
sentations. Second, global models solve the problem
of learning an input–output mapping as a problem of
function estimation: from a given set of parametric
functions f(x; �) with �∈�, the one which best ap-
proximates the unknown data distribution is selected.
Examples of functional estimators are linear mod-
els, nonlinear statistical regressions, splines [21] and
neural networks [42].
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The local paradigm originates from the idea of re-
laxing one or both of the global modeling features.
As a 0rst step, the global description may be re-

placed by a modular architecture where the modules
are simple models which focus on di,erent part of
the input space. This is the idea of operating regimes
which assumes a partitioning of the operating range
of the system in order to solve modeling and con-
trol problems [32]. Fuzzy inference systems [48], ra-
dial basis functions [36], CART [23] and hierarchical
mixtures of experts [34], are well-known examples of
this approach. It is important to remark that, although
these architectures are characterized by an augmented
readability, they still are a particular type of functional
approximators.
Memory-based methods [6] aim to solve the learn-

ing problem relaxing also the second feature of global
modeling. Given that the problem of functional esti-
mation is hard to solve in a generic setting, they focus
on approximating the function only in the neighbor-
hood of the point to be predicted. In global modeling,
a relatively simple problem (estimation of the func-
tion value) is solved by 0rst solving a much more
diGcult intermediate problem (a function estimation).
Memory-based learning, on the other hand, turns out
to be a single-step approach where the learning prob-
lem is seen as a value estimation rather than a func-
tion estimation problem. To this end, memory-based
methods require the storage of the dataset in opposi-
tion to functional methods which discard the data after
training. Memory-based techniques are an old idea in
classi0cation [26], regression [25], and time-series
prediction [29]. The idea of memory-based approxi-
mators as alternative to global models originated in
non-parametric statistics [28,11] to be later rediscov-
ered and developed in the machine learning 0elds
[1,22].
This paper will focus on neuro-fuzzy inference

systems and lazy learning as prototypes of these
di,erent ideas of local modeling. The aim is to pro-
vide the reader with a comparison between the two
approaches in modeling and control tasks. As far as
modeling is concerned, we will describe the respective
learning algorithms by giving a particular attention to
the model selection procedures and to the validation
methods.
Neuro-fuzzy systems [24,31,13] are examples of

hybrid modeling. The basic idea underlying these

models is to reconcile a dichotomy emerged in lit-
erature between di,erent approaches to the imple-
mentation of intelligent systems. On the one hand,
approaches like neural networks renounce readability
for performance. On the other, knowledge-based sys-
tems, like fuzzy systems, have the aim of harmonizing
the continuous nature of reality with the symbolic
nature of human reasoning. Hybrid approaches pro-
vide a third way: here the knowledge of the human
expert is used to improve not only the readability of
the models but also the performance of data-driven
learning methods. As an example, we will propose
our neuro-fuzzy technique which integrates a model
structure based on fuzzy production rules and a tuning
procedure inspired by neural networks.
The term lazy learning [2] designates the whole set

of memory-based techniques that defer processing of
the dataset until they receive an explicit request for
information (e.g. prediction or local modeling). There
has been recently a new impetus to the adoption of
these techniques for modeling [7,45] and control prob-
lem [43,8]. In classical memory-based modeling, an
amount of options is tuned by the data analyst accord-
ing to heuristic criteria and a priori assumptions. Here,
we propose a lazy learning technique whose main fea-
ture is the adoption of an automatic statistical proce-
dure to select the local approximator. In particular, we
use the PRESS statistic [39] which is a simple, well-
founded and economical way to perform leave-one-
out cross-validation and to assess the performance in
generalization of local linear models. The algorithm
that we propose is an automatic selection procedure
which searches for the optimal model con0guration,
by returning for each candidate model its parame-
ters and a statistical description of its generalization
properties.
The contribution of the paper in the control do-

main is a comparison of the two approaches as alter-
native methods to extend linear control techniques to
nonlinear discrete-time control problems. The idea of
employing linear techniques in a nonlinear setting is
not new in control literature but has recently gained
a new popularity owing to methods for combining
multiple estimators and controllers in di,erent oper-
ating regimes of the system [44,38]. In particular, we
will see a self-tuning regulator (STR) architecture [4]
where discrete-time conventional control is combined
with local model identi0cation. This control system
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can be thought of as composed of two loops. The in-
ner one consists of the process and a feedback regu-
lator. The parameters of the regulator are adjusted by
the outer loop, represented by a neuro-fuzzy identi0er
or by a lazy learning estimator.
Our experimental results in identi0cation and in

control, show that the lazy learning approach outper-
forms both the neuro-fuzzy method and a conven-
tional linear self-tuning regulator. Moreover, we show
that lazy learning takes further advantage from its
memory-based nature which makes it easily adaptable
to changing external environments. In fact, when new
data samples are available, no model re-training is re-
quired but a simple update of the existing dataset is
suGcient.
The remainder of the paper is organized as fol-

lows. In Section 2 we will introduce the neuro-fuzzy
architecture. In Section 3 we will introduce the lazy
modeling technique based on a model selection pro-
cedure. Details on the control system implementation
are given in Section 4. A comparison between the two
algorithms as identi0cation modules for local control
can be found in Section 4.1. In Section 5 simulation
examples of identi0cation and of control are given.
Finally, in Section 6 a comparison between the two
approaches in terms of readability versus accuracy is
provided.

2. Neuro-fuzzy as a multi model description

Takagi and Sugeno [48] introduced the fuzzy rule-
based system for nonlinear modeling of a generic
input–output mapping f :�m→�. A Takagi–Sugeno
(TS) fuzzy inference system is a set of r rules




If x1 is A11 and x2 is A
1
2 : : : and xm is A

1
m

then y1 =f1(x1; x2; : : : ; xm);
: : :

If x1 is Ar1 and x2 is A
r
2 : : : and xm is A

r
m

then yr =fr(x1; x2; : : : ; xm):

(1)

The 0rst part (antecedent) of each rule is de0ned as a
fuzzy AND proposition where Aij is a fuzzy set on the
jth premise variable de0ned by the membership func-
tion 
ij :�m→ [0; 1]. The second part (consequent) is
a crisp function fi of the input vector [x1; x2; : : : ; xm].

By means of the fuzzy sets Aij, the input domain of
the function f is softly partitioned in regions where
the mapping is locally approximated by the models
fi. The TS inference system uses the weighted mean
criterion to recombine all the local representations in
a global approximator:

ŷ=
∑r
i=1 


iyi∑

i
; (2)

where 
i is the degree of ful0llment of the ith rule.
An interesting special case is provided by the linear

TS fuzzy inference system where the consequents are
linear models fi=

∑m
j=1 a

i
jxj + b

i [47]. In this case
the TS system can be used to return a local linear ap-
proximation about a generic point of the input domain.
Consider for example an input Mx= [Mx1; Mx2; : : : ; Mxm]. The
TS rule combination returns

flin(x)=

∑r
i=1 


i( Mx) (
∑m
j=1 a

i
jxj + b

i)∑

i( Mx)

(3)

as the linear approximation about Mx of the function
f(x).
In a conventional fuzzy approach, the membership

functions and the consequent models are chosen by the
model designer according to his a priori knowledge.
If this knowledge is not available but a set of input–
output data is observed from the process modeled by
f, the elements of a fuzzy system can be put into a
parametric form and the parameters can be tuned by a
learning procedure. In this case the fuzzy system turns
into a neuro-fuzzy approximator [13]. Neuro-fuzzy
systems are a powerful trade o, in terms of readability
and eGciency between a human-like representation of
the model and a learning method [16]. While learning
methods adapt the parameters of the inference system
to the observed data, the fuzzy architecture makes eas-
ier the task of integrating the available expert knowl-
edge in the learning system. In the next section we
will see in detail our neuro-fuzzy learning procedure.

2.1. Structural and parametric learning in
neuro-fuzzy inference systems

In a neuro-fuzzy system, two types of tuning are
required, namely structural and parametric tuning.
Structural tuning aims to 0nd a suitable number of

rules and a proper partition of the input space. Once
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Fig. 1. Flow-chart of the neuro-fuzzy learning procedure.

available a satisfactory structure, the parametric tun-
ing searches for the optimal membership functions
together with the optimal parameters of the consequent
models. There may be a lot of structure=parameter
combinations which make the fuzzy model behave in
a satisfactory way. The problem can be formulated
as that of 0nding the structure complexity which will
give the best performance in generalization [50]. In
our approach, we choose the number of rules as the
measure of complexity to be properly tuned on the
basis of available data. We adopt an incremental ap-
proach where di,erent architectures having di,erent
complexity (i.e. number of rules) are 0rst assessed in
cross-validation and then compared in order to select
the best one. The whole learning procedure is repre-
sented in the Now chart in Fig. 1.
The initialization of the architecture is provided by

a hyper-ellipsoidal fuzzy clustering procedure inspired
by Babuska and Verbruggen [10]. This procedure clus-
ters the data in the input–output domain obtaining a set

of hyper-ellipsoids which are a preliminary rough rep-
resentation of the input=output mapping. Methods for
initializing the parameters of a fuzzy inference system
from the outcome of the fuzzy clustering procedure
are described in [9]. Here, we use the axes of the el-
lipsoids (eigenvectors of the scatter matrix) to initial-
ize the parameters of the consequent functions fi, we
project the cluster centers on the input domain to ini-
tialize the centers of the antecedents and we adopt the
scatter matrix to compute the width of the member-
ship functions. An example of fuzzy clustering in the
case of a single-input–single-output function modeled
by a fuzzy inference system with gaussian antecedents
is represented in Fig. 2.
Once the initialization is done, the learning proce-

dure begins. Two optimization loops are nested: the
parametric and the structural one. The parametric loop
(the inner one) searches for the best set of param-
eters by minimizing a sum-of-squares cost function
JM which depends exclusively on the training set. In
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Fig. 2. The hyper-ellipsoidal clustering initialization procedure.

the case of linear TS models this minimization pro-
cedure can be decomposed into a least-squares
problem to estimate the linear parameters of the con-
sequent models fi [31] and a nonlinear minimization
(Levenberg–Marquardt) to 0nd the parameters of the
membership functions Aij [13].
The structural identi0cation loop (the outer one)

searches for the best structure, in terms of optimal
number of rules, by increasing gradually the num-
ber of local models. The di,erent structures are
assessed and compared according to their performance
JCV in K-fold cross-validation [46]. This procedure
uses a high proportion of the available data to train the
current model structure and gives a reliable estimate
of the performance in generalization. Unfortunately,
the training process has to be repeated as many times
as the number K of partitions of the training set,
making the whole learning process computationally
expensive.
The model with the best cross-validation perfor-

mance is then selected to represent the input–output
mapping and consequently trained on the whole
dataset.

3. Lazy learning modeling

Lazy learning estimates the value of the unknown
function by focusing on the region surrounding the
point where the estimation itself is required.
Let us consider as unknown mapping f :�m→�

of which we are given a set of N samples {(’1; y1);

(’2; y2); : : : ; (’N ; yN )}. These examples can be col-
lected in a matrix � of dimensionality [N × m]; and
in a vector y of dimensionality [N × 1].
Given a speci0c query point ’q, the prediction of

the value yq=f(’q) is computed as follows. First,
for each sample (’i ; yi) a weight wi is computed as a
function of the distance d(’i ;’q) from the query point
’q to the point ’i. Each row of � and y is then mul-
tiplied by the corresponding weight creating the vari-
ables Z =W� and C=Wy, withW diagonal matrix
having diagonal elements Wii=wi. Finally, a locally
weighted regression model (LWR) is 0tted solving
the equation (ZTZ)�=ZTC and the prediction of the
value f(’q) is obtained evaluating such a model in
the query point:

ŷq=’
T
q (Z

TZ)−1ZTC: (4)

Typically, the data analyst who adopts a local
regression approach, has to take a set of decisions re-
lated to the model (e.g. the number of neighbors, the
weight function, the parametric family, the 0tting cri-
terion to estimate the parameters). Our lazy learning
method extends the classical approach with a method
that automatically selects the adequate con0guration.
To this aim, we import tools and techniques from

the 0eld of linear statistical analysis. The most impor-
tant of these tools is the PRESS statistic [39], which
is a simple, well-founded and economical way to per-
form leave-one-out cross validation [27] and therefore
to assess the performance in generalization of local
linear models. This statistic returns the leave-one-out
cross-validation error of a linear model at the same
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computational cost of the linear regression. As a con-
sequence, the performance of a local memory-based
model can be easily assessed with no additional com-
putational burden. It is worth noting that this also
means that lazy learning can return, along with each
predicted value, an estimation of its standard error.
This property is more relevant once compared with the
intrinsic diGculty of extracting the same information
from a generic functional approximator.
In our approach, alternative con0gurations are

assessed and compared in order to select the best one.
The same selection strategy is used to select the local
weighting function [15], as well as various structural
aspects like the set of features and the degree of
the local polynomial approximator [12]. The general
ideas of the approach can be summarized as follows.
1. The task of learning an input–output mapping is

decomposed into a series of local linear approxi-
mations, each tailored on a speci0c query point.

2. Each local approximation is treated as a model se-
lection problem in the space of alternative model
con0gurations.

3. The generalization ability of each candidate model
is assessed through cross-validation which is eG-
ciently computed using the PRESS statistic.
In previous works, we proposed two algorithms

based on the adoption of recursive techniques for the
linear parameter estimation [15] and on a paired per-
mutation test for the comparison of the performances
of di,erent candidate models [17].
The method has been applied also to problems of

multivariate data analysis [20] and time-series predic-
tion [19].

4. Local control design

We will 0rst de0ne some notations for the single-
input–single-output (SISO) case. Consider a class of
discrete-time dynamic systems whose equations of
motion can be expressed in the form

y(k) = f(y(k − 1); : : : ; y(k − ny); u(k − d); : : : ;
u(k − d− nu); e(k − 1); : : : ; e(k − ne))
+ e(k); (5)

where k denotes the time, y(k) is the system output,
u(k) the input, e(k) is a zero-mean disturbance term,

d¿0 is the relative degree and f(·) is some nonlinear
function.
This model is known as the NARMAX model [35].

Let us assume we have no physical description of the
function f(·) but a set of pairs [u(k); y(k)] is avail-
able. De0ning the information vector as

’(k − 1) = [y(k − 1); : : : ; y(k − ny); u(k − d); : : : ;
u(k − d− nu); e(k − 1); : : : ; e(k − ne)];

(6)

the system (5) can be written in the form

y(k)=f(’(k − 1)) + e(k): (7)

4.1. Neuro-fuzzy and lazy learning for control:
a comparative analysis

Although nonlinearity characterizes most real con-
trol problems, methods for analysis and control design
are considerably more powerful and theoretically bet-
ter founded for linear systems than for nonlinear ones.
In the following, we provide a comparison between
the neuro-fuzzy and the lazy approach as two ways of
extending linear techniques to nonlinear problems.
Neuro-fuzzy: A neuro-fuzzy architecture is a par-

ticular example of local model network [32,33]. The
idea of local model network extends the concept of
operating point by introducing the notion of operat-
ing regime. An operating regime is a set of operating
points where the system behavior can be described ap-
proximately with a simple model. A validity region,
and a local description of the system behavior are as-
sociated to each operating regime.
In the neuro-fuzzy formalism the validity region of

a local model fi is represented by the corresponding
membership function (1).
Two are the most common approaches in neuro-

fuzzy control systems [37]: (i) synthesize a controller
for each local model fi and then combine the con-
trol actions with a weighted sum, (ii) interpret the
linear TS architecture as a time-varying linear model
(Eq. (3)) which returns a linear approximation to
the system. The linear approximation is then used to
derive the linear controller.
In this paper we will consider only this second for-

mulation, which allows a more direct comparison with
the lazy approach.
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Lazy learning: This approach shares with the neuro-
fuzzy approach the idea of decomposing a diGcult
problem in simpler local problems. Furthermore, both
the approaches can return a local linear description of
the process (see Eqs. (4) and (3)).
The main di,erence concerns the model identi0ca-

tion procedure. Neuro-fuzzy aims to estimate a global
description which covers the whole system operat-
ing domain, whereas memory-based techniques focus
simply on the current operating point. Neuro-fuzzy is
more time-consuming in the identi0cation phase but
it is faster in prediction. However, when a new piece
of data is observed, model update may require to per-
form the whole neuro-fuzzy modeling process from
scratch. On this matter, lazy learning takes an ad-
vantage from the absence of a functional approxima-
tor: once a new input–output example is observed,
it is enough to update the dataset which stores the
input–output pairs. Lazy learning is, therefore, intrin-
sically adaptive while neuro-fuzzy requires proper on-
line procedures to deal with sequential problems.
In the following section we will introduce an exam-

ple of local indirect controller where both approaches
can be employed to implement the identi0cation mod-
ule. This will allow an experimental comparison both
on identi0cation and on control simulations.

4.2. The local self-tuning controller

We propose a hybrid architecture for the indirect
control of nonlinear discrete-time plants from their
observed input–output behavior. An indirect control
scheme [5,40] combines an identi0cation module
which computes an estimate #̂ of the unknown pa-
rameters #, with a control law u(k) = K(’(k);#)
implemented as a function of the plant parameters. In
the adaptive version, the estimator generates the esti-
mate #̂ at each sampling period k by processing the
observed input–output behavior. This estimate is then
assumed to be a speci0cation of the real plant and
used to compute the control law u(k) = K(’(k); #̂)
(certainty equivalence paradigm).
Our approach adopts the local learning identi0ca-

tion procedures described in Sections 2 and 3 to ap-
ply conventional linear control techniques to nonlinear
problems. We propose a local version of the conven-
tional self-tuning regulator (STR) architecture [4]. In
STR, identi0cation is performed by a recursive least-

squares estimator which updates a linear model each
time a new input–output sample is observed. In our
approach there is no global linear model description
but at each time-step the system dynamics is linearized
in the neighborhood of the operating regime. The lin-
earization returns an input–output description of the
system dynamics in the form

A(z)y(k) = z−dB(z)u(k) + C(z)e(k) + b; (8)

where A, B, and C are polynomials in the forward
shift operator z and b is an o,set term that takes into
account con0gurations which are far from the equilib-
rium locus [18].
Once the approximation (8) is available, a standard

technique like the minimum-variance (MV) method
[3] can be used to design the controller. However,
such a controller is stable only if the plant is minimum
phase, which means that B has at least one of its roots
outside the unit circle.
Pole placement (PP) design [5] is an alternative

technique to deal with non-minimum-phase con0gu-
rations. The procedure requires 0rst to choose the de-
sired closed-loop pole positions and then to calculate
the appropriate controller.
The proposed control algorithm is described in de-

tail in Fig. 3. Note that with the term local model we
mean the identi0cation module (neuro-fuzzy or lazy)
which returns a local approximation to the system
dynamics.

4.2.1. Local self-tuning control analysis
In this section we present a stability analysis of the

local self-tuning control architecture. In the local self-
tuning regulator, the nonlinear plant (7) is parameter-
ized as a linear system where parameters are changing
with the observable state. This means that the non-
linear model can be written as a linear model where
parameters vary with the state of the system. This
con0guration reminds the linear parameter varying
(LPV) con0guration introduced by Shamma and
Athans [44] in their analysis of gain scheduling con-
trollers, or the state-dependent models presented by
Priestley [41]. These models can be represented as
follows:

A(’(k))y(k) = z−dB(’(k))u(k) + C(’(k))e(k):

(9)
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Fig. 3. The local self-tuning controller algorithm.

Let us now assume that there exists a LPV model
which represents in a suGciently accurate manner the
nonlinear system (7). If we make the hypothesis of
complete controllability and observability, the closed-
loop system may be put into the state-space form

x(k + 1) = F(’(k))x(k) + C(k) (10)

This representation allows us to analyze the stability
of our controller. If the regulator is designed such
that the eigenvalues of F(’(k)) are stable, then the
system (10) will be asymptotically stable for any 0xed
value of ’ (frozen time stability). However, this is
not a suGcient condition for the uniform asymptotic
stability of the system. If we consider the set of values
assumed by the matrix F(’(k)), a suGcient condition
for uniform stability [49] is that it exists a common
matrix P ¿ 0 such that:

F(’(k))TPF(’(k))− P ¡ 0 for all k: (11)

With the pole placement technique we can impose the
same stable closed loop transfer function for all k. It
follows that there exists a matrix P that satis0es
Eq. (11). Then, under the following assumptions:
• the system is completely controllable and
observable,

• the system (7) can be put in the form (9),
• the approximation error of the local model identi0er
is negligible,

the equilibrium of the nonlinear system (7), controlled
by the local model PP self-tuning controller, is glob-
ally asymptotically stable.

5. Simulation studies

In this experimental study we will consider a
nonlinear SISO system described by the di,erence
equation

y(k + 1) =
y(k)y(k−1)y(k−2)(y(k−2)− 1)u(k−1) + u(k)

1 + y2(k−1)+y2(k−2)
:

(12)

The system is represented in the input–output form

y(k + 1)

= f(y(k); y(k − 1); y(k − 2); u(k); u(k − 1)):

(13)

We assume to have an initial dataset DB of 5000
points collected by exciting the system with a random
uniform input (zero mean and unit variance).
In Section 5.1 we will compare the performance

of the two local approaches on an identi0cation
task, while in Section 5.2 the two approaches will
be compared with a conventional linear self-tuning
architecture.
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5.1. The local identi9cation of a nonlinear
discrete-time system

In this simulation we consider the task of predicting
the output of system (12), once excited by a random
test input u(k) having the same statistical properties
of the data in DB.
The prediction is done for 500 time steps assuming

to have available at each instant k the regression vector
[y(k); y(k − 1); y(k − 2); u(k); u(k − 1)]: Let us see
the performance of the two local approaches.
Neuro-fuzzy. We consider an architecture with tri-

angular membership function and linear consequents.
The training dataset DB is employed to select the
neuro-fuzzy structure having the least generalization
error in cross-validation. In Fig. 4 we report the dia-
gram of the cross-validation performance versus the
number of inference rules.
We choose r = 6 number of rules as the optimal

complexity. The model with 6 rules is then estimated
on the whole dataset. The plot is Fig. 5a shows the
identi0cation error. We obtain an RMSE = 0:04 (root
mean square error).
Lazy learning. We use the same training dataset

DB. We adopt the recursive identi0cation method de-
scribed in [17] to estimate the local model. In spite of
the fact that a local model has to be estimated for each
prediction, the whole learning process (training, val-
idation and prediction) is largely shorter than in the

Fig. 4. Neuro-fuzzy structural tuning: number of rules versus
MSE (mean square error) in cross-validation.

neuro-fuzzy case (3 min versus 2 days of computation
time on the same machine). Also, we are able to ob-
tain a better performance (RMSE = 0:03). The plot
in Fig. 5b shows the identi0cation error.

5.2. The local self-tuning control of a nonlinear
discrete-time system

In this simulation, we control the nonlinear system
described by Eq. (12). The reference output yref (k) is
given by a periodic square wave.
We compare three self-tuning control systems

where the controller is designed by the pole-placement
method described in Section 4.2 and where the iden-
ti0cation is performed by a recursive least-squares
algorithm, a neuro-fuzzy system and a lazy learning
algorithm, respectively.
Goal of the experiment is to show that the lazy

learning approach is intrinsically adaptive and that it
requires no particular change to deal with an online
update of the input–output dataset.
Let us see the performance of the three approaches.
Linear STR: The linear identi0cation module

is 0rst initialized with the parameters returned by
the least-squares linearization of the system (13). The
least-squares estimation is performed on the basis of
the available dataset DB. During the simulation, the
linear parameters are updated online by a standard
recursive least-squares algorithm [30] with forgetting
factor 
=0:92. Reference and the system output are
reported in Fig. 6.
Neuro-fuzzy: In order to control the system we

adopt the same structure which was identi0ed in
the previous section (6 inference rules). The plot in
Fig. 7 shows the reference and the system output.
The control system behavior exhibits a steady-state

error. A possible explanation could be related to the
fact that to follow the reference value the control sig-
nal u has to reach values corresponding to regions of
the input domain not enough represented in the train-
ing set DB. The control error is due to the extrap-
olation error of the neuro-fuzzy model. We remark
that no other device is added to the STR controller to
compensate this error. In these examples, the goal is
simply to compare the two learning approaches in the
same control conditions.
Lazy learning: We initialize the lazy learning

dataset with DB. We will present two simulations. In
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Fig. 5. System identi0cation: (a) neuro-fuzzy: identi0cation error (RMSE=0:04), (b) lazy learning: identi0cation error (RMSE=0:03).

Fig. 6. Linear self-tuning control: reference (solid) and system (dotted) outputs (RMSE=0:121).
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Fig. 7. Neuro-fuzzy self-tuning control: reference (solid) and system (dotted) outputs (RMSE=0:098).

Fig. 8. Lazy learning self-tuning control: reference (solid) and system (dotted) outputs (RMSE=0:042).
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Fig. 9. Lazy learning self-tuning adaptive control: reference (solid) and system (dotted) outputs (RMSE=0:026).

the 0rst one, the training dataset is kept 0xed during
the whole simulation (non adaptive case), while in the
second one the dataset is updated on-line each time
a new input–output pair is returned by the simulated
system (adaptive case).
The plot in Fig. 8 shows the reference and the

system output in the non-adaptive case while Fig. 9
presents the adaptive case. The lazy non-adaptive con-
troller has a better performance than the neuro-fuzzy
and the linear one, but the steady-state error persists.
This does not happen in the adaptive formulation. It is
interesting to see that in this case the lazy controller
is able to cancel the steady-state error after few sim-
ulation steps, compensating to the de0ciency of the
non-adaptive version.
The experimental results show that the lazy learn-

ing approach is able to outperform both the classical
adaptive approach and the neuro-fuzzy implementa-
tion. It is important to remark that the adaptation of
the lazy learning controller is obtained at the cost
of a simple update of the dataset and that it requires
no adaptive formulation as it should be the case in a
generic nonlinear approach.

6. Is readability compatible with accuracy?

Neuro-fuzzy and lazy learning share the divide-and-
conquer approach: accuracy in modeling is increased
by decomposing complex global problems into sim-
pler local sub-problems. At the same time, they are
on opposite sides for what concerns the readability of
the resulting model.
The idea underlying neuro-fuzzy models is that by

hybridizing the adaptivity of neural networks together
with the linguistic nature of fuzzy systems, it is possi-
ble to synthesize models which are not only accurate
but also easy to interpret.
Lazy learning appears to be among the most

eGcient techniques for adaptive modeling and con-
trol, mainly when data are collected in a sequential
fashion from a changing external environment. How-
ever, it is also one of the least readable techniques
since it does not conduct to any form of explicit
representation neither in a linguistic form nor in a
mathematical one. It rather uses the raw data as the
best model, never trying to explicitly capture the
underlying analytical structure.
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The paper does not aim to present any de0nitive
result about the superiority of one approach over the
other. We believe that neuro-fuzzy methods can be
pro0tably applied to real problems where an a priori
human knowledge is available. Anyway, a functional
multi model approach should not be considered as the
only way to exploit the available qualitative informa-
tion. A future challenge will be to explore alternative
ways to integrate lazy methods with linguistic knowl-
edge, with the aim of preserving readability without
losing eGciency.
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