
M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-1

Automated Algorithm Tuning using F-races: Recent
Developments

Mauro Birattari∗ Zhi Yuan∗ Prasanna Balaprakash∗ Thomas Stützle∗

∗IRIDIA, Université Libre de Bruxelles (ULB)
CP 194/6, Av. F. Roosevelt 50, 1050, Brussels, Belgium

{mbiro,zyuan,pbalapra,stuetzle}@ulb.ac.de

1 Introduction

Many state-of-the-art algorithms for tackling computationally hard problems have a number of
parameters that influence their search behavior. Such algorithms include exact algorithms like
branch-and-bound algorithms, algorithm packages like CPLEX for integer programming, and also
approximate algorithms such as virtually all metaheuristics. Examples of parameters are numerical
parameters such as the tabu list length in tabu search algorithms or the pheromone evaporation
rate in ant colony optimization. Many algorithms can also be seen as being composed of a set
of specific components that are often interchangeable. Examples here are branching strategies in
branch-and-bound algorithms or different types of cross-over operators in evolutionary algorithms;
hence, these components are possible levels of categorical algorithm parameters.

The performance of such parameterized algorithms depends strongly on the particular values of
the numerical and categorical parameters and the appropriate setting of these parameters is itself
a difficult optimization problems. In our research, we have developed techniques for the automated
configuration of algorithms, the main one being F-Race [3, 2, 1].

In recent publications on F-Race, we have introduced an iterated version of it, called iterated
F-Race (I/F-Race) [1]. It consists in iteratively applying F-Race to a set of candidate algorithm
configurations that are generated according to an underlying probabilistic model in a model-based
search fashion [8]. The idea is to shift at each iteration the probability distribution according to
which the candidate algorithm configurations are generated towards the configurations that were
found to perform best. Unfortunately, in [1] I/F-Race was only defined for continuous or quasi-
continuous parameters. (We call quasi-continuous those parameters that have a “large” integer
domain; examples are the population size in genetic algorithms or the tabu list length.) In this
extended abstract, we discuss design issues for I/F-Race and present a new variant that handles
categorical parameters. We also present results of experimental studies that illustrate the good
behavior of this new variant.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

id-2 MIC 2009: The VIII Metaheuristics International Conference

2 F-Race for tuning stochastic local search algorithms

A formal definition of the problem of tuning stochastic algorithms is given by Birattari et al. [3]: the
problem is defined as a 7 tuple 〈Θ, I, PI , Pc, t, C, T 〉, where Θ is the possibly infinite set of candidate
configurations, I is the typically infinite set of problem instances, PI is a probability measure over I,
t is a function and t(i) gives for every instance i ∈ I the computation time allocated to it, T gives the
total amount of time available for the whole tuning process, PC is a probability measure over the set
C of possible cost values of the best solution found when running a configuration θ ∈ Θ on instance
i, C(θ) is the criterion to be optimized. The solution of the tuning problem consists in finding a
configuration θ∗ that minimizes the cost criterion. Typically, C(θ) is an expected value where the
expectation is considered with respect to both PI and PC . Here, we minimize the expected value
of the solution cost, that is, the criterion we minimize is:

C(θ) = EI,C

[
c(θ, i)

]
=

∫
I

∫
C

c(θ, i) dPC(ct|θ, i) dPI(i), (1)

where c(θ, i) is a random variable given by the cost value of the best solution found when running
configuration θ on instance i in a given computation time t(i). The measures PI and PC is usually
unknown, however, the integral in Eq. 1 can be estimated in a Monte Carlo fashion, on the basis of
a tuning set of instances, which is assumed to be generated identically as the target instances.

To estimate the integral in Eq. 1 on a given set of candidate configurations, F-Race adaptively
allocates computational resources for evaluation. F-Race is inspired by a class of racing algorithms
proposed in the machine learning community for the model selection problem [6, 7]. In F-Race, as
in other racing algorithms, a set of candidate configurations is evaluated incrementally on a number
of tuning instances. Poor performing candidate configurations are discarded from the race as soon
as sufficient statistical evidence is gathered against them. The race terminates when either one
single candidate configuration is left, or the available computational budget for the tuning process
is finished. The peculiarity of F-Race compared to other racing algorithms is the adoption of the
Friedman two-way analysis of variance by ranks [4], a non-parametric statistical test with blocking
design that appears particularly suitable in the context of racing algorithms for the tuning problem.

3 The sampling strategy for F-Race

An important question is how to generate the initial set of candidates from Θ. When F-Race was
first proposed [3], the initial candidates were collected by a full factorial design (FFD) on the
parameter space. This is done by determining manually for each parameter a number of levels.
Then, each combination of these levels represents a unique configuration, and the set of all possible
combinations forms the initial set of configurations for F-Race. The reason of adopting a full factorial
design in [3] was to focus more on the assessment of F-Race and its comparison to other ways of
defining races, therefore full factorial design became a convenient choice. The main drawback of
full factorial design is that the number of configurations grows exponentially with the number of
parameters and that it requires expertise in the selection of the levels of the parameters. These
drawbacks were also described in Balaprakash et al. [1] and they showed that F-Race with initial
candidate configurations generated by a random sampling design significantly outperforms the full
factorial design for a number of applications. In the random sampling design, the initial candidate

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-3

configurations are sampled according to some probability model PX defined over the parameter
space X. If no a priori information is available, the default way of doing this is to define PX as a
uniform distribution over X. This random sampling version of F-Race we denote in the following
F-Race(RSD).

In the effort of improving the sampling strategy of F-Race, I/F-Race for tuning continuous
parameters was introduced in [1]. In I/F-Race, the whole tuning process is done in a number of
iterations. In each iteration, the candidate configurations are first sampled and then evaluated
by F-Race. Once the best configurations are identified, the candidate configurations of the next
iteration are sampled around the best configurations, in this way biasing the sampling towards the
more promising regions identified in the previous iterations. In this sense, I/F-Race follows directly
the framework of model-based search [8].

Before discussing design options for I/F-Race in more detail, we define several terms. In the
problem of automated algorithm tuning, each trial is the execution of the tuning process together
with a subsequent testing procedure. In the testing procedure, a certain number of test instances
are given, on which the final configuration is tested. In the tuning process of I/F-Race, there are a
number of iterations. In each iteration, first a set of candidates, i.e. parameter configurations,
is sampled; this is followed by one run of F-Race applied to the sampled candidate configurations.
F-Race evaluates the set of candidate configurations in a number of steps; in each step each of the
surviving candidate configurations is evaluated once on one instance; in other words, each candidate
will do one function evaluation on one instance at each step. The instances for tuning are usually
drawn randomly from PI . After each step of F-Race, a Friedman two-way analysis of variance by
ranks is applied and candidate configurations are eliminated once there is enough statistical evidence
against them. The F-Race is terminated when the termination condition is met.

Here, we assume that the total computational budget B for the tuning process, which is usually
measured by the number of function evaluations, is given a priori. For the particular implementation
of I/F-Race, a number of issues need to be considered; we discuss these in the following.

Experimental setup. I/F-Race is an iterative process and, hence, one issue is how many iter-
ations should be used to execute the tuning process. For a given computational budget, using few
iterations will allow to sample at each iteration more candidate configurations and, hence, lead to
more exploration at the cost of less possibilities of refining the model. In the extreme case, of using
only one iteration, this amounts to an execution of F-Race(RSD). If many iterations are allowed, the
model may be much refined at the cost of possibly limiting the exploration of the parameter space.
Intuitively, it makes sense to increase the number of iterations with the number of dimensions of
the parameter space to guide the sampling process towards the most promising parameter region.
Another issue concerns the distribution of the computational budget B among the iterations. The
simplest idea is to divide the computational budgets equally among all iterations, although other
possibilities may be also reasonable.

Generating candidate configurations. As said, candidate configurations are randomly sam-
pled in the parameter space according to some probability distribution. For continuous and quasi-
continuous parameters, continuous probability distributions are appropriate; for categorical param-
eters, however, discrete probability distributions will be more useful. A first question related to the
probability distributions is of which exact type they should be. In [1], normal distributions were

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

id-4 MIC 2009: The VIII Metaheuristics International Conference

chosen as models, but this choice need not be optimal. Other questions to be addressed concern the
update of the probability distributions and, in particular, how strong the bias towards the surviving
configurations of the current iteration should be. For doing so, the trade-off between exploration
and exploitation needs to be taken into account.

The adoption of F-Race. At each iteration l, F-Race terminates (i) if the computational budget
for the l-th iteration, Bl, is spent or (ii) when a minimum number Nmin of candidate configurations
remains. For the setup of F-Race, one needs to define the number of candidate configurations to be
used. A good idea is to make the number of configurations dependent on the status of the race, in
other words, the iteration counter. In the first iteration(s), the sampled candidate configurations
are very different from each other and, as a side effect, poor candidate configurations can be quickly
eliminated. In later iterations, the sampled configurations become more similar and it becomes
more difficult to determine the winner. Hence, for a same budget, it makes sense to sample in
early iterations more configurations, while in later iterations less candidate configurations should
be generated. Another question concerns the value of Nmin. F-Race terminates if a unique survivor
is identified. However, to increase the exploration of the parameter space, it may be better to keep
in I/F-Race a number of survivors at each iteration.

4 Experimental analysis

In this section we experimentally evaluate a particular variant of I/F-Race and compare it to
F-Race(FFD), F-Race where the initial candidate configurations are generated by a full factorial
design, and F-Race(RSD).

We use three case studies for tuning ant colony optimization (ACO) algorithms for the trav-
eling salesman problem (TSP). They include tuning MAX–MIN Ant System (MMAS) using
four nominal parameters, tuning MMAS with seven nominal parameters, and tuning the whole
ACOTSP software packed with 12 mixed parameters. The software that is used for the ACO
algorithms is the ACOTSP package, which implements several Ant Colony Optimization (ACO)
algorithms for the TSP. (The ACOTSP package is available at http://www.aco-metaheuristic.
org/aco-code/). We use Euclidean TSP instances with 750 nodes uniformly distributed in a square
of side length 10 000. We use 1000 instances for tuning and 300 for evaluating the winning config-
urations using the DIMACS instance generator [5]. For each tuning task, two experiments are run,
one using a maximum computation time of 5 and another using a maximum of 20 CPU seconds.
The experiments were carried out on cluster computing nodes, each equipped with two quad-core
XEON E5410 CPUs running at 2.33 GHz and 8 GB RAM. Due to the sequential implementation
of the ACOTSP software, each evaluation of a candidate configuration uses only a single core.

4.1 An example I/F-Race

As discussed before, there are many ways how I/F-Race can be implemented. In the following, we
define the version of I/F-Race that we used for the experiments here.

Experimental setup. We increase the number of iterations L of I/F-Race with the dimension
d, using a setting of L = 2 + round(log2 d). The computational budget is distributed as equally as

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-5

possible across the iterations. Bl, the computational budget in iteration l, where l = 1, ..., L, is set
to Bl = (B−Bused)/(L− l + 1); Bused denotes the total computational budget used in the previous
iterations.

Candidate–evaluation trade-off. We let a candidate-evaluation trade-off factor µl increase with
the number of iterations, using a setting of µl = 5 + l. Using µl, we then define Nl = bBl

µl
c

to be the number of candidate configurations sampled at iteration l. As a setting of Nmin we use
Nmin = 2+round(log2 d), that is, the number of survivors of each F-Race increases with the number
of parameters.

Update of the probability model. In the first iteration, all candidate configurations are sampled
uniformly. Once F-Race terminates, the best Ns candidate configurations are selected for the update
of the probability distribution for the candidate configuration sampling of the next iteration, where
Ns = min(Nsurvive, Nmin) and Nsurvive denotes the number of candidates that survive the race.
These Ns elite configurations are then ranked according to their expected solution costs, and the
influence of an elite configuration with rank rz (z = 1, . . . , Ns) on the probability model update is
weighted by:

wz =
Ns − rz + 1

Ns · (Ns + 1)/2
. (2)

In other words, the update influence of an elite configuration is inversely proportional to its rank
in the elite set. Since the instances for tuning are sampled randomly, the Ns elite configurations of
the lth iteration will be re-evaluated in the (l+1)-th iteration, together with the Nl+1−Ns candidate
configurations to be sampled anew. Each of the new candidate configuration will be iteratively
sampled around one of the elite configurations, which are denoted by Ez (z ∈ {1, . . . , Ns}). The
probability of choosing an elite configuration Ez is wz.

Denote X the parameter space, which can be decomposed into a disjoint union of the set of
continuous and quasi-continuous parameters Xcont and the set of nominal and pseudo-nominal
parameters Xnom, X = Xcont ∪ Xnom. Denote Xi the ith dimension of X. Suppose that Xi is a
continuous or quasi-continuous parameter with boundary Xi ∈ [Xi, Xi]. Denote vi = Xi − Xi the
range of the parameter Xi. Then the sampling of Xi is around the ith dimension of Ez, denoted
as xz

i , by a normal distribution N(xz
i , σ

l
i), where xz

i is the mean value of the normal distribution,
and the standard deviation σl

i of Xi for the sampling at the lth iteration is reduced in a geometric
fashion from iteration to iteration. It is defined as follows:

σl+1
i = vi ·

(
1

Nl+1

) l
d

for l = 1, . . . , L− 1 (3)

This means, the higher the dimension of the parameter space, the smaller the update factor will
become, thus the stronger the bias of the elite configuration will be on the sampling. Furthermore,
the higher the number of candidate configurations to be sampled, the stronger the bias of the
sampling distribution.

If Xi ∈ Xnom with ni levels Fi = f1, . . . , fni , then a discrete distribution on Xi is defined by a
function P : Fi → (0, 1) with

∑ni
j=1 P (fj) = 1. After the l-th iterations, suppose the ith dimension

of the selected elite configuration Ez takes the level fz
i , the discrete distribution of parameter Xi is

updated as:

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

id-6 MIC 2009: The VIII Metaheuristics International Conference

Table 1: Range and number of levels of each discretized parameter considered for tuning ACOTSP-
cat4. As can be computed, the number of possible parameter settings is 12 100.

parameter range num.levels
α [0.01, 5.00] 11
β [0.01, 10.00] 11
ρ [0.00, 1.00] 10
m [5, 100] 10

Pl+1(fj) = Pl(fj) · (1−
l

L
) + Ij=fz

i
· l

L
for l = 1, . . . , L− 1 and j = 1, . . . , ni (4)

where I is an indicator function.

4.2 Case Study 1: MMAS for TSP with four discretized parameters

In this experiment we are tuning the following four parameters of MMAS: (i) the relative influence
of pheromone trails, α; (ii) the relative influence of heuristic information, β; (iii) the pheromone
evaporation rate, ρ; and (iv) the number of ants, m. We discretize these numerical parameters to
have a basic benchmark for tuning categorical parameters, where each parameter has a relatively
large number of values; in fact, each parameter is treated as if it were a categorical parameter. The
four parameters were discretized based on a grid having equal intervals and the ranges and number
of levels as listed in Table 1. For the other parameters, we use default values and we opted for an
ACO version that does not use local search.

Three levels of the computational budget are chosen, 486, 1536 and 3750; we have 486 = 6 · 34,
1536 = 6 · 44 and 3750 = 6 · 54. The reason for this choice is that, firstly the candidate evaluation
trade-off factor µ = 6 for F-Race(FFD) and F-Race(RSD), and that the computational budget is
designed in such a way that the candidate generation of F-Race(FFD) can be done by selecting the
same number of levels for each parameter, in our case 3, 4, and 5. Without a priori knowledge, the
levels of each parameter is selected randomly in F-Race(FFD).

The experimental results are given in Table 2. The three algorithms F-Race(FFD), F-Race(RSD),
I/F-Race are compared using the non-parametric pairwise Wilcoxon test with Holm adjustment,
and the test is conducted using paired blocking; the α level chosen is 0.05. The unique significant
winner in each experiment is marked in bold face. The results can be summarized as follows. In
all experiments I/F-Race and F-Race(RSD) significantly outperform F-Race(FFD), as indicated by
the Wilcoxon test. The result shows that I/F-Race is behaving better than F-Race(RSD), since
in 3 out of 6 experiments I/F-Race significantly outperforms F-Race(RSD), and F-Race(RSD) is
significantly better in only one experiment. The trend appears to be that with larger total budgets,
the advantage of I/F-Race over F-Race(RSD) increases.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-7

Table 2: Computational results for tuning MMAS for TSP with 4 discretized parameters in 5 and
20 seconds, respectively. The column entries with the label per.dev shows the percentage deviation
of each algorithms’ expected solution cost from the reference cost. The reference cost is taken as:
+x means that the expected solution cost of the algorithm is x% more than the reference cost and
−x means that the expected solution cost of the algorithm is x% less than the reference cost. The
column entries with the label with max.bud shows the maximum number of evaluations given to
each algorithm.

5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(FFD) +0.85 +0.79 486
F-Race(RSD) −0.58 −0.44 486
I/F-Race −0.26 −0.34 486
F-Race(FFD) +0.51 +1.27 1536
F-Race(RSD) −0.08 −0.66 1536
I/F-Race −0.42 −0.61 1536
F-Race(FFD) +0.40 +0.71 3750
F-Race(RSD) −0.12 −0.27 3750
I/F-Race −0.28 −0.45 3750

Table 3: Range and number of levels of the each discretized parameter considered for tuning
ACOTSP-cat7. The number of possible parameter settings is 259200.

parameter range num.levels

α [0.01, 5.00] 5
β [0.01, 10.00] 6
ρ [0.00, 1.00] 8
γ [0.01, 5.00] 6
m [5, 100] 5
nn [5, 50] 4
q0 [0.0, 1.0] 9

4.3 Case study 2: MMAS for TSP with 7 discretized parameters

In this experiment we have chosen the following 7 parameters: (i) the relative influence of pheromone
trails, α; (ii) the relative influence of heuristic information, β; (iii) the pheromone evaporation rate,
ρ; (iv) the parameter used in computing the minimum pheromone trail value τmin, γ, which is given
by τmax/(γ · instance size); (v) the number of ants, m; (vi) the number of neighbors used in the
solution construction phase, nn; (vii) the probability of selecting the best neighbor deterministically,
q0. The parameters are discretized with the range and number of levels given in Table 3. Note that
in comparison to the previous experiment, the parameter space is more than one order of magnitude
larger. Besides, there is smaller number of levels for each parameter, usually between four to nine.
We use the same experimental setup as in the previous section, except that for the computational
budget, we choose 768 = 6 · 27 and 3888 = 6 · 23 · 34, such that in F-Race(FFD), three parameters
will have two levels, and the other four parameters have three levels.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

id-8 MIC 2009: The VIII Metaheuristics International Conference

Table 4: Computational results for tuning MMAS for TSP with 7 categorical parameters in 5 and
20 CPU seconds. For an explanation of the table entries see the caption of Table 2.

5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(FFD) +9.33 +4.61 768
F-Race(RSD) −4.49 −1.35 768
I/F-Race −4.84 −3.25 768
F-Race(FFD) +0.90 +2.38 3888
F-Race(RSD) −0.27 −0.33 3888
I/F-Race −0.63 −2.05 3888

The experimental results are listed in Table 4. The three algorithms F-Race(FFD), F-Race(RSD),
I/F-Race are compared using non-parametric pairwise Wilcoxon test with Holm adjustment, us-
ing α = 0.05. The results clearly show that I/F-Race significantly outperforms F-Race(FFD) and
F-Race(RSD) in each experiment. As expected, also F-Race(RSD) outperforms F-Race(FFD) sig-
nificantly.

4.4 Case study 3: ACOTSP with all possible parameters

In a final experiment 12 parameters of ACOTSP are tuned. This includes the following four con-
tinuous parameters (i) relative influence of pheromone trails, α; (ii) relative influence of heuristic
information, β; (iii) pheromone evaporation rate, ρ; (iv) the probability of selecting the best neigh-
bor deterministically, q0. We also tune five quasi-continuous parameters, which are (i) number
of ants, m; (ii) number of neighbors used in the solution construction phase, nn; (iii) number of
neighbors used in the local search, nnls; (iv) number of ranks in rank-based Ant System, rasrank;
(v) number of elitist ants, eants. Finally, these three categorical parameters are considered for the
configuration task: (i) which ACO variant is to be chosen (this includes levels MMAS, ant colony
system (ACS), rank-based ant system (RAS), elitist ant system (EAS), ant system (AS)); (ii) the
local search type l (this includes four levels no local search, 2-opt, 2.5-opt, and 3-opt); (iii) the
usage of don’t look bits, dlb (binary parameter, on and off). Furthermore the following subsidiary
parameters (parameters that depend on whether some other parameter levels are used or not) are
handled: (i) dlb and nnls are used only when local search is on; (ii) q0 is used only when ACS
is selected; (iii) rasrank is used only when RAS is selected; (iv) eants is used only when EAS is
selected.

In this experiment, continuous and quasi-continuous as well as true categorical parameters are
tuned. Due to the large number of parameters, the full factorial design is infeasible. Besides, the
other experiments have already showed the poor quality of F-Race(FFD). Therefore in this set of
experiments, only F-Race(RSD) and I/F-Race will be applied.

For computational budgets we adopted 1500, 3000 and 6000 and, as usual the two computation
times 5 and 20 seconds. The experimental results are given in Table 5. The two algorithms
F-Race(RSD) and I/F-Race are compared using non-parametric pairwise Wilcoxon test (α = 0.05).
The statistical comparisons show that I/F-Race is again dominating. It is significantly better

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

MIC 2009: The VIII Metaheuristics International Conference id-9

Table 5: Computational results for tuning MMAS for TSP with 12 parameters in 5 and 20 CPU
seconds. For an explanation of the table entries see the caption of Table 2.

5 seconds 20 seconds
algo per.dev per.dev max.bud
F-Race(RSD) +0.06 +0.005 1500
I/F-Race −0.06 −0.005 1500
F-Race(RSD) +0.04 +0.009 3000
I/F-Race −0.04 −0.009 3000
F-Race(RSD) +0.07 −0.001 6000
I/F-Race −0.07 +0.001 6000

performing in five out of six experiments; only in the 20 second case with 6000 computational
budget, there is no significance can be identified. However, the quality differences in this set of
experiments are quite small, usually below 0.1% in the 5 second case, while in the 20 second case
the difference is below 0.01%. This shows that the solution quality is not very sensitive to the
parameter settings. This is usually the case when a strong local search, e.g. 3-opt, is used.

References

[1] P. Balaprakash, M. Birattari, T. Stützle, and M. Dorigo. Improvement strategies for the f-
race algorithm: Sampling design and iterative refinement. In T. Bartz-Beielstein, M. Blesa,
C. Blum, B. Naujoks, A. Roli, G. Rudolph, and M. Sampels, editors, 4th International Workshop
on Hybrid Metaheuristics, Proceedings, HM 2007, volume 4771 of Lecture Notes in Computer
Science, pages 108–122. Springer Verlag, Berlin, Germany, 2007.

[2] M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspec-
tive. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[3] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W. B. Langdon et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference, pages 11–18. Morgan Kaufmann Publishers, San Francisco, CA, USA,
2002.

[4] W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New York, NY, USA,
third edition, 1999.

[5] D. S. Johnson, L. A. McGeoch, C. Rego, and F. Glover. 8th DIMACS implementation challenge.
http://www.research.att.com/ ~dsj/chtsp/, 2001.

[6] O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classi-
fication and function approximation. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems, volume 6, pages 59–66, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers.

Hamburg, Germany, July 13–16, 2009



M
IC

20
09

id-10 MIC 2009: The VIII Metaheuristics International Conference

[7] A. W. Moore and M. S. Lee. Efficient algorithms for minimizing cross validation error. In
Proceedings of the Eleventh International Conference on Machine Learning, pages 190–198, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers.

[8] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial
optimization: A critical survey. Annals of Operations Research, 131(1–4):373–395, 2004.

Hamburg, Germany, July 13–16, 2009


