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Abstract Although swarm robotics is widely recognized as a promising approach
to coordinating large groups of robots, a general methodology for designing col-
lective behaviors for robot swarms is still missing. Automatic off-line design is an
appealing solution but it is prone to the so called reality gap, which is the reason
for performance drops when control software developed in simulation is deployed
on real robots. We present here our research on AutoMoDe, a novel approach to the
automatic off-line design of robot swarms, which is based on the principle of mod-
ularity. AutoMoDe produces control software for robot swarms by selecting, com-
bining, instantiating, and fine-tuning predefined parametric modules that represent
low-level behaviors defined in a mission-agnostic way. By restricting the generation
of control software to the instances that can be produced with the given modules,
we effectively inject a bias in the design process and we consequently reduce its
variance. As confirmed by the empirical studies realized so far, this reduces the risk
of overfitting simulation models and improves the chances of crossing the reality
gap successfully.
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1 An introduction to swarm robotics and its design problem

Swarm robotics [26] is an engineering discipline that found inspiration in swarm
intelligence [25], and that is now recognized as a promising approach to design
large groups of autonomous robots [86]. Although this discipline has attained a
notable position in the scientific literature [68, 82, 35, 73, 87, 52, 85], it has yet
to be applied to a real world scenario. It is the difficulty of reliably generating a
desired collective behavior, and more specifically the lack of a general methodology
to do so, that hinders the application of the principles of swarm robotics to the real
world [16]. In a swarm, robots are completely autonomous and act on the basis of the
principle of locality: they take decisions based solely on local information collected
through their own sensors, or on information communicated by their neighboring
peers. Any collective behavior displayed by a swarm is the result of interactions
between robots, and between robots and the environment. The design problem in
swarm robotics is particularly challenging as it is not feasible to directly program
the desired collective behavior of a swarm: only the individual robot behaviors can
be specified. Obtaining the desired collective behavior requires therefore to master
the complex “what, where, when, and how” of the many robot-robot and robot-
environment interactions that characterize the operation of a swarm.

Traditional multi-robot systems and software engineering techniques [20, 24, 14,
70], which rely on the formal derivation of the individual behaviors from specifica-
tions expressed at the collective level, cannot be applied to swarm robotics, at least
in the general case, due to the aforementioned issues. A few principled manual de-
sign methods have been proposed [41, 46, 7, 5, 15, 66, 56, 63], but their application
is limited to specific classes of missions due to their working hypotheses and con-
straints. Therefore, experts in swarm robotics usually proceed by trial and error to
obtain the desired collective behaviors

A promising alternative to manually designing the control software exists: the
adoption of optimization-based design methods. With such methods, the design
problem becomes an optimization problem: an optimization algorithm explores the
search space composed of all possible individual behaviors, with the objective of
finding one that maximizes a performance measure expressed at the collective level.
The optimization-based approach regroups different categories of design methods.
In the domain literature, the commonly adopted classification distinguishes between
on-line and off-line methods [16, 30, 17]. A second classification, orthogonal to the
on-line/off-line one, distinguishes between semi-automatic and (fully-)automatic
design methods [10].

In on-line methods, the design process is distributed and operates on the physical
robots while they perform their mission [81, 51, 47, 18, 40, 72]. Although promis-
ing for specific circumstances—for example, to adjust the parameters of control
software—on-line methods do not appear to be the ultimate solution to the design
problem in swarm robotics as their application is limited to cases in which the robots
are able to evaluate their collective performance [30]. In off-line methods, the de-
sign process is performed before the swarm is deployed in the target environment
and relies on computer-based simulations. As the assessment of control software is



Automatic design and fine-tuning of robot swarms 3

performed in simulation, which allows the computation of any desired performance
measure, off-line methods can potentially be applied to any mission. However, they
are faced with a problem that does not affect on-line methods: the so-called reality
gap [19, 45], which refers to the difference between simulation and reality. Due to
the reality gap, one should expect to be deceived by the performance of automat-
ically generated control software when it is deployed on physical robots, as it is
likely to drop in comparison with the one obtained in simulation [29].

In semi-automatic design, a human designer utilizes an optimization algorithm
as a tool that they operate using their intuition and previous experience. Typically,
the designer iterates through a series of steps, which include: the execution of the
optimization process, the evaluation and analysis of the behavior produced using
simulation and/or physical robot experiments, and the modification of the optimiza-
tion process. The designer modifies the optimization process so that, on basis of
the evaluation and according to their experience, more performing control software
will be produced in the following execution. The elements of the design process that
are often modified include the parameters of the optimization algorithm, the char-
acteristics of the control software architecture, or the performance measure to be
optimized. This three-step procedure is repeated until the control software produced
satisfies the designer and/or they feel that it cannot be improved any further. Many
studies have shown that semi-automatic design is an effective way to design robot
swarms [65, 22, 4, 58, 75, 44, 78, 79, 80, 83, 27, 38, 28, 77]. The drawback of this
approach is that it involves an expert designer that must have a good understand-
ing of the optimization process and of the mission at hand. Moreover, because the
results obtained are to be partially credited to the expert’s ingenuity, they are often
hardly reproducible.

In automatic design, one expects from a method to reliably produce control soft-
ware for a whole class of missions without the need to apply modifications [10].
The optimization process is therefore performed in a fully automatic way, without
the need of any per-mission human intervention.

In the rest of this chapter, we take a close look at a novel approach to the off-
line automatic design: AutoMoDe, short for automatic modular design [33]. The
main characteristic of this approach is the modularity of the instances of control
software it generates: they are obtained by an optimization algorithm that automati-
cally selects, combines, and fine-tunes predefined modules. These modules include
actions to be performed by an individual robot, and conditions on the environment
perceived or the internal state of the robot that determine whether the robot should
transition from one action to another. A number of automatic design methods have
been proposed so far that belong in the AutoMoDe approach. In most of them, as
we will see in the body of the chapter, the optimization algorithm adopted is either
F-race [11, 8] or Iterated F-race [3, 12, 57]. These two algorithms, which were orig-
inally developed to automatically design and/or fine-tune metaheuristics, appear to
be an ideal choice to handle the high uncertainty that characterizes the operation
of a robot swarm. In Section 2, we elaborate on the reasoning and on the work-
ing hypothesis that led to the definition of AutoMoDe; in Section 3, we describe
the different instantiations of AutoMoDe and discuss their achievements; and in
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Section 4, we report additional experiments that were conducted to corroborate the
working hypothesis discussed in Section 2. In Section 5, we summarize the main
points made in this chapter and we highlight future research directions.

2 From neuro-evolutionary robotics to AutoMoDe

In swarm robotics, the most popular optimization-based approach for designing
control software is neuro-evolutionary robotics [55, 29, 75, 76]. In this approach,
robots are controlled by a neural network: sensor readings are fed to the neu-
ral network as inputs, whereas the robot actuator values are dictated by the net-
work’s output. An evolutionary algorithm [2] is used to search for the best possible
configuration of the neural network. Thanks to the high flexibility and represen-
tational power of neural networks, the neuro-evolutionary approach can produce
extremely varied and diverse behaviors [42, 61, 13]. The neuro-evolutionary ap-
proach has been successfully used to generate control software for various swarm
robotics missions [65, 22, 44, 78]. However, when applied to the off-line case,
neuro-evolutionary robotics presents a major limitation: it is unable to cross the
reality gap reliably [71], that is, control software developed in simulation does not
typically perform satisfactorily when ported to reality.

We conjecture that the inability of evolutionary robotics to cross the reality gap
reliably is indeed a side effect of the high representational power of neural net-
works [33]. Our working hypothesis here is that the reality gap problem faced in
the off-line automatic design of robot swarms is somehow reminiscent of the gener-
alization problem faced in machine learning. In supervised learning, a fundamental
result is the so-called bias/variance tradeoff, which states that the prediction error of
an approximator can be decomposed into a bias and a variance component [37, 84].
It is known that these two components are correlated to the representational power of
the approximator: a large representational power implies low bias and high variance.
It is therefore our contention that, in the context of the automatic off-line design of
robot swarms, the high representational power of neural networks can be counter-
productive and be the cause of a sort of overfitting to the simulation environment,
which then hinders performance in the real world.

Based on this reasoning, Francesca et al. introduced a novel approach to the auto-
matic design of robot swarms: AutoMoDe [33]. In AutoMoDe, robots are controlled
by a modular software architecture (e.g., a finite state machine) automatically gen-
erated by assembling predefined modules. Compared to the neural networks used in
neuro-evolutionary robotics, the control software generated by AutoMoDe features
a lower representational power. In AutoMoDe, the representational power is reduced
by injecting bias in the generation of control software: the control software that can
be produced is restricted to what can be obtained by assembling some predefined
modules. AutoMoDe is a general framework that needs to be specialized to a spe-
cific robotic platform. To define a specialization of AutoMoDe, an expert needs to:
(i) provide a set of modules for the given robotic platform, (ii) select an optimiza-
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tion algorithm, and (iii) define a control software architecture into which the mod-
ules must be assembled by the optimization algorithm. The optimization algorithm
explores a search space composed of all possible instantiations and combinations
of the available modules. It is important to stress that the modules are defined by
the expert in a mission-agnostic way. In other terms, the modules are defined on the
basis of the capabilities of the robots for then be used to generate control software
for any possible mission of interest. The modules are defined once and for all: they
are not supposed to be manually modified or tweaked to accommodate the needs of
a specific mission for which control software must be designed. The fact that the
produced control software is a priori constrained to be a combination of predefined
modules introduces a bias and reduces the representational power: it limits the pos-
sibility to fine-tune the robot-robot and robot-environment interactions. However,
assuming that the expert implements the modules correctly, a specialization of Au-
toMoDe should be able to generate a sufficient variety of behaviors so as to allow
the swarm to perform the possible missions of interest.

The definition and implementation of the modules is critical to the success of a
specialization of AutoMoDe. To better understand the goals and the implications
of the definition of a specialization of AutoMoDe, the following conceptual rep-
resentation of the issue can be helpful. A specialization of AutoMoDe—like any
automatic design method—is implemented for a robotic platform on the basis of an
abstraction of its characteristics and capabilities: what we call a reference model.
Implicitly, a reference model defines also the class of missions that can be per-
formed by a swarm of robots described by the reference model itself. For example,
a mission that requires sorting objects according to their color cannot be performed
by robots that are unable to distinguish colors. More formally, consider the class
MI comprising the behaviors that accomplish collective missions that are of interest
(within a specific context). Consider also the class BRM comprising all the behav-
iors that can be produced by a robot swarm whose individuals conform to the given
reference model. The intersection between MI and BRM gives the class M of behav-
iors that accomplish collective missions that are of interest and that can be produced
by robots conforming to the given reference model. A specialization of AutoMoDe
and specifically the definition of the modules—like the implementation of any au-
tomatic design method—implicitly defines the class B0 of the behaviors that can be
produced by a swarm of robots whose control software is generated by the special-
ization of AutoMoDe itself—or by any other automatic design method one might
consider. Clearly, B0 is a subset of BRM: a specialization of AutoMoDe cannot gen-
erate behaviors for a robotic platform that allow it to perform missions requiring
capabilities (e.g., sensors and actuators) it does not have—and neither can any other
automatic design method. What is important to notice is that the relationship be-
tween the classes BRM and B0 defines the representational power: the larger B0, the
higher the representational power. However, what is crucial is M0, the intersection
between the classes B0 and M, which represents the behaviors that can be gener-
ated and that solve collective missions of interest. In an ideal case, a specialization
of AutoMoDe—or more generally an automatic design method—can produce all
the behaviors that solve collective missions of interest conforming to the reference
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Fig. 1 Graphical representation of the sets of behaviors that are relevant when discussing the capa-
bilities of an automatic design method. Note that these sets are purely conceptual and do not need
to be explicitly defined in a closed form. MI is the set of behaviors allowing a swarm to perform
collective missions that are of interest (within a specific context). BRM is the set of behaviors that
can be achieved by a swarm of robots conforming to the reference model at hand. M is the set of
behaviors that can be achieved by a swarm of robots conforming to the reference model and that
accomplish collective missions of interest. B0 is the set of behaviors that can be produced by a spe-
cialization of AutoMoDe—or more generally by a given design method. M0 is the set of behaviors
that can be produced by the specialization of AutoMoDe—or by a given design method—and that
accomplish collective missions of interest.

model, that is M ⌘ M0, and no behaviors that are irrelevant, that is M ⌘ M0 ⌘ B0.
Figure 1 gives a graphical representation of the different classes.

3 The specializations of AutoMoDe

Multiple specializations of AutoMoDe have been defined so far, all generating con-
trol software for an extended version of the e-puck robot [59, 36]. In the following,
we only give a brief overview of these specializations and of the results obtained.
We refer the reader to the original publications for the details.

The very first specialization of AutoMoDe was named Vanilla [33] and served
as a proof-of-concept to assess the core ideas of AutoMoDe. Vanilla selects,
combines, and fine-tunes predefined modules into control software in the form of a
probabilistic finite state machine. In the finite state machine produced by Vanil-
la, the states are associated with low-level behavior modules, whereas the edges or
transitions are associated with condition modules. Vanilla is based on a set of six
low-level behaviors and a set of six conditions. The low-level behaviors are stop,
which prevents the robot from moving; exploration, which makes the robot walk
randomly; attraction and repulsion, which makes the robot move towards or away
from its peers, respectively; and phototaxis and anti-phototaxis, which makes the
robot move towards or away from a source of light, respectively. The conditions
are fixed-probability, which is true with a fixed probability; white-, gray-, and
black-floor, which are true when the floor situated below the robot is white, gray,
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or black, respectively; neighbor-count, which is true when a sufficient number of
neighboring robots are perceived; and inverted-neighbor-count, which is true when
sufficiently few neighboring robots are perceived. These modules might have free
parameters that are tuned by the optimization algorithm within the optimization
process. At every control cycle, the low-level behavior associated with the current
state is executed, and the conditions associated to the outgoing edges of the current
state are evaluated. The robot executes the same low-level behavior as long as the
conditions are evaluated as false. If at least one condition is evaluated as true, one of
them is randomly selected, the corresponding transition takes place, and the current
state is updated accordingly.
Vanilla produces finite state machines with up to four states (or low-level

behaviors) to which up to four edges (or conditions) can be connected. To search
the space of the possible finite state machine that can be produced by assembling
the aforementioned modules and by fine tuning their parameters, Vanilla adopts
F-race [11, 8], an optimization algorithm originally developed to configure meta-
heuristics. F-race has been designed to handle stochasticity, it is therefore appropri-
ate to use it in the context of swarm robotics as the performance of an instance of
control software varies with the operating conditions (e.g., the initial position and
orientation of the robots) and with the contingencies encountered by the swarm. An
execution of F-race is reminiscent of a race: a number of candidate solutions are
incrementally tested and discarded from the race, should they display low perfor-
mance. The initial set of candidate solutions are generated randomly at the begin-
ning of the optimization process. At each step of the F-race algorithm, using simu-
lation, the surviving candidate solutions (that is, those that have not been discarded
in the previous iterations) are evaluated on a test case which is characterized by the
initial position and orientation of the robots, and (possibly) the configuration of the
working environment. Based on the evaluations of all previous steps, the candidate
solutions whose expected performance is statistically dominated by at least another
one are discarded from the race and are not evaluated any further in the following
steps.
Vanilla has been studied in two experiments. In the first one, it was compared,

on two missions, against an implementation of the neuro-evolutionary approach
called EvoStick [33]. In simulation, EvoStick was able to find control soft-
ware that displayed more sophisticated behaviors than those found by Vanilla.
However, the control software generated by EvoStick was unable to reproduce
these behaviors once ported on the physical robots, and suffered an important per-
formance drop. On the contrary, the control software generated by Vanilla tran-
sitioned smoothly from simulation to reality and much lesser performance drop was
observed. As a result, what we call a rank inversion was observed in both missions:
EvoStick outperformed Vanilla in simulation, but Vanilla outperformed
EvoStick in reality.

In the second experiment, the control software produced by Vanilla and Evo-
Stick was compared against the one produced by five human experts [32]. The
experimental protocol devised by Francesca et al. was an original contribution to
swarm robotics on its own: each of the five experts proposed a mission for which
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Fig. 2 Outcome of the Friedman test performed on the results of the second experiment involving
Vanilla [33]. For each of the methods, the plot represents the average rank and its 95% con-
fidence interval evaluated on five missions in robot experiments. The lower the rank, the better.
EvoStick is an implementation of the neuro-evolutionary approach; U-Human and C-Human
are manual methods. The performance of two methods is to be considered as significantly different
if their respective confidence interval do not overlap [23].

control software had to be produced. The five experts did not have any knowledge
of the internal functioning of Vanilla, therefore, they could not have favored or
disfavored Vanilla with their choice of a mission. Each expert was then asked
to manually produce control software for two missions (other than the one they
proposed). For one of them, the expert was left free to design the control software
as they deemed appropriate—we call this approach U-Human. For the other one, the
experts was constrained to use the modules and control architecture of Vanilla—
we call this approach C-Human. In other words, in C-Human, the expert plays the
role of Vanilla’s optimization algorithm. All in all, for each of the five missions,
the authors obtained control software produced by U-Human, C-Human, and by
Vanilla and EvoStick.

The results of this second experiment confirm those of the first one: the control
software produced by Vanilla outperformed the one produced by EvoStick

when the comparison was performed in reality. Compared to the manual methods,
Vanilla outperformed U-Human, but was outperformed by C-Human. The re-
sults of this second experiment are reported in Figure 2. Because the only difference
between Vanilla and C-Human lies in the way the space of possible solutions
is explored—the former uses the F-race optimization algorithm, the latter relies on
an implicit search performed by a human—Francesca et al. argued that Vanilla
could be improved by adopting a better optimization algorithm [32]. This conclu-
sion gave birth to a second specialization of AutoMoDe: Chocolate [31].
Chocolate uses an improved version of the optimization algorithm adopted

in Vanilla: Iterated F-race [3, 12, 57]. Iterated F-race has shown to outperform
F-race when used to configure meta-heuristics [12]. In Iterated F-race, multiple ex-
ecutions of the F-race algorithm are iteratively conducted. In the first iteration, the
initial set of candidates is obtained by uniformly sampling the space of possible
solutions. In the following ones, the initial set of candidates are obtained by sam-
pling the space of solutions according to a distribution that gives higher priority to
the solutions that are close to the surviving solutions of the previous iteration. We
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Fig. 3 Outcome of the Friedman test performed on the results of the experiment comparing Va-
nilla, Chocolate and C-Human [31]. For each of the methods, the plot represent the average
rank and its 95% confidence interval, evaluated on the same five missions as in Figure 2. The lower
the rank, the better.

refer the reader to [57] for a detailed description of Iterated F-race. Chocolate
was compared with Vanilla and C-Human on the basis of the same five missions
proposed by the human experts for the previous experiment. The results, depicted in
Figure 3, show that Chocolate improves over Vanilla, and the improvement
is such that Chocolate also outperforms C-Human. The convincing results of
Chocolate have motivated the creation and study of other further specifications
of AutoMoDe: Gianduja [43], Maple [49], and Waffle [69].

With Gianduja, Hasselmann et al. [43] studied the emergence of a commu-
nication protocol between robots in the automatic design of control software for
robot swarms. The authors considered a reference model that comprises an extra
capability with respect to the reference model on the basis of which Chocolate
was developed: the robots are allowed to locally broadcast and receive a message.
This message is a priori meaningless, and the authors therefore studied whether an
automatic design process is able to assign to the message an appropriate semantics
on a per-mission basis. The authors extended the sets of behavioral and conditional
modules of Vanilla (and Chocolate) so as to leverage the enhanced refer-
ence model. Two new behavioral modules, attraction-to-message and repulsion-
from-message, were included: the robot moves towards or away from the peers
that are broadcasting a message, respectively. Also two new conditional modules,
message-count and inverted-message-count were included: a transition is enabled
if the number of messages received is larger or smaller than a parameter, respec-
tively. Except for the new modules, Gianduja is defined as Chocolate: like
Chocolate, it adopts Iterated F-race as an optimization algorithm, and it gener-
ates control software in the form of probabilistic finite state machines. The authors
tested Gianduja on three missions, and for each of them, the design process pro-
duced control software that leveraged the communication capability of the robots in
a meaningful way.

With Maple, Kuckling et al. [49] explored the use of another control architecture
for the automatic design of robot swarms: behavior trees. Indeed, instead of combin-
ing the predefined modules into a probabilistic finite state machine—as it is done in
Vanilla, Chocolate, and Gianduja—Maple combines them into a behavior
tree. The goal of the authors was not to create a new automatic design method that
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outperforms Chocolate, but rather to study the impact of the control architecture
on the performance and on the robustness to the reality gap. To do so, the authors de-
veloped Maple so that it differs from Chocolate only in the control architecture:
the two methods share the same sets of predefined modules, they use the same opti-
mization algorithm, and they produce control software that comprise a maximum of
four behavioral modules. The authors compared the performance of Chocolate,
EvoStick, and Maple on two missions. The results show that Chocolate and
Maple performed similarly, and that they both displayed a smaller performance
drop with respect to EvoStick when the control software produced was ported to
the robots. These results confirm the conjecture that the robustness of AutoMoDe to
the reality gap originates from its modular nature, and indicate that the architecture
into which the modules are combined is a secondary issue.

With Waffle, Salman et al. [69] generalized the functionality of AutoMoDe to
not only generate control software, but also to concurrently configure the hardware
of the swarm itself. Concerning the generation of control software, Waffle is iden-
tical to Chocolate. The novelty is the configuration of the robot swarm: Waffle
automatically optimizes the hardware configuration of the individual robots and the
number of robots comprised in the swarm. In their study, to prove their concept,
the authors restricted the hardware configuration of the individual robots to the se-
lection of a local communication module out of a set of hypothetical but realis-
tic candidates. These candidates were defined as variants of an existing infra-red
communication module [39]. Some of the candidates are more and some are less
capable than the existing module in terms of their transmission range and commu-
nication reliability. Those that are more capable are also more expensive and draw
more current per unit time, and vice versa. The authors studied the performance
of Waffle under two types of economic constraints: constraints on the monetary
budget available, and/or on the battery capacity of the individual robots. Without
these constraints, the design problem is trivial: the design process always selects the
largest possible swarm composed of the most capable robots. The constraints makes
the design problem more interesting and realistic: indeed, every real-world design
problem involves trade-offs of an economic nature. Due to the monetary constraint,
the automatic design process must choose between: (a) having a swarm composed
of many but relatively incapable robots; and (b) few capable ones. Due to the power
constraint, it must choose between: (a) robots with capable hardware that, due to
their high power consumption, can operate for a relatively short time; and (b) robots
with less capable hardware that, due to their low power consumption, can operate
for a relatively long time. Salman et al. tested Waffle on three missions, and, for
each mission, performed the design process under nine levels of the aforementioned
economic constraint. The results show that the optimal hardware configuration and
behavior of the swarm depends on the mission to be accomplished and on the con-
straint imposed. They also show that the principles of the automatic modular design
can be successfully applied to the concurrent design of hardware and control soft-
ware of robot swarms.

Two other specializations of AutoMoDe were developed: IcePop [50] and
Coconut [74]. With IcePop, Kuckling et al. [50] investigated the use of yet
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another optimization algorithm: simulated annealing [34]. With Coconut, Spaey
et al. [74] extended the set of behavior modules to include different exploration
schemes, and investigated their influence on the performance of the swarms that can
then be generated.

4 Further corroboration of our working hypothesis

The results of the different specializations of AutoMoDe corroborate our original
working hypothesis: the reality gap problem bears similarity with the generalization
problem faced in machine learning and reducing the complexity of control archi-
tecture by injecting bias produces control software with increased robustness to the
reality gap. In this section, we present other studies that further corroborate our
insight on the subject.

In supervised machine learning, the phenomenon of overfitting—or alterna-
tively, overtraining—occurs when the learning process is protracted beyond an ideal
threshold, which causes the performance on the training set and on the test set to
diverge [1, 64]. Indeed, past an optimal level of the training effort, the approxima-
tor overspecializes to the examples contained in the training set, which impairs its
ability to generalize to a test set. In an experiment, Birattari et al. [9] observed a phe-
nomenon that can be seen as the off-line automatic design counterpart of the over-
training issue faced in supervised machine leaning. They called the phenomenon
they observed overdesign. In this experiment, the authors evaluated both in simula-
tion and in reality the performance of the best instances of control software produced
by an neuro-evolutionary design method at different levels of the design effort, that
is, after an increasing number of iterations of the evolutionary algorithm. The re-
sults reported in Figure 4 show that, past an optimal design effort, the performance
that the automatically generated swarm obtains in reality diverges from the one it
obtains in simulation.

In addition to corroborating our hypothesis on the similarity between the reality
gap problem and the generalization problem in machine learning, these results il-
lustrate the relative nature of the occurrence of the effects of the reality gap. Indeed,
not all instances of control software are equally affected by the same reality gap. In
this specific case, some instances, notably those produced at the beginning of the
design process, display a smaller performance drop than those generated later on in
the design process. This can lead to the observation of what the authors call a rank
inversion: an instance A of control software outperforms an instance B in simulation,
but B outperform A in reality. In the results of Figure 4, a rank inversion occurred
between instances of control software generated by the same design method, but a
similar phenomenon has also been observed when comparing different design meth-
ods [33, 31].

The phenomena of overdesign and of rank inversion raise two fundamental ques-
tions that are core to the off-line automatic design of robot swarms: what design
method will produce control software that will yield the best performance once up-
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Fig. 4 Results of an experiment in which the best artificial neural networks produced after 4, 16,
64, and 256 iterations of an evolutionary algorithm were evaluated in simulation and in reality. We
refer the reader to the original publication for the details on experimental protocol and results [9].

loaded to the robots? When should the design process be stopped? The answers to
these questions likely vary from mission to mission and, at the moment, they can be
obtained only via robot experiments, which are expensive, time consuming, and not
always feasible [10]. What would be highly desirable to have is a simulation-only
procedure that could provide reliable estimations of the real-world performance of
control software and of its ability to cross the reality gap. Such a procedure could
be used to implement an early stopping mechanism [60, 21, 64] so as to prevent
overdesign, and also to select among different automatic design methods the one to
use.

To the best of our knowledge, Koos et al. [48] were the first to use an artificial,
simulation-only reality gap in the context of the automatic design of robot swarms.
The authors did so to perform experiments to further assess the performance of a de-
sign method they proposed. Ligot and Birattari [53] formally introduced the notion
of pseudo-reality: a simulation model, different from the one used during the design,
used to evaluate the intrinsic robustness of control software to the reality gap. In that
paper, a pseudo-reality was generated by hand so as to replicate previously observed
performance drop and rank inversion. With the notion of pseudo-reality, the authors
investigated the conditions under which the effects of the reality gap manifest. The
results show that the effects of the reality gap manifest themselves regardless of
whether the evaluation context is more or less complex than the context in which the
control software has been designed. These results also substantiate our contention
that the effects of the reality gap are due to the fact that control software overfits
the context in which it has been designed, and hence that design methods overfit
the context in which they operate. In further experiments, Ligot and Birattari [54]
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obtained similar results with multiple simulation models used as pseudo-reality, all
being uniformly sampled around the model used during the design. We foresee that
the notion of pseudo-reality can be leveraged in the definition of a simulation-only
protocol that would be able to tell, with reasonable confidence, which automatic de-
sign method to apply to the problem at hand, and when is the most appropriate time
to stop the design process.

5 Discussion on future research directions

Swarm robotics is an appealing way of realizing a group of robots that should oper-
ate in environments where the risk of damaging or losing robots is high and estab-
lishing a reliable communication between robots and between them and a supervi-
sory entity is unfeasible. Ideal applications of swarm robotics include surveillance,
search and rescue, demining, and underwater or space exploration. Yet, the real-
world application of swarm robotics is not imminent, which is essentially due to a
lack of a general methodology to reliably program the individual robots so that the
desired collective behavior emerges from their interactions.

In this chapter, we focused on what appears to be a promising approach to solve
the complex problem of designing a robot swarm: automatic off-line design. In par-
ticular, we highlighted the results recently obtained with AutoMoDe, an automatic
method that generates control software for robot swarms by assembling predefined
software modules. AutoMoDe was specifically conceived to address the main chal-
lenge in the automatic off-line approach: produce control software that is robust to
the so-called reality gap, that is, that attains in reality a performance that is compa-
rable to the one displayed in the simulations of the design phase. The core idea of
AutoMoDe is to restrain the representational power of the control architecture. By
doing so, it reduces the risk that the control software produced overfits the pecu-
liarities of the simulations and fails subsequently to generalize to reality. Although
AutoMoDe produced satisfactory results, work remains to be done to gain a full
understanding of the reality gap problem and conceive a reliable automatic design
method. A number of specializations of AutoMoDe have been proposed so far that
differ one from the other in some of their components, including the optimization
algorithm and the architecture in which modules are assembled. The space of the
possible alternatives is vast and the research conducted so far has only scratched
the surface. Indeed, the use of two architectures has been investigated so far: prob-
abilistic finite state machines and behavior trees. Other alternatives are worth being
explored, such as executable Petri nets [62] and Boolean networks [67, 6]. Similarly,
only three optimization algorithms have been investigated so far and a few are under
analysis. Yet, many more exist or could be conceived specifically for being adopted
in the context of AutoMoDe. Finally, we presented some results in the concurrent
development of control software and configuration of the hardware. Although pre-
liminary, these results are promising and clearly indicate that the principles of the
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automatic modular design of AutoMoDe are not restricted to the generation of con-
trol software but have a more general applicability.
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Bruxelles, Belgium (2015)

37. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma.
Neural computation 4(1), 1–58 (1992)

38. Gomes, J., Urbano, P., Christensen, A.: Evolution of swarm robotics systems with novelty
search. Swarm Intell. 7, 115–144 (2013). DOI 10.1007/s11721-013-0081-z
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