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In recent years, much attention has been devoted to the development of metaheuristics and local search
algorithms for tackling stochastic combinatorial optimization problems. This paper focuses on local search
algorithms; their effectiveness is greatly determined by the evaluation procedure that is used to select the best
of several solutions in the presence of uncertainty. In this paper, we propose an effective evaluation procedure
that makes use of empirical estimation techniques. We illustrate this approach and we assess its performance
on the probabilistic traveling salesman problem. Experimental results on a large set of instances show that the
proposed approach can lead to a very fast and highly effective local search algorithm.
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1. Introduction

When tackling a large number of practically relevant
combinatorial optimization problems, only a part of
the information needed for evaluating the quality of
a solution might be available. Examples include port-
folio management, vehicle routing, resource alloca-
tion, scheduling, and the modeling and simulation of
large molecular systems in bioinformatics (Fu 2002).
To tackle these problems, it is customary that a set-
ting is considered in which the cost of each solution
is a random variable, and the goal is to find a solu-
tion that minimizes some statistics of the latter. For a
number of practical and theoretical reasons, the opti-
mization is performed with respect to the expecta-
tion (Fu 1994, 2002). In this context, two approaches
have been discussed in the literature: analytical com-
putation and empirical estimation. Whereas the former
relies on a complex analytical development for com-
puting the expectation, the latter simply estimates it
through Monte Carlo simulation.

Designing efficient algorithms for solving stochastic
combinatorial optimization problems is a challenging
task. The main difficulty is that the computational
complexity associated with the combinatorial explo-
sion of potential solutions is exacerbated by the added
element of uncertainty in the data. We refer the
reader to Fu (1994) and Bianchi (2006) for surveys on

solution techniques for stochastic combinatorial opti-
mization problems. Extensive computational results
from the literature have shown that local search is
an effective approach for stochastic combinatorial
optimization (Pichitlamken and Nelson 2003, Gutjahr
2004, Bianchi et al. 2006). Moreover, certain algo-
rithms based on local search can even be shown
to converge to the optimum with probability one
(Gutjahr 2003). However, a main challenge in apply-
ing local search lies in designing an effective evalu-
ation procedure that conclusively determines if one
solution is better than another.

In this paper, we focus on a very basic local search
algorithm known as iterative improvement, which
starts from some initial solution and then moves to an
improving neighboring solution until a local optimum
is found. In this algorithm, the cost of solutions can
be evaluated in two ways: (i) Full evaluation, which
computes the cost of each solution from scratch, and
(ii) partial evaluation, which computes only the cost
difference between a particular solution and every
neighboring solution. The former is applicable to all
classes of stochastic combinatorial optimization prob-
lems. The latter, widely known as delta evaluation, is
highly profitable in terms of computation time when-
ever feasible (Bertsimas 1988).

The delta evaluation strategies proposed in
the stochastic optimization literature for iterative
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improvement algorithms are based on analytical
computation (Bertsimas 1988, Bianchi 2006). In this
case, the cost difference between two solutions is
given by a closed-form expression that is obtained
through problem-specific knowledge and rather com-
plex analytical developments. The main drawbacks
of these techniques are that (i) they are not general
purpose, and (ii) they cannot be applied to problems
in which the cost difference cannot be expressed in an
analytical way (Fu 1994). Several research results from
the simulation literature suggest that the empirical
estimation approach can overcome the difficulties
posed by analytical computation. Surprisingly, to
the best of our knowledge, the idea of using estima-
tion techniques in delta evaluation has never been
thoroughly investigated.

The goal of this paper is to present an iterative im-
provement algorithm that performs delta evaluation
using empirical estimation techniques. We use the
probabilistic traveling salesman problem (PTSP) as an
example to illustrate the proposed approach and to
assess its performance.

The empirical estimation approach for stochastic
combinatorial optimization falls into the sample aver-
age approximation framework (Kleywegt et al. 2002):
the given stochastic optimization problem is trans-
formed into a so-called sample average optimization
problem, which is obtained by considering several
realizations of the random variable and by approxi-
mating the cost of a solution with a sample average
function. In the context of stochastic routing prob-
lems, where the PTSP is considered as a paradigmatic
example, this framework has been shown to be very
effective (Verweij et al. 2003). The main novelty of the
approach we propose in this paper is the adoption of
delta evaluation within the sample average approxi-
mation framework. This is particularly useful in cer-
tain classes of stochastic combinatorial optimization
problems, where the local modifications in a solution
entail only local modifications in the estimation of
its cost.

The paper is organized as follows. In §2, we give
a formal definition of stochastic combinatorial opti-
mization, and we introduce the PTSP as an example.
In §3, we review the state-of-the-art iterative improve-
ment algorithms for the PTSP. In §4, we introduce the
estimation-based iterative improvement algorithm for
the PTSP. In §5, we study its performance. In §6, we
conclude the paper.

2. Stochastic Combinatorial

Optimization Problems
In this paper, we consider optimization problems that
can be described as
Minimize F(x)=E[f(x, )], O

subject to x €S,

where x is a solution, S is the finite set of feasible solu-
tions, the operator E denotes the mathematical expec-
tation, and f is the cost function, which depends on
x and on a multivariate random variable w. The pres-
ence of the latter makes f(x, w) a random variable.
The goal is to find a feasible solution that minimizes
the expected cost.

A paradigmatic example of a stochastic combina-
torial optimization problem is the PTSP (Jaillet 1985).
Formally, an instance of the PTSP is defined on a com-
plete graph G=(V, A, C, P), where V ={1,2,...,n}
is a set of nodes, A ={(i,j): i,j € V,i#j}is the
set of edges that completely connects the nodes, C =
{cij (i, j) € A} is a set of costs associated with edges,
and P = {p;: i € V} is a set of probabilities that for
each node i specifies its probability p; of requiring a
visit. Hence, for the PTSP the random variable w is
described by an n-variate Bernoulli distribution and
a realization of w is a binary vector of size n where
a “1” in position i indicates that node i requires a
visit and a “0” indicates that it does not. We assume
that the costs are symmetric; that is, traveling from a
node i to j has the same cost as traveling from node j
to i. A solution to the PTSP is a permutation of the
nodes.

Usually, the PTSP is tackled by a priori optimization
(Jaillet 1985, Bertsimas et al. 1990), which consists of
two stages: In the first stage, a solution is determined
before the actual realization of the random variable w
is available. This is the so-called a priori solution. In
the second stage, after the realization of the random
variable is known, an a posteriori solution is obtained
from the a priori solution by visiting the nodes pre-
scribed by the given realization in the order in which
they appear in the a priori solution. The nodes that
do not require a visit are simply skipped. Figure 1
shows an example. It should be noted that because the
travel costs are symmetric, the cost of the a posteriori
solution is invariant with respect to the orientation.
For example, in Figure 1, the cost of the a posteriori
solution does not change by visiting the nodes in the
counter-clockwise direction.

Figure 1 An A Priori Solution for a PTSP Instance with Eight Nodes
Notes. The nodes in the a priori solution are visited in following order: 1, 2,
3,4,5,6,7,8,and 1. Assume that a realization of o prescribes that nodes 1,
3,4,7,and 8 are to be visited. The resulting a posteriori solution is obtained
by visiting the nodes in the order in which they appear in the a priori solution
and by skipping the nodes 2, 5, and 6, which do not require being visited.
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The goal in the PTSP is to find an a priori solu-
tion that minimizes the expected cost of the a posteri-
ori solution, where the expectation is computed with
respect to a given n-variate Bernoulli distribution.
Note that when P = {p; =p: i € V}, the PTSP instance
is called homogeneous; otherwise, if for at least two
nodes i and j we have p; # p;, we are faced with a
heterogeneous PTSP.

3. Local Search for the PTSP

Local search is a method for searching a given space
of solutions. It consists of moving from one solution
to a neighboring one according to an acceptance cri-
terion. Many local search methods exist and the one
that has received the most attention in the PTSP liter-
ature is iterative improvement. Iterative improvement
algorithms start from some initial solution and repeat-
edly try to move from a current solution x to a lower-
cost neighboring solution x’. A solution that does not
have any improving neighboring solution is a local
minimum and the iterative improvement search ter-
minates with such a solution. In the PTSP literature,
mainly the following two neighborhood structures
were considered:

* 2-exchange neighborhood: The neighborhood of a
solution is the set of solutions obtained by deleting
any two edges (a, b) and (c, d) and by replacing them
with (a, ¢) and (b, d). See Figure 2(a) for an example.

* Node-insertion neighborhood: The neighborhood
of a solution is the set of solutions obtained by delet-
ing a node a4 and inserting it elsewhere in the solution.
See Figure 2(b) for an example.

Iterative improvement algorithms can be imple-
mented using a first-improvement or a best-improve-
ment rule (Hoos and Stiitzle 2005). Whereas in the
former an improving move is immediately applied as
soon as it is detected, in the latter the whole neigh-
borhood is examined and a move that gives the best
improvement is chosen.

Iterative improvement algorithms for the PTSP
are similar to the usual iterative improvement algo-
rithms for the TSP: the cost difference between two

(a) 1

Vel 22NN
6\ ./‘{ \6 //4

5

Figure 2 Plot 2(a) Shows a 2-Exchange Move: Two Edges (1,2) and
(5,6) Are Deleted and Replaced with (1,5) and (2, 6);
Plot 2(b) Shows a Node-Insertion Move: Node 1 Is Moved and

Inserted Between Nodes 5 and 6

TSP neighboring solutions x and x’ is computed by
considering the cost contribution of solution compo-
nents that are not common to x and x'. In the case
of a 2-exchange move, the cost difference between
the neighboring solutions is simply given by c, . +
Cp g — Cap — C,4- This technique is widely known as
delta evaluation. The only difference between PTSP
and TSP versions is that, in the former, the ran-
dom variable w has to be taken into account in the
delta evaluation. In the rest of this section, we describe
how delta evaluation is performed in state-of-the-art
iterative improvement algorithms for the PTSP.

3.1. State-of-the-Art Iterative Improvement
Algorithms for the PTSP

For the homogeneous PTSP, Bertsimas (1988) derived
closed-form delta evaluation expressions based on
analytical computation for the 2-exchange neighbor-
hood and the node-insertion neighborhood. Equipped
with these expressions, the author also proposed
two iterative improvement algorithms: 2-p-opt and
1-shift. For both algorithms, the total time com-
plexity of the neighborhood exploration and evalu-
ation is O(n?). For the heterogeneous case, Chervi
(1988) proposed closed-form delta evaluation expres-
sions for 2-p-opt and 1-shift, where each algorithm
explores and evaluates the neighborhood in O(n®).
Bianchi et al. (2005) and Bianchi and Campbell (2007)
proved that the expressions derived by Bertsimas
(1988) and Chervi (1988) are incorrect, and corrected
the errors. Furthermore, for the heterogeneous PTSP,
the authors showed that the neighborhoods in 2-p-opt
and 1-shift can be explored and evaluated in O(n?)
rather than O(n®).

In her Ph.D. thesis, Bianchi (2006) also considered
the possibility of using an estimation-based approach
for the delta evaluation in 2-p-opt and 1-shift. How-
ever, based on an asymptotic analysis, the author
speculated that this approach might be much more
computationally expensive than analytical computa-
tion techniques, and for this reason the idea of using
an estimation-based approach has been abandoned
without any empirical investigation. The experimen-
tal results presented in this paper contradict Bianchi’s
conjecture.

3.2. 2-p-opt and 1-shift

The 2-p-opt algorithm comprises two phases: A first
phase consists of exploring a special case of
the 2-exchange neighborhood, the swap-neighborhood,
where the neighbors of the current solution are all
those that can be obtained by swapping two con-
secutive nodes. If the swap-neighborhood is fully
explored and no improvement is found, a second
phase explores the 2-exchange neighborhood with the
first-improvement rule. It should be noted that the
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neighborhood is explored in a fixed lexicographic
order by considering pairs of edges that are sepa-
rated by a fixed number k of nodes. Starting with
k =2, the lexicographic exploration proceeds by incre-
menting k, and whenever an improvement is found,
the search is restarted from the first phase: the
swap-neighborhood exploration. Note that the swap-
neighborhood is explored with the first-improvement
rule. 1-shift differs from 2-p-opt only in the second
phase: it uses the node-insertion neighborhood with
the best-improvement rule.

We refer the reader to Bianchi et al. (2005) and to
Bianchi and Campbell (2007) for the delta evaluation
expressions that are used in 2-p-opt and 1-shift.
Even though the time complexity is O(n?) for both
2-p-opt and 1-shift, the asymptotic notation captures
only the growth rates with respect to the number of
neighboring solutions and does not reflect the large
multiplicative constant. Indeed, a closer look at the
delta evaluation expressions presented in the afore-
mentioned papers (Bianchi et al. 2005, Bianchi and
Campbell 2007) reveals that there is a large constant
of proportionality hidden in the asymptotic notation.

The final picture we reach is that the state-of-the-art
iterative improvement algorithms for the PTSP use
neighborhood-specific delta evaluation expressions
that are based on analytical computation techniques.
The advantage of this framework is that the values
of the computed cost differences are exact. However,
from a practical perspective, this framework has some
limitations.

3.3. Issues with the State-of-the-Art Iterative
Improvement Algorithms for the PTSP

Theoretically, the delta evaluation expressions pro-
posed by Bianchi et al. (2005) can be applied to
solve PTSP instances of any size. However, in prac-
tice, these expressions suffer from numerical prob-
lems when applied to large instances. In fact, to use
the delta evaluation expressions in 2-p-opt, the term
(1—p)*" has to be computed, where p is the prob-
ability, k is the number of nodes between two con-
sidered edges, and n is the size of the instance. For
some values of p, k, and n, this term can result in
an overflow. As an illustration, consider a typical
32-bit GNU system, where, according to the IEEE 754
standard (IEEE 1985), double-precision floating-point
variables can take a maximum value of about 1le 4 308
(Griffith 2002). Given a homogeneous PTSP instance
of probability p with n nodes, the condition for the
numerical overflow is (1 — p)*®™ > le+308. From
this condition, one can obtain, after basic transforma-
tions, a critical value for n, above which the compu-
tation of the delta evaluation expression suffers from
precision problems: 714 = 1 — (308/log, (1 — p)).

647
Table 1 For a Given Probability p, the Maximum Size of the Instance
that Can be Handled by 2-p-opt on a 32-Bit System Without
Resorting to Arbitrary Precision Arithmetics
p 0.1 0.2 0.3 0.4 05 06 07 08 09

Ny 6,733 3,180 1,990 1,390 1,025 775 591 442 309

Table 1 shows the probability levels and the corre-
sponding maximum size of instances that can be tack-
led by 2-p-opt without any numerical overflow on
a 32-bit system. The very same problem occurs in
1-shift and in the analytical computation algorithms
for the heterogeneous PTSP. This issue, which has
never been pointed out before in the literature, has
to be addressed by resorting to methods for arbitrary
precision arithmetics. As we show in §5.3, this might
entail a major computational overhead.

A second issue with the state-of-the-art iterative
improvement algorithms for the PTSP is that the
lexicographic neighborhood exploration inhibits the
adoption of the classical TSP neighborhood reduction
techniques such as fixed-radius search, candidate lists,
and don’t look bits (Martin et al. 1991, Bentley 1992).
Based on results from the TSP literature (Johnson and
McGeoch 1997, Hoos and Stiitzle 2005), we speculate
that the usage of the neighborhood reduction tech-
niques in the PTSP iterative improvement algorithms
might speed up the search significantly.

4. Estimation-Based Iterative

Improvement Algorithms
The cost F(x) of a PTSP solution x can be empir-
ically estimated on the basis of a sample f(x, w,),
f(x, @), ..., f(x, wy) of costs of a posteriori solu-
tions obtained from M independent realizations
W1, ®,, ..., wy of the random variable o:

Ful) = 37 2 /5, ). @)

As can be shown easily, fM(x) is an unbiased estima-
tor of F(x). In iterative improvement algorithms for
the PTSP, we need to compare two neighboring solu-
tions x and x’ to select the one of lower cost. This
can be achieved by determining the sign of the cost
difference F(x") — F(x). For x, an unbiased estima-
tor F,(x’) of F(x') can be obtained from a sample
fx, o), f(x', @),..., f(x', w),) of costs of a poste-
riori solutions through M’ independent realizations
of w. Eventually, ﬁM, (x) — fM(x) is an unbiased esti-
mator of F(x') — F(x).

To increase the accuracy of this estimator, the well-
known variance-reduction technique called the method
of common random numbers can be adopted. In the
context of PTSP, this technique consists of using the
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same set of realizations of w for estimating the costs
F(x') and F(x). Consequently, we have M’ = M, and
the estimator £ (x') — F,(x) of the cost difference is
given by

. ~ 1 M 1 M
Fal) =) = - L F(0) = Y f(x, @)
r=1 r=1

1 M ,
=M§(f(x,w,)—f(x,w,))- ®3)

In this paper, we use the same set of M realizations
for all steps of the iterative improvement algorithms.
Other approaches could be adopted: for example,
M realizations could be sampled anew for each step
of the algorithm or even for each comparison. A dis-
cussion about this issue is given in §5.4.

Using Equation (3), given two neighboring solu-
tions x and x’ and a realization w, a naive approach
to compute the cost difference between two a pos-
teriori solutions consists of computing first the com-
plete cost of each a posteriori solution and then the
difference between them. However, a more efficient
algorithm can be obtained by adopting the idea of
delta evaluation: Given the a priori solutions and a
realization w, such an algorithm requires identifying
the edges that are not common to the two a posteriori
solutions.

For example, consider the 2-exchange move shown
in Figure 3: The edges that are not common to the
a priori solutions are (1,2), (5,6) and (1,5), (2,6).
For a realization prescribing that nodes 1, 3, 4, 7, and 8

6 ° 4
5

Figure 3 In This Example, a 2-Exchange Move Is Obtained by
Replacing (1, 2) and (5, 6) in the A Priori Solution with (1, 5)
and (2,6)

Notes. Assume that a realization of w prescribes that nodes 1, 3,4, 7,and 8
are to be visited. The edges that are not common to the a posteriori solutions
are (1,3), (4,7),and (1,4), (3,7). The delta evaluation procedure needs to

identify these edges without considering the complete a posteriori solutions.

are to be visited, the edges that are not common to
the a posteriori solutions are (1,3), (4,7) and (1, 4),
(3,7). Therefore, the cost difference between the two
a posteriori solutions is given by ¢; ,+¢3 ; —¢; 3—¢4 7.
The delta evaluation procedure needs to identify these
edges in the a posteriori solutions.

In general, for every edge (i,j) that is deleted
from x, one needs to find the corresponding edge
(i*, j*) in the a posteriori solution. We call this edge
the a posteriori edge. It is obtained as follows: if node i
has to be visited, then i* = i; otherwise, i* is the first
predecessor of i in x such that w[i*] = 1. If node j has to
be visited, then j* = j; otherwise, j* is the first succes-
sor of j such that w[j*] =1. Recall that in a 2-exchange
move, the edges (a, b) and (c, d) are replaced by (4, c)
and (b,d). For the a posteriori edges (a*, b*) and
(c*, d*), the cost difference between the two a poste-
riori solutions is ¢, .+ + Cpe, gr — Cpe e — Cs 4. Figure 4
shows the a posteriori edges for the example given
in Figure 3. The procedure described can be directly
extended to the node-insertion move. See Figure 5 for
an example.

It is worth discussing here some degenerate cases:
In a 2-exchange move that deletes edges (a,b) and
(¢, d), and where no node between the nodes b and ¢
or between nodes a and d requires being visited, the
difference between the two a posteriori solutions is
zero—see Figure 6(a); in a node-insertion move, if the
insertion node does not require being visited, then the
cost difference between the two a posteriori solutions
is zero—see Figure 6(b). In this second case, one can
avoid unnecessary computations by checking whether
the insertion node requires being visited before find-
ing the a posteriori edges.

Figure 4 The Steps Performed for Finding the A Posteriori Edges
Notes. Assume that, the nodes are visited in the order 1, 2, 3, 4, 5,6, 7, 8,
and 1. The edges (1, 2) and (5, 6) are deleted and the gray colored nodes do
not require being visited. The first successor of node 2 that requires being
visited is 3; the first predecessor of node 5 that requires being visited is 4;
the first successor of node 6 that requires being visited is 7. The a posteriori
edges are therefore (1,3) and (4, 7).
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Node-insertion move

- <—
- €— v
-~

6 °
5

Figure 5 In This Example, the Node-Insertion Move Is Obtained by

Inserting Node 1 Between Nodes 5 and 6
Notes. Consequently, the edges (8, 1), (1,2), and (5, 6) in the a priori solu-
tion are replaced with (8,2), (5, 1), and (1, 6). Assume that a realization of
 prescribes that nodes 1, 3, 4, 7, and 8 are to be visited. The edges that are
not common to the a posteriori solutions are (1, 3), (4,7), (8,1) and (8, 3),
@4, 1,{1,7).

The proposed approach has a number of advan-
tages: First, the estimation-based delta evaluation
procedure—in particular, the procedure for finding a
posteriori edges—can be applied to any neighborhood
structure without requiring the complex error-prone
mathematical derivations that have to be performed
when adopting the analytical computation approach.
In virtue of this versatility, rather than using the node-
insertion neighborhood or the 2-exchange neighbor-
hood structure, we can use ahybrid neighborhood struc-
ture that includes the node-insertion neighborhood on
top of the 2-exchange neighborhood structure. In the
TSP literature (Bentley 1992), this hybrid neighborhood
is widely known as the 2.5-exchange neighborhood:
when checking for a 2-exchange move on any two

() 1
8 2
7 3
6 4
5
Figure 6 Some Degenerate Cases that Can Occur in the Evaluation of

Cost Differences

Notes. (a) Assume that a realization of @ prescribes that nodes 1, 6, 7, and 8
are to be visited. The 2-exchange neighboring solutions shown in Figure 2(a)
lead to the same a posteriori solution. The cost difference is therefore zero.
(b) Assume that a realization of w prescribes that nodes 2, 3, 4, 5, 6, 7, and
8 are to be visited. The node-insertion neighboring solutions shown in Fig-
ure 2(b) lead to the same a posteriori solution. Because the two a posteriori
solutions are the same, the cost difference is zero.

edges (a,b) and (c,d), it is also checked whether
deleting any one of the nodes of an edge, say for
example a4, and inserting it between nodes c and d
results in an improved solution (Bentley 1992).

Second, unlike 2-p-opt and 1-shift, the proposed
approach does not impose any constraints on the
order in which the neighborhood should be explored.
This allows for an easy integration of the classi-
cal TSP neighborhood reduction techniques such as
fixed-radius search, candidate lists, and don’t look
bits (Martin et al. 1991, Bentley 1992, Johnson and
McGeoch 1997). Note that the candidate list is a static
data structure that contains, for each node, a num-
ber L of closest nodes, ordered by increasing cost. The
algorithm considers only the moves that involve a
given node and one of its closest nodes in the list.

We denote the proposed algorithm 2.5-opt-EEs,
where EE and s stand for empirical estimation and
speedup, respectively. Note that 2.5-opt-EEs uses the
first-improvement rule. To implement 2.5-opt-EEs
effectively, a specific data structure is needed. We use
a structure in which data items can be accessed both
as elements of a doubly circularly linked list and as
elements of a one-dimensional array, both of size n.
Each data item comprises an integer variable to store
a node of the a priori solution. This structure is effi-
cient for finding a posteriori edges: predecessor and
successor of a node are simply obtained by following
the links pointing towards the previous item and next
item, respectively. To access data items as elements of
the array, a data item representing node i is stored
at position i of the array, and this arrangement is
kept unchanged throughout the search process. Con-
sequently, given a node i, its data can be accessed in
O(1) time. Moreover, each data item stores an array of
size M—the realization array—which is indexed from
one to M. Element r of the realization array is either
one or zero, indicating whether the node requires
being visited or not in realization w,. Figure 7 shows
the data structure. Whenever an improved solution
is found, only the links of the particular data items
whose nodes are involved in the exchange move are
modified. Furthermore, each data item comprises also
two auxiliary fields for the neighborhood reduction
techniques: one integer variable for the don’t look bit
and one integer array of size L for the candidate list
of each node.

Concerning the computational complexity of the
estimation-based iterative improvement algorithm,
Bianchi (2006) reached the conclusion that the time
complexity of a complete neighborhood scan is
O(Mpn®). Indeed, the number of solutions in the
2.5-exchange neighborhood is O(n?), the maximum
number of steps for finding the a posteriori edges for
a given realization is n, and the number of realiza-
tions considered is M. Bianchi (2006) also included in
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Assume that We Have an A Priori Solution in Which the
Nodes Are Visited in the Order 1,5, 4, 3,2, 6,7, 8, 1
Notes. This is encoded in the doubly circularly linked list data structure as
shown in the plot. Also note that the data items can be accessed as the
elements of the one-dimensional array.

Figure 7

the complexity the probability p that a node requires
being visited, but the inclusion of this term is not
completely justified and is not thoroughly discussed
in her work. The main result of the analysis of Bianchi
is that the time complexity grows with the cube of 7.
On the basis of this result, Bianchi decided that the
estimation-based approach does not deserve any fur-
ther attention. However, the above analysis does not
hold for 2.5-opt-EEs: the use of a candidate list of
size L reduces the neighborhood size from O(n?) to
O(nL), which in turn reduces the worst-case time
complexity of a neighborhood scan to O(n’LM). It
should be noted that in large TSP instances, the value
of L is typically chosen independent of instance size
and is usually set between 20 and 40 (Johnson and
McGeoch 1997). We expect that these conclusions hold
also for the PTSP. Furthermore, it should be observed
that because we explicitly deal with a probabilistic
model, a more informative average-case analysis can
be derived easily: the expected number of steps for
finding an a posteriori edge is (1 —p)/p. As a result,
the average-case time complexity of a complete neigh-
borhood scan is O(nLMp™!).

5. Experimental Analysis

We base our analysis on homogeneous PTSP instances
that we obtained from TSP instances generated with
the DIMACS instance generator (Johnson et al. 2001).
We carried out experiments with two classes of
instances. In the first class, nodes are uniformly dis-
tributed in a square; in the second, nodes are arranged
in clusters. For each instance class, we generated
100 TSP instances of 100, 200, 300, and 1,000 nodes.
Note that 300 is the largest instance size that has been
used by Bianchi (2006). From each TSP instance, we

obtained nine PTSP instances by letting the probabil-
ity range in [0.1, 0.9] with a step size of 0.1. Due to
space limitations, we report only the results obtained
on the clustered instances of 300 and 1,000 nodes for
certain probability levels. The general trends of the
experimental results obtained on the other instance
class are similar; we refer the reader to Birattari et al.
(2007) for the complete set of results.

All algorithms were implemented in C and the
source codes were compiled with gcec, version 3.3.
Experiments were carried out on AMD Opteron™?244
1.75 GHz processors with 1 MB L2-Cache and 2 GB
RAM, running under Debian GNU/Linux.

The nearest-neighbor heuristic is used to generate
initial solutions. The candidate list is set to size 40 and
is constructed with the quadrant nearest-neighbor strat-
egy (Penky and Miller 1994, Johnson and McGeoch
1997): for each node i, a coordinate system is defined
with origin in node i. The candidate list of node i
then contains for each quadrant the 10 cities that are
connected to i by the 10 edges of least cost. If fewer
than 10 nodes are available in a quadrant, the list is
filled with nodes from other quadrants. Each iterative
improvement algorithm is run until it reaches a local
optimum. The number of realizations in 2. 5-opt-EEs
is set to 100. To highlight this fact, we denote the algo-
rithm 2. 5-opt-EEs-100.

For the homogeneous PTSP with probability p and
size n, given an a priori solution x, the exact cost F(x)
of x can be computed using a closed-form expres-
sion: F(x) = Y5y 021 pP(1 = P)° ™ Ciuy, uroy Where
x(u) and x(v) are the nodes of index u and v in x,
respectively (Jaillet 1985). We use this formula for the
post evaluation of the best-so-far solutions found by
each algorithm according to its evaluation procedure.

In addition to tables, we visualize the results using
runtime development plots. These plots show how the
cost of solutions develops over computation time. In
these plots, the x-axis indicates computation time and
the y-axis indicates the cost of the solutions found,
averaged over 100 instances. For comparing several
algorithms, one of them has been taken as a refer-
ence; for each instance, the computation time and the
cost of the solutions of the algorithms are normalized
by the average computation time and average cost of
the local optima obtained by the reference algorithm.
For convenience, the x-axis is in logarithmic scale. We
report one such plot for each probability level under
consideration.

5.1. Experiments on Neighborhood

Reduction Techniques
Before presenting the results of 2. 5-opt-EEs, we first
show that the adoption of the 2.5-exchange neighbor-
hood structure and the classical TSP neighborhood
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reduction techniques in the analytical computa-
tion framework leads to a new state-of-the-art iter-
ative improvement algorithm for the PTSP. We
denote this new iterative improvement algorithm as
2.5-0pt-ACs, where AC and s stand for analytical com-
putation and speedup, respectively. The motivation
behind these experiments is the following: if we
compared 2.5-opt-EEs with 2-p-opt and 1-shift, it
would be difficult to clearly identify whether the
observed differences are due to the estimation-based
delta evaluation procedure or rather to the adop-
tion of 2.5-exchange neighborhood and neighborhood
reduction techniques. Therefore, we implemented an
iterative improvement algorithm based on analytical
computation that uses the 2.5-exchange neighborhood
and the neighborhood reduction techniques and com-
pared its performance to 2-p-opt and 1-shift.

A difficulty in the implementation of 2.5-opt-ACs
is that because the use of neighborhood reduction
techniques prevents lexicographic exploration, the
previously computed values cannot be reused. There-
fore, the cost difference between two solutions is
always computed from scratch. To compute the cost
difference between 2.5-exchange neighboring solu-
tions, we use the closed-form expressions proposed
for the 2-exchange and the node-insertion neighbor-
hood structures (Bianchi 2006).

The results given in Figure 8 show that 2. 5-opt-ACs
dominates 2-p-opt and 1-shift, with the only excep-
tion being for the values of p ranging between 0.5
and 0.9: at the early stages of the search and for a

very short time range, the average cost of the solu-
tions obtained by 1-shift is slightly lower than that
of 2. 5-opt-ACs. Concerning the time required to reach
local optima, irrespective of the probability value,
2.5-0pt-ACs is faster than 2-p-opt by approximately a
factor of four. In the case of 1-shift, the same ten-
dency holds when p > 0.5. However, for small values
of p, the difference in speed between 2. 5-0pt-ACs and
1-shift is small. Concerning the average cost of the
local optima found, 2.5-0pt-ACs is between 2% and
5% better than 2-p-opt. We can observe the same trend
also in 1-shift; an exception is for p < 0.3, where
the difference between the average cost of the local
optima obtained by 2.5-opt-ACs and 1-shift is very
small. For details, see Table 2.

To test that the observed difference between the
cost of local optima is significant in a statistical sense,
we use a t-test. The cost of the local optima obtained
by 2.5-0opt-ACs is significantly lower than that of
1-shift and 2-p-opt for all probability values, the only
exception being p < 0.2, where the difference between
the cost of the local optima obtained by 2.5-opt-ACs
and 1-shift is not significant.

The increased speed of 2. 5-opt-ACs also shows that
the amount of computational time saved due to the
use of neighborhood reduction techniques is much
higher than the time that is lost in computing the
cost difference from scratch. Regardless of the values
of p, with respect to the cost of the local optima and
the computation time, 2. 5-0pt-ACs is better than—and
in very few cases comparable with—1-shift and

Clustered instances; size = 300
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‘é’ le—04 1e-03 1le-02 1le-01 1e+00 le+01 le—04 1e—03 1le-02 le-01 le+00 le+01
o
=l
o o =3
N @ @4
s p=05 - p=09
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Normalized computational time (log scale)

Figure 8

Experimental Results on Clustered Homogeneous PTSP Instances of Size 300

Notes. The plots represent the average cost of the solutions obtained by 2-p-opt and 1-shift normalized by the one obtained by 2. 5-opt-ACs. Each algorithm

is stopped when it reaches a local optimum.
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Table 2 Experimental Results for 2.5-opt-EEs-100, 2.5-opt-ACs,
2-p-opt, and 1-shift on Clustered Instances of Size 300
Solution cost Computation time
Algorithm Mean s.d. Mean s.d.
p=0.1
2.5-0pt-EEs-100 2,776,865 456,487 0.120 0.014
2.5-0pt-ACs 2,730,221 454,321 6.453 1.067
1-shift 2,738,026 450,970 11.771 2.404
2-p-opt 2,870,013 462,383 22.440 5.831
p=0.2
2.5-0pt-EEs-100 3,595,283 467,721 0.086 0.011
2.5-0pt-ACs 3,585,254 471,967 3.413 0.540
1-shift 3,606,878 467,069 10.103 1.773
2-p-opt 3,775,106 474,269 13.848 3.254
p=03
2.5-0pt-EEs-100 4,239,788 499,001 0.064 0.008
2.5-0pt-ACs 4,259,032 501,810 2.214 0.399
1-shift 4,286,461 481,061 8.478 1.856
2-p-opt 4,429,328 497,857 9.842 2.462
p=05
2.5-0pt-EEs-100 5,190,835 537,186 0.046 0.005
2.5-0pt-ACs 5,201,221 557,895 1.421 0.230
1-shift 5,336,979 544,328 5.933 1.355
2-p-opt 5,352,456 553,028 5.978 1.616
p=0.7
2.5-0pt-EEs-100 5,874,044 579,475 0.038 0.004
2.5-0pt-ACs 5,875,100 579,015 1.127 0.209
1-shift 6,087,249 597,356 4.851 1.056
2-p-opt 5,993,481 589,339 4,776 1.146
p=0.9
2.5-0pt-EEs-100 6,412,335 602,907 0.036 0.004
2.5-opt-ACs 6,428,845 602,878 1.020 0.220
1-shift 6,683,735 628,833 4112 0.937
2-p-opt 6,491,451 604,388 4.093 0.954

Notes. Each algorithm is allowed to run until it reaches a local optimum.
The table gives mean and standard deviation (s.d.) of final solution cost and
computation time in seconds. The results are obtained on 100 instances for
each probability level.

2-p-opt. Therefore, in the following sections, we take
2.5-0pt-ACs as a yardstick for measuring the effective-
ness of 2. 5-opt-EEs.

5.2. Experiments to Assess the Estimation-Based
Approach
In this section, we compare 2.5-opt-EEs-100 with
2.5-0pt-ACs. The two algorithms differ only in
the delta evaluation procedure they adopt: empir-
ical estimation versus analytical computation. The
experimental results are illustrated using runtime
development plots and are shown in Figure 9.
Concerning the average cost of local optima, the
two algorithms are similar with the only excep-
tion of p = 0.1, where the average cost of the local
optima obtained by 2. 5-0pt-EEs-100 is approximately
2% higher than that of 2.5-opt-ACs. Concerning the
time required to reach local optima, irrespective of the

probability value, 2.5-opt-EEs-100 is approximately
1.5 orders of magnitude faster than 2.5-opt-ACs. See
Table 2 for the absolute values. The poorer solution
cost of 2. 5-opt-EEs-100 for p = 0.1 can be attributed to
the fact that the number of realizations used to esti-
mate the cost difference between two solutions is too
small. Intuitively, the variability of the PTSP cost dif-
ference estimator with respect to the mean depends
on p and M: the smaller the value of p, the higher
the variability. For p =0.1 and M =100, the variabil-
ity of the cost difference estimator with respect to the
mean is very high, which eventually results in a mis-
leading estimation of the cost difference between two
solutions. As a consequence, 2.5-0pt-EEs-100 stops
prematurely.

In Table 3, we report the observed relative differ-
ence between the cost of the local optima obtained by
the two algorithms and a 95% confidence interval of
the relative difference (obtained from interval estima-
tion through a t-test). For the sake of completeness,
we also present these data for what concerns the com-
parison of 2. 5-opt-EEs-100 with 1-shift and 2-p-opt.

Table 3 confirms that, concerning the average cost
of the local optima found, 2.5-opt-EEs-100 is either
slightly worse (for p = 0.1) or essentially equivalent
to 2.5-opt-ACs (for p > 0.1). To be more precise, for
p =0.1, 2.5-0pt-EEs-100 has obtained solutions, the
average cost of which is higher than the one of those
obtained by 2.5-opt-ACs. The difference is significant
in a statistical sense, but it is nonetheless relatively
small: With a confidence of 95%, we can state that
the expectation of the costs of the solutions obtained
by 2.5-opt-EEs-100, on the class of instances under
analysis, is at most 1.98% higher than the one of
2. 5-0pt-ACs.

For p = 0.2, the observed average cost obtained
by 2.5-opt-EEs-100 is slightly higher than the one
of 2.5-0pt-ACs, but the difference is not significant
in a statistical sense: with 95% confidence, we can
state that the expectation of the costs of the solutions
obtained by 2.5-opt-EEs-100 is not more than 0.61%
higher than the one of 2.5-opt-ACs. For probabilities
larger than 0.2, in our experiments, 2. 5-opt-EEs-100
has obtained, on average, slightly better results, even
if not in a statistically significant way. Should the
expectation of the costs obtained by 2.5-opt-EEs-100,
on the class of instances under analysis, ever be larger
than the one of the costs obtained by 2.5-opt-ACs,
their difference would be at most 0.31% for all values
of probabilities larger than 0.2.

Similar conclusions can be drawn for what concerns
the comparison between 2. 5-0pt-EEs-100 and 1-shift.
For p=0.1, 1-shift obtains a lower average cost than
that of 2.5-opt-EEs-100. The difference is significant
in a statistical sense, but it is relatively small: the
expectation of the costs obtained by 2. 5-opt-EEs-100
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Notes. The plots represent the average cost of the solutions obtained by 2. 5-opt-EEs-100 normalized by the one obtained by 2. 5-opt-ACs. Each algorithm is

stopped when it reaches a local optimum.

is within a bound of 1.84% of the one of 1-shift.
For p = 0.2, the difference between the two algorithms
is not significant and the expectation of the costs
obtained by 2.5-opt-EEs-100 is not more than 0.19%
higher than the one of 1-shift. For probabilities larger
than 0.2, 2.5-opt-EEs-100 performs significantly bet-
ter than 1-shift, and the expectation of the costs of
the solutions obtained by 2. 5-opt-EEs-100 is between
at least 0.53% (for p = 0.3) and at least 3.63% (for
p=0.9) lower than the one of 2. 5-opt-ACs.

Concerning the last comparison, 2.5-opt-EEs-100
is significantly better than 2-p-opt across the whole
range of probabilities. The expected improvement
obtained by 2. 5-opt-EEs-100 ranges roughly between
1% and 4%.

To highlight the impact of the speed factor of
2.5-0pt-EEs-100 on the cost of the solutions, we
can analyze the cost of the solutions obtained by
2.5-0pt-ACs in the time needed by 2. 5-opt-EEs-100 to
find the local optima. From the results, irrespective of
the value of p, we can observe that the average cost of
the solutions obtained by 2. 5-opt-EEs-100 is between
16% and 18% lower than that of 2. 5-opt-ACs. Clearly,
the speed factor gives 2.5-opt-EEs-100 a significant
advantage over 2. 5-opt-ACs. Even though 2. 5-opt-ACs
and 2.5-opt-EEs-100 adopt the same neighborhood
exploration and neighborhood reduction techniques,
2.5-0pt-EEs-100 is faster, due to the simplicity of the
estimation-based delta evaluation procedure.

Table 3 Comparison of the Average Cost Obtained by 2. 5-opt-EEs-100 and by 2. 5-opt-ACs, 1-shift, and 2-p-opt, on Clustered Instances of Size 300
p-values (%)

2. 5-opt-EEs-100 vs. 2. 5-opt-ACs 2.5-opt-EEs-100 vs. 1-shift 2. 5-opt-EEs-100 vs. 2-p-opt
p Difference 95% Cl Difference 95% Cl Difference 95% Cl
0.1 +1.1 [+1.438, +1.98] +1.42 [+1.00, +1.84] -3.25 [—3.60, —2.90]
0.2 +0.28 [—0.054, +-0.61] —0.32 [-0.84, +0.19] —4.76 [-5.22, —4.31]
0.3 —0.45 [—0.938, 4-0.03] -1.09 [—1.65, —0.53] -428 [—4.71,-3.86]
05 —0.20 [—0.672, +0.28] —2.74 [—3.25,—2.22] —3.02 [—3.50, —2.52]
0.7 —0.02 [—0.367, 4-0.31] —350 [—4.05, —2.98] -1.99 [—2.43, —1.58]
0.9 —0.26 [-0.660, +0.05] —4.06 [—4.58, —3.63] -1.22 [—1.65, —0.88]

Notes. Each algorithm is allowed to run until it reaches a local optimum. For each level of probability, the table reports the observed relative difference and a
95% confidence interval (Cl) obtained through the f-test on the relative difference. Concerning the relative difference, if the value is positive, 2. 5-opt-EEs-100
obtained an average cost that is larger than the one obtained by the other algorithm considered; if it is negative, 2. 5-opt-EEs-100 reached solutions of lower
average cost. In both cases, a value is typeset in boldface if it is significantly different from zero according to the t-test, at a confidence of 95%.
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Figure 10

Experimental Results on Clustered Homogeneous PTSP Instances of Size 1,000

Notes. The plots represent the cost of the solutions obtained by 2. 5-opt-EEs-10, 2. 5-opt-EEs-100, 2. 5-opt-EEs-1000, 1-shift, and 2-p-opt normalized by
the one obtained by 2. 5-opt-ACs. Each algorithm is stopped when it reaches a local optimum. Note that for p > 0.5 the algorithms based on the analytical
computation techniques use a library for arbitrary precision arithmetics (denoted by shaded graphs).

5.3. Experiments on Large Instances

In this section, we study the performance of
2.5-0pt-EEs-100 when applied to large instances. For
this purpose, we considered PTSP instances with 1,000
nodes. In these experiments, for p > 0.5, 2. 5-opt-ACs,
1-shift, and 2-p-opt use MPFR (Fousse et al. 2007),
a state-of-the-art library for arbitrary precision arith-
metics to handle the numerical issue discussed in §3.3.

In the very same setting, we also study the impact
on the performance of 2. 5-opt-EEs of the number of
realizations considered. For this purpose, we consider
samples of size 10, 100, and 1,000 and we denote
the algorithms 2.5-opt-EEs-10, 2.5-opt-EEs-100, and
2.5-0pt-EEs-1000. The results are given in Figure 10
and Table 4.

Let us first focus on the performance of 2.5-opt-
EEs-100. The percentage difference between the aver-
age cost of the solutions obtained by 2. 5-opt-EEs-100
and 2.5-0opt-ACs exhibits a trend similar to the one
observed on instances of size 300. However, the dif-
ference between the computation times of the two
algorithms is much larger. Concerning the aver-
age cost of local optima, 2.5-0pt-EEs-100 achieves
an average cost similar to that of 2.5-opt-ACs with
the exception of p=0.1, where the average cost of
local optima obtained by 2.5-opt-EEs-100 is approx-
imately 3% higher than that of 2.5-opt-ACs. How-
ever, 2.5-0pt-EEs-100 completely dominates 1-shift
and 2-p-opt.

Regarding the time required to reach local optima,
for p < 0.5, 2.5-opt-EEs-100 is approximately 2.3,
2.5, and three orders of magnitude faster than
2.5-0pt-ACs, 1-shift, and 2-p-opt, respectively. For
p > 0.5, 2.5-opt-EEs-100 is approximately 3.5, 4.5,
and 4 orders of magnitude faster than 2.5-opt-ACs,
1-shift, and 2-p-opt, respectively. This very large
speed difference—approximately 1.2, 2, and 1 order of
magnitude more than the difference in speed between
the algorithms for p < 0.5—can be attributed to the
computational overhead involved in the adoption of
the arbitrary precision arithmetics.

Concerning the impact of the sample size on the
performance of 2. 5-opt-EEs, we can observe that the
use of a large number of realizations, in our case
M =1,000, is indeed very effective with respect to
the cost of the local optima for low probability val-
ues. Even though this improvement is achieved at the
expense of computation time, the total search time
is relatively short when compared to analytical com-
putation algorithms. On the other hand, the use of
few realizations, in our case M = 10, is less effec-
tive and does not significantly reduce the computa-
tion time. Concerning the average computation time,
2.5-0pt-EEs-10 is faster than 2. 5-opt-EEs-100 by a fac-
tor of approximately two, whereas 2. 5-opt-EEs-1000
is slower than 2.5-opt-EEs-100 by a factor of four.
Nonetheless, an important observation is that for
p <0.5, 2. 5-0pt-EEs-1000 is approximately 1.5 orders
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Table 4 Experimental Results for 2. 5-opt-EEs-10, 2. 5-opt-EEs-100,
2. 5-0pt-EEs-1000, 2.5-opt-ACs, 2-p-opt, and 1-shift on
Clustered Instances of Size 1,000
Solution cost Computation time
Algorithm Mean s.d. Mean s.d.
p=01
2.5-0pt-EEs-10 5,909,938 461,029 0.462 0.030
2.5-0pt-EEs-100 5,158,215 448,385 1.839 0.190
2.5-0pt-EEs-1000 5,069,560 424,448 9.487 1.170
2.5-0pt-ACs 5,068,223 450,709 443.952 70.934
1-shift 5,178,144 469,977 635.757 84.010
2-p-opt 5,365,486 449,318 1,464.535 341.993
p=0.2
2.5-0pt-EEs-10 7,364,518 513,937 0.524 0.032
2.5-opt-EEs-100 6,692,459 486,598 1.024 0.092
2.5-0pt-EEs-1000 6,681,179 475,423 3.981 0.447
2.5-0pt-ACs 6,697,814 480,609 229.288 33.165
1-shift 6,744,906 494,658 547.263 71.878
2-p-opt 6,978,843 477,590 859.276 159.102
p=03
2.5-0pt-EEs-10 8,263,425 554,699 0.507 0.030
2.5-0pt-FEs-100 7,894,854 547,385 0.722 0.051
2.5-opt-EEs-1000 7,875,735 511,413 2.658 0.306
2.5-0pt-ACs 7,901,717 524,412 149.881 22.702
1-shift 7,982,498 531,787 451.773 58.575
2-p-opt 8,175,022 547,812 552.554 95.447
p=05
2.5-opt-FEs-10 9,693,061 630,069 0.422 0.020
2.5-0pt-EEs-100 9,592,605 623,310 0.526 0.038
2.5-opt-EEs-1000 9,591,076 635,788 1.689 0.149
2.5-0pt-ACs 9,597,432 599,270 89.272 14.155
1-shift 9,856,073 579,796 316.049 44.883
2-p-opt 9,799,426 594,452 338.203 63.679
p=0.7
2.5-0pt-EEs-10 10,852,736 686,839 0.371 0.017
2.5-opt-EEs-100 10,803,761 623,940 0.448 0.025
2.5-0pt-EEs-1000 10,776,397 677,248 1.281 0.112
2.5-opt-ACs 10,805,384 669,183  2,377.355 296.572
1-shift 11,203,988 666,372 14,909.760 1,911.958
2-p-opt 10,955,608 634,087 8,012.715 1,339.187
p=0.9
2.5-0pt-EEs-10 11,752,749 701,937 0.347 0.012
2.5-opt-EEs-100 11,764,968 707,582 0.407 0.018
2.5-0pt-EEs-1000 11,763,689 716,438 1.015 0.073
2.5-opt-ACs 11,777,782 716,614  2,062.499 192.265
1-shift 12,241,504 701,184 12,351.744 1,610.433
2-p-opt 11,792,577 684,387  7,019.027 993.119

Notes. Each algorithm is allowed to run until it reaches a local optimum.
The table gives mean and standard deviation (s.d.) of final solution cost and
computation time in seconds. The results are given for 100 instances at each
probability level. Note that for p > 0.5, the algorithms based on the analyt-
ical computation techniques use a library for arbitrary precision arithmetics
(denoted by boldface).

of magnitude faster than 2.5-opt-ACs. For p > 0.5,
the adoption of the arbitrary precision arithmetics
entails a major computational overhead: the former is
approximately three orders of magnitude faster than
the latter. Concerning the average cost of local optima,
2.5-0pt-EEs-10 is worse than the algorithms that use
100 and 1,000 realizations; 2. 5-opt-EEs-1000 is similar

to 2.5-opt-EEs-100 and 2.5-opt-ACs with the excep-
tion of p = 0.1, where the average cost of the local
optima obtained by 2. 5-opt-EEs-1000 is approximately
3% lower than that of 2.5-opt-EEs-100 and is compa-
rable with the one of 2. 5-opt-ACs.

5.4. Experiments on Sampling Strategies

In this section, we present empirical results on sev-
eral sampling strategies. For this study, we considered
the following two alternatives in addition to the one
adopted by 2.5-opt-EEs, which consists of using the
same set of M realizations for all steps of the itera-
tive improvement algorithm: (i) a set of M realizations
is sampled anew each time an improved solution
is found, and (ii) a set of M realizations is sam-
pled anew for each comparison. We denote the for-
mer 2.5-opt-EEs-ri, where ri stands for resampling
for each improvement and the latter 2.5-opt-EEs-rc,
where rc stands for resampling for each comparison.
Note that the sample size is set to 100. We com-
pare 2.5-0pt-EEs-100-ri and 2.5-opt-EEs-100-rc with
2. 5-0pt-EEs-100. Moreover, 2. 5-0pt-ACs is included in
the analysis as a reference.

In 2.5-opt-EEs-100-ri and 2.5-opt-EEs-100-rc, for
p = 0.1, the search cycles between solutions due to
the high variability with respect to the mean of the
cost difference estimator. To avoid this problem, we
implemented a mechanism that for p = 0.1 memo-
rizes moves to reject them in successive search steps.
The results on clustered instances with 300 nodes are
given in Figure 11.

The results clearly show that, in our experimental
setting, the strategies in which the set of realizations
is changed for each improvement and for each
comparison are less effective: 2. 5-opt-EEs-100-ri and
2.5-0pt-EEs-100-rc are dominated by 2. 5-opt-EEs-100.
Concerning the time required to reach local optima,
2.5-0pt-EEs-100 is by approximately 0.5 and
2 orders of magnitude faster than 2. 5-opt-EEs-100-ri
and 2.5-opt-EEs-100-rc, respectively. Moreover,
2.5-0pt-EEs-100-rc is slower than 2.5-opt-ACs by a
factor of approximately five. Concerning the aver-
age cost of local optima, 2.5-opt-EEs-100 is similar
to 2.5-opt-EEs-100-rc and 2.5-opt-EEs-100-ri; an
exception is p = 0.1, where the poor solution cost of
2.5-0pt-EEs-100-ri and 2.5-opt-EEs-100-rc is due to
the cycling problem and to the operations performed
to avoid it.

5.5. Experiments with Iterated Local Search

In this section, we study the behavior of 2.5-opt-EEs
and 2.5-opt-ACs embedded into iterated local search
(ILS) (Lourenco et al. 2002), a metaheuristic on which
many state-of-the-art algorithms for the TSP are based
(Hoos and Stiitzle 2005). We implemented a stan-
dard ILS algorithm that accepts only improving local
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Clustered instances; size = 300
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Figure 11

Experimental Results on Clustered Homogeneous PTSP Instances of Size 300

Notes. The plots represent the average cost of the solutions obtained by 2. 5-opt-EEs-100, 2. 5-opt-EEs-100-ri, 2. 5-opt-EEs-100-rc normalized by the one
obtained by 2. 5-opt-ACs. Each algorithm is stopped when it reaches a local optimum.

optima. Concerning the perturbation, which generates
new starting solutions for the subsequent local search
by introducing some changes in the incumbent local
optima, we adopted a random double-bridge move
(Martin et al. 1991, Johnson and McGeoch 1997).

We denote the two ILS algorithms ILS-2.5-opt-EEs
and ILS-2. 5-opt-ACs, respectively. For ILS-2. 5-opt-EEs,
we use 100 and 1,000 realizations; we denote these
algorithms ILS-2.5-opt-EEs-100 and ILS-2.5-opt-
EEs-1000. Note that the set of realizations is kept
unchanged throughout the search. The stopping cri-
terion for the considered algorithms is the following:
ILS-2.5-0pt-ACs is run until it performs 25 per-
turbations and the time needed for completion is
recorded; this time is then taken as the time limit
for ILS-2. 5-opt-EEs. The results on clustered instances
with 1,000 nodes are given in Figure 12 and Table 5.

Concerning the average cost of the solutions
obtained, ILS-2.5-opt-EEs-100 is between 1% and
3% better than ILS-2.5-opt-ACs, except for p = 0.1,
where the average cost of ILS-2.5-0pt-ACs is approx-
imately 1% lower than that of ILS-2.5-opt-EEs-100.
On the other hand, ILS-2. 5-opt-EEs-1000 outperforms
ILS-2. 5-opt-ACs for all values of p: the average cost
reached by the former is between 1% and 4% lower
than that of the latter.

The results of the comparison of ILS-2.5-opt-
EEs-100 and ILS-2.5-opt-EEs-1000 show that the aver-
age cost reached by the latter is between 0.2% and
2% better than that of the former for p < 0.2. This

is because the use of a large number of realizations
results in a more precise estimator, which eventu-
ally leads to solutions of lower cost. Nevertheless,
for p > 0.3, the average cost of ILS-2.5-opt-EEs-100
is between 0.2% and 0.6% better than that of
ILS-2. 5-0pt-EEs-1000. Because the cost difference esti-
mator is accurate enough, the use of 100 realiza-
tions instead of 1,000 allows ILS-2.5-opt-EEs-100 to
perform more iterations than ILS-2.5-opt-EEs-1000,
which in turn results in solutions of lower cost. Note
that the observed differences between the algorithms
are statistically significant according to a t-test, with
a confidence of 95%.

We also implemented another sampling strategy for
the estimation-based ILS in which the set of real-
izations is sampled anew for each iteration of ILS.
However, the results did not show any significant dif-
ference from the one presented in this section.

6. Conclusions and Future Work

We introduced an estimation-based iterative improve-
ment algorithm for the PTSP. The main novelty of the
proposed approach is the use of the empirical estima-
tion techniques in the delta evaluation procedure. The
proposed approach is conceptually simple, easy to
implement, scalable to large instance sizes, and can be
applied to problems in which the cost difference can-
not be expressed in a closed form. Moreover, we have
shown that TSP-specific neighborhood reduction tech-
niques are also effective for the PTSP. Furthermore,
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Figure 12

Experimental Results on Clustered Homogeneous PTSP Instances of Size 1,000

Notes. The plots represent the cost of the solutions obtained by ILS-2.5-opt-EEs-100 and ILS-2.5-opt-EEs-1000 normalized by the one obtained by
ILS-2. 5-opt-ACs. Note that for p > 0.5, ILS-2. 5-opt-ACs uses a library for arbitrary precision arithmetics (denoted by shaded graphs).

Table 5 Experimental Results for ILS-2.5-opt-EEs-100, ILS-2.5-
opt-EEs-1000, and ILS-2. 5-opt-ACs on Clustered Instances
of Size 1,000
Solution cost Computation time
Algorithm Mean s.d. Mean s.d.
p=01
ILS-2. 5-0pt-ACs 4,902,016 422,874  3,242.608  356.583
ILS-2.5-0pt-EEs-100 5,008,657 422,307
I1S-2.5-opt-EEs-1000 4,867,455 421,312
p=02
ILS-2.5-opt-ACs 6,396,843 495,856  1,938.307 185.242
ILS-2.5-0pt-EEs-100 6,251,947 463,578
I1S-2.5-opt-EEs-1000 6,231,327 467,713
p=03
ILS-2. 5-0pt-ACs 7,526,267 528,724  1,294.857 155.803
I1S-2. 5-opt-EEs-100 7,252,326 499,856
I1S-2.5-opt-EEs-1000 7,270,660 500,364
p=05
ILS-2. 5-0pt-ACs 9,216,158 602,968 844.968 110.294
ILS-2. 5-0pt-EEs-100 8,785,082 559,811
I1S-2.5-opt-EEs-1000 8,841,611 555,746
p=07
ILS-2.5-opt-ACs 10,494,415 665,735 15,783.765 3,814.845
I1S-2. 5-opt-EEs-100 9,881,134 600,153
I1S-2.5-opt-EEs-1000 9,897,012 599,627
p=09
ILS-2.5-opt-ACs 11,480,461 738,214 13,191.050 4,044.378
I1S-2.5-opt-EEs-100 10,763,395 643,185
ILS-2.5-opt-EEs-1000 10,788,126 646,192

Notes. The table gives mean and standard deviation (s.d.) of final solu-
tion cost and computation time in seconds. The results are given for 100
instances at each probability level. Note that for p > 0.5, ILS-2. 5-opt-ACs
uses a library for arbitrary precision arithmetics (denoted by boldface).

we identified a practical issue in applying the cur-
rent state-of-the-art iterative improvement algorithms.
This issue has never been reported in the literature
and it has to be addressed explicitly by resorting to
arbitrary precision arthimetics. This, as shown in §5.3,
has a major impact on computation time.

There are a large number of avenues for further
research. The performance of the proposed approach
is affected by the number of realizations considered.
In this context, future work will aim at develop-
ing adaptive sampling procedures that save computa-
tional time by selecting the most appropriate number
of realizations with respect to the variance of the cost
difference estimator.

Given the promising results obtained by the iter-
ated local search presented in §5.5, further research
will be devoted to assess the behavior of the pro-
posed approach when used as an embedded heuris-
tic in metaheuristics such as ant colony optimization
and genetic algorithms. Moreover, other stochastic
combinatorial optimizations techniques such as the
stochastic ruler method, the nested partitions method,
and stochastic branch and bound will be consid-
ered for an empirical comparison with the presented
approach.

From the application perspective, the estimation-
based iterative improvement algorithms will be ap-
plied to more complex problems such as stochastic
vehicle routing, stochastic scheduling, and TSP with
time windows and stochastic service time.
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