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Abstract. The composition of simple local models for approximating complex nonlin-

ear mappings is a common practice in recent modeling and control literature. This paper

presents a comparative analysis of two different local approaches: the neuro-fuzzy infer-

ence system and the lazy learning approach.

A neuro-fuzzy system is an hybrid representation which combines the linguistic descrip-

tion of fuzzy inference systems with learning procedures inspired by neural networks.

Lazy learning is a memory-based technique that uses a query-based approach to select

the best local model configuration by assessing and comparing different alternatives in

cross-validation. The two approches are compared both as learning algorithms and as

identification modules of an adaptive control system. The paper will show how the lazy

learning is able to provide better modeling accuracy and control performance at the cost

of a reduced readibility of the resulting approximator. Illustrative examples of identifica-

tion and control of a nonlinear system starting from simulated data are given.

1 Introduction

The problem of modeling a process from observed data has been the object of several

disciplines from nonlinear regression to machine learning and system identification. In

the literature dealing with this problem, two main opposing paradigms have emerged:

global versus local methods.

Global models have two main properties. First, they cover the whole set of operating

conditions of the system underlying the available data. Second, global models solve the

problem of learning an input-output mapping as a problem of function estimation, that

? The work of Gianluca Bontempi was supported by the European Union TMR Grant FMBICT960692. The

work of Mauro Birattari was supported by the F.I.R.S.T. program of the Région Wallonne, Belgium.



is of choosing from a given set of parametric functions f(ϕ,α), α ∈ Λ, the one which

best approximates the unknown data distribution. Examples are linear models, nonlinear

statistical regressions, splines, neural networks.

The local paradigma originates from the idea of relaxing one or both of the global mod-

eling features.

In the first case, the global description is replaced by a modular architecture where

the different modules are simple models which focus on different part of the input

space. It is the idea of operating regimes which assumes a partitioning of the operat-

ing range of the system in order to solve modelling and control problems (Johansen &

Foss, 1993). Fuzzy inference systems (Takagy & Sugeno, 1985), RBF (Moody & Darken,

1989), CART (Breiman et al., 1984), HME (Jordan & Jacobs, 1994), are well-known ex-

amples of this approach. It is important to remark how, although these architectures are

characterized by an augmented readibility and an easier interpretation, they still are a

particular type of functional approximators.

Memory-based methods (Atkeson, 1992) aim to solve the learning problem taking the

opposite direction. Given that the problem of functional estimation is hard to be solved

in a generic setting, they focus on approximating the function only in the neighborhood

of the point to be predicted. To this aim, the whole data set is kept intact as opposed

to functional methods which discard the data after use. Memory-based techniques are an

old idea in time series prediction (Farmer & Sidorowich, 1987), classification (Cover &

Hart, 1967) and regression (Cleveland, 1979). The idea of memory-based approximators

as alternative to global models originated in non-parametric statistics (Epanechnikov,

1969) to be later rediscovered and developed in the machine learning field (Aha, 1989).

This paper will focus on neuro-fuzzy inference systems and lazy learning as prototypes

of these two different ideas of local modeling. The aim is to provide the reader with a

comparison between these two approaches in modeling and control.

Neuro-fuzzy systems (Brown & Harris, 1994), (Jang et al., 1997), (Bersini & Bontempi,

1997) are an example of hybrid modeling. The basic idea underlying these models is to

reconcile a dichotomy emerged in literature between different approaches to the imple-

mentation of intelligent systems: on one hand approaches, like neural networks, which

renounce readability for performance and on the other knowledge based systems, like

fuzzy systems, based on production rules with the aim of harmonizing the continuous

nature of the reality with the symbolic nature of human reasoning. In fact, a third way is

provided by hybrid approaches, that are methods which employ available knowledge as a

way to improve not only the readability of the models but also the performance of data-



driven learning methods. In this contribution, we will propose our neuro-fuzzy technique

which integrates a fuzzy clustering inizialization, a combination of a linear and non linear

parameter estimation routines and a cross-validation procedure for model selection.

Lazy learning (Aha, 1997) designates the whole set of memory-based techniques that

defer processing of the dataset until they receive request for information (e.g. prediction

or local modeling). There has been recently a new impetus to the adoption of these

techniques for modeling (Atkeson et al., 1997a) and control problem (Schaal & Atkeson,

1994), (Atkeson et al., 1997b). Here, we propose a lazy learning technique, having as main

feature the adoption of enhanced statistical procedures to identify the local approximator.

In particular, we use the PRESS statistic (Myers, 1990) which is a simple, well-founded

and economical way to perform leave-one-out cross validation (Stone, 1974) and to assess

the performance in generalization of local linear models.

The contribution of the paper in the control domain will be a comparison of the two ap-

proaches as alternative methods to extend linear control techniques to nonlinear discrete-

time control problems (Murray-Smith & Johansen, 1997). In particular, we will see a

self-tuning regulator (STR) architecture (Astrom, 1983) where discrete-time conventional

control (e.g. generalized minimum variance, pole placement) is combined with local model

identification. The control system can be thought of as composed of two loops. The inner

one consists of the process and a feedback regulator. The parameters of the regulator

are adjusted by the outer loop, represented by a neuro-fuzzy identifier or a lazy learning

estimator, respectively.

The experimental results will show how the lazy learning approach outperforms the neuro-

fuzzy method both in identification and control tasks. Moreover, we will show how lazy

learning takes further advantage from its memory-based nature. In fact, this feature

makes of lazy learning a promising method for extending adaptive techniques to local

modeling methods.

The remainder of the paper is organized as follows. In section 2 we will describe our neuro-

fuzzy architecture. In section 3 we will introduce the lazy modeling technique based on

an iterative selection procedure. Details on the control system implementation are given

in section 4.1. In section 5 simulation examples of identification and of control are given.

Finally, in section 6 a comparison between the two approaches in terms of readibility

versus accuracy is provided.



2 Neuro-fuzzy as a multimodel description

Let us consider a generic input-output mapping f : <m → <. Takagi and Sugeno (1985)

introduced the fuzzy rule-based system for nonlinear modeling, usually referred in liter-

ature to as TS model. A TS fuzzy inference system is a set of r rules





If ϕ1 is A1
1 and ϕ2 is A1

2 . . . and ϕm is A1
m then y1 = f1(ϕ1, ϕ2, ..., ϕm)

. . .

If ϕ1 is Ar
1 and ϕ2 is Ar

2 . . . and ϕm is Ar
m then yr = f r(ϕ1, ϕ2, ..., ϕm)

(1)

The first part (antecedent) of each rule is defined as a fuzzy AND proposition whereAi
j is a

fuzzy set on the jth premise variable defined by the membership function µij : <m → [0, 1].

The second part (consequent) is a crisp function f i i = 1, . . . , r of the input vector

[ϕ1, ϕ2, . . . , ϕm].

By means of the fuzzy sets Ai
j the input domain of the function f is softly partitioned in

smaller regions where the mapping is locally approximated by the models f i. The TS in-

ference system uses the weighted mean criterion to recombine all the local representations

in a global approximator:

y =

∑r
i=1 µ

iyi∑
µi

(2)

where µi is the degree of fulfilment of the ith rule.

An interesting special case is provided by the linear TS fuzzy inference system where the

consequents are linear models f i =
∑m

j=1 a
i
jϕj + bi (Sugeno & Kang, 1988). In this case

the TS system can be used to return a local linear approximation about a generic point

of the input domain. Consider for example an input ϕ̂ = [ϕ̂1, ϕ̂2, . . . , ϕ̂m]. The TS rule

combination (Eq. 2) returns a linear approximation flin(·) to the function f(·) about ϕ̂:

flin(ϕ̂) =

∑r
i=1 µ

i(
∑m

j=1 a
i
jϕ̂j + bi)∑

µi
(3)

In a conventional fuzzy approach the membership functions and the consequent models

are fixed by the model designer according to a priori knowledge. If this knowledge is

not available but a set of input-output data is observed from the process f , the compo-

nents of the fuzzy system (membership and consequent models) can be represented in

a parametric form and the parameters tuned by a learning procedure. In this case the

fuzzy system turns into a neuro-fuzzy approximator (Bersini & Bontempi, 1997). Neuro-

fuzzy systems are a powerful trade off in terms of readability and efficiency between



a human-like representation of the model and a fast learning method. However, what

mainly distinguishes neuro-fuzzy estimators from other kinds of non linear approxima-

tors is their potentiality for combining available a priori first principle models with data

driven modeling techniques (Bontempi & Bersini, 1997). In fact, while learning methods

provide the adaptation of the inference system to the observed data, the fuzzy architec-

ture allows an easy integration into the system of available knowledge about the process

to be modeled.

Let us see now in detail our neuro-fuzzy learning procedure.

2.1 Architecture and learning algorithms for neuro-fuzzy inference systems

In a neuro-fuzzy systems two types of tuning are required, designated as structural and

parametric tuning.

Structural tuning concerns the structure of the architecture: which variables to account

for in the rules, how to partition each variable domain, how many rules,.... Once available

a satisfactory structure, the parametric tuning must search for the optimal membership

functions together with the optimal parameters for the consequent models. There may

be a lot of structure/parameter combinations which make the fuzzy model behaving in

a satisfactory way. As a consequence, the search of the optimum in this two dimensional

space is not that easy to conduct. As a rule, simple fuzzy models are generally preferred to

complex ones so that, a first reduction of the optimization problem consists in restricting

the search to region coding for simple fuzzy models. This is implicitly achieved by turning

the cost to optimize into a combination of two objectives: good generalization performance

and low complexity (Vapnik, 1995). We assume as index of complexity the number of

rules of the architecture, so the goal of the whole tuning procedure is to find the optimal

number of rules which gives the least error in generalization. Our learning procedure

can be represented by the flow chart in Fig. 1. In this approach, the initialization of

the architecture is provided by a hyperellipsoidal fuzzy clustering procedure inspired

to (Babuska & Verbruggen, 1997). This procedure clusters the data in the input-output

domain obtaining a set of hyperellipsoids which are a preliminary rough representation of

the I/O mapping. The parameters of the ellipsoids (eigenvalues) are used to initialize the

parameters of the consequent functions f i, while their localization (projection of their

mean on the input domain) determines the initial position of the membership functions

in the input domain.

Once the initialization is done, the learning procedure begins. Two optimization loops are

nested: the parametric and the structural one. The parametric loop (inner) finds the best
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Figure 1: Flow-chart of the neuro-fuzzy learning procedure.

parametric configuration by minimizing a sum of squares cost function JM depending

exclusively on the training set. For linear TS models , the minimization routine can be

furtherly decomposed in a least-squares problem to estimate the linear parameters of the

consequent models f i and a nonlinear minimization (Levemberg-Marquardt) to find the

parameters of the membership functions Ai
j.

The structural identification loop searches for the best structure (in terms of optimal

number of rules) by increasing gradually the number of rules, and consequently of local

models. The different structures are assessed and compared according to their perfor-

mance JCV in cross-validation (Stone, 1974). The model with the best cross-validation

performance is then selected as the candidate to represent the input-output mapping and

consequently trained on the whole data set.

This procedure uses a high proportion of the available data to train the model, while also

making use of all data points in evaluating the cross-validation error. Unfortunately, this

approach has the disadvantage that the training process has to be repeated as many times

as the number of partitions of the training set. Then, the whole learning process (i.e. the

sequence of initialization, optimization and validation) results extremely time-consuming.



3 Lazy learning modeling

Lazy learning returns no functional approximation but the value of the unknown function

is estimated focusing on the region surrounding the point where the estimation itself is

required.

Let us consider an unknown mapping f : <m → < of which we are given a set of N

samples
{

(ϕ1, y1), (ϕ2, y2), . . . , (ϕN , yN)
}

. These examples can be collected in a matrix

Φ of dimensionality [N ×m], and in a vector y of dimensionality [N × 1].

Given a specific query point ϕq, the prediction of the value yq = f(ϕq) is computed

as follows. First, for each sample (ϕi, yi) a weight wi is computed as a function of the

distance d(ϕi,ϕq) from the query point ϕq to the point ϕi. Each row of Φ and y is then

multiplied by the corresponding weight creating the variables Z = WΦ and v = Wy,

with W diagonal matrix having diagonal elements Wii = wi. Finally, a locally weighted

regression model (LWR) is fitted solving the equation (ZTZ)β = ZTv and the prediction

of the value f(ϕq) is obtained evaluating such a model in the query point:

ŷq = ϕTq (ZTZ)−1ZTv. (4)

Typically, the data analyst who adopts a local regression approach, has to take a set of

decisions related to the model (e.g. the number of neighbors, the weight function, the

parametric family, the fitting criterion to estimate the parameters). Our lazy learning

method extends the classical approach with a method that automatically selects the

adequate configuration.

To this aim, we import tools and techniques from the field of linear statistical analysis.

The most important of these tools is the PRESS statistic (Myers, 1990), which is a simple,

well-founded and economical way to perform leave-one-out cross validation and therefore

to assess the performance in generalization of local linear models. This statistic returns

the leave-one-out cross-validation error of a linear model at the same computational

cost of the linear regression. Assessing the performance of each linear model, alternative

configurations can be tested and compared in order to select the best one. This same

selection strategy is indeed exploited to select the training subset among the neighbors,

as well as various structural aspects like the features to treat and the degree of the

polynomial used as a local approximator (Bersini et al., 1998). The general ideas of the

approach can be summarized as follows.

1. The task of learning an input-output mapping is decomposed in a series of linear

estimation problems.



2. Each single estimation is treated as an optimization problem in the space of alternative

model configurations.

3. The estimation ability of each alternative model is assessed by the cross-validation

performance computed using the PRESS statistic.

In order to make these operations more effective, we proposed two innovative algorithms,

based on the adoption of recursive techniques for the linear parameter estimation and

on a paired permutation test for the comparison of the performance of different model

candidates (Bontempi et al., 1998).

4 Neuro-fuzzy and Lazy learning for control: a comparative

analysis

Although nonlinearity characterizes most real control problems, methods for analysis

and control design are considerably more powerful and theoretically founded for linear

systems than for nonlinear ones. In the following, a comparison between the neuro-fuzzy

and the lazy approach as two ways of extending linear techniques to nonlinear problems

is provided.

Neuro-fuzzy architectures A neuro-fuzzy architecture is a particular example of local

model network. It extends the concept of operating point by introducing the no-

tion of operating regime. An operating regime is a set of operating points where the

system behaviour can be described approximately with a simple model (Johansen &

Foss, 1993), (Johansen & Foss, 1995). To each of them a validity region, and a local

description of the system behavior are associated.

In the neuro-fuzzy formalism the validity region of a local model f i is represented

by the corresponding membership functions µi in Equation 1. . One major advantage

of the approach is the possibility to integrate a priori knowledge with a parametric

learning procedure. A disadvantage is related to the fact that, in order to cover the

whole operating region, a generic neuro-fuzzy architecture still remains a nonlinear

approximator. As a consequence, the estimation requires time-consuming learning and

validation procedures.

Lazy learning This approach shares with neuro-fuzzy the idea of decomposing a difficult

problem in simpler local problems. Also, both the approaches can return a local linear

description of the process (see Eq. 4 and 3).

The main difference concerns the model identification procedure. Local model net-

works aim to estimate a global description to cover the whole system operating do-

main, whereas memory based techniques focus simply on the current operating point.



Neuro-fuzzy results more time consuming in identification but faster in prediction.

However when new data are observed, model update may require to perform the

whole neuro-fuzzy modeling process from scratch. On this matter lazy learning takes

an advantage from the absence of a functional approximator: once a new input-output

example is observed, it is enough to update the database which stores the set of input-

output pairs. Therefore, lazy learning is intrinsically adaptive while neuro-fuzzy re-

quires proper on-line procedures to deal with sequential problems.

In the following section we will introduce a local indirect controller where the two ap-

proaches are employed to implement the identification module. This will allow an exper-

imental comparison both on identification and on control simulations.

4.1 The local self-tuning controller

Consider a class of discrete-time single input single output (SISO) dynamic systems whose

equations of motion can be expressed in the form:

y(k) = f
(
y(k − 1), . . . , y(k − ny), u(k − d), . . . , u(k − d − nu),

e(k − 1), . . . , e(k − ne)
)

+ e(k), (5)

where k denotes the time, y(k) is the system output, u(k) the input, e(k) is a zero-

mean disturbance term, d > 0 is the relative degree and f(·) is some nonlinear function.

Defining the information vector as

ϕ(k−1) =
[
y(k−1), . . . , y(k−ny), u(k−d), . . . , u(k−d−nu), e(k−1), . . . , e(k−ne)

]
,

(6)

the system (5) can be written in the form:

y(k) = f (ϕ(k − 1)) + e(k). (7)

An indirect control scheme (Astrom & Wittenmark, 1990), combines a parameter esti-

mator, which computes an estimate ϑ̂ of the unknown parameters, ϑ with a control law

u(k) = K(ϕ(k),ϑ) implemented as a function of the plant parameters. In conventional

adaptive control theory, to make the problem analytically tractable, the plant is assumed

to be a linear time-invariant system with unknown parameters.

A(z)y(k) = z−dB(z)u(k) + C(z)e(k), (8)

The identification of the unknown polynomials A, B and C is performed by a recursive

parameter estimator which updates the same linear model when a new input-output

sample is observed.



Our approach combines the local learning identification procedures described in sections 2

and 3 with conventional linear control techniques. There is no global linear model de-

scription but at each time-step the system dynamics ( 7) is linearized by the local model

in the neighborhood of the current operating regime. In the neuro-fuzzy case we consider

linear TS model, which can return at each operating point a linear approximation of the

systems dynamics (see Eq. 3). In the lazy learning formalism the linear parametrization

is returned by the local weighted regression (see Eq. 4).

In order to control the process, we adopt standard linear techniques as the minimum-

variance (MV) and the pole-placement (PP) control technique (Astrom & Wittenmark,

1990). The MV control problem can be stated as finding the control law which minimizes

the variance of the output. The MV controlled closed loop system is stable only if B has

all of its roots inside the unit circle (minimum phase). However, more complex formula-

tions are available in the case of a tracking problem or in the case of non minimum-phase

systems (Generalized MV or GMV). In these cases it is possible to select properly the

controller parameters in order to make the closed loop system asymptotically stable. Pole

placement design is an alternative technique to deal with non minimum-phase configu-

rations. The procedure requires first to choose the desired closed loop pole positions and

then to calculate the appropriate controller.

The whole control algorithm is described in detail in Fig. 2. Note that with the term

Local model we identify the identification module (neuro-fuzzy or lazy) which returns a

local approximation to the system dynamics.

1. Acquisition of the the vector (6).

2. Linearization of the function f(·) about (6). The linearization is computed by the Local model algo-

rithm.

3. Derivation of the polynomials A, B, C of (8) from the linearized model.

4. Design of a MVG/PP controller for (8) which satisfies the required properties (stability, accuracy,

speed . . . ) of the closed loop behavior.

5. Computation of the control signal.

Repeat these steps at each sampling period.

Figure 2: The local self-tuning controller algorithm.



5 Simulation studies

In this experimental study we will consider a nonlinear SISO system described by the

difference equation:

y(k + 1) =
y(k)y(k − 1)y(k − 2)

(
y(k − 2) − 1

)
u(k − 1) + u(k)

1 + y2(k − 1) + y2(k − 2)
(9)

The system is represented in the input-output form y(k + 1) = f
(
y(k), y(k − 1), y(k −

2), u(k), u(k− 1)
)
. We assume to have an initial database DB of 5000 points collected by

exciting the system with a random uniform input (zero mean and unit variance).

5.1 The local identification of a nonlinear discrete-time system

In this simulation we consider the task of predicting the output of system refeq:bench,

once excited by a random test input u(k) having the same statistical properties of the

data in DB.

The prediction is done for 500 time steps assuming to have available at each instant k

the regression vector [y(k), y(k− 1), y(k − 2), u(k), u(k − 1)]. Let us see the performance

of the two local approaches.

Neuro-fuzzy. We consider an architecture with triangular membership function and linear

consequents. The training database DB is employed to select the neuro-fuzzy structure

having the least generalization error in cross-validation.

We chose r = 6 number of rules as the optimal complexity. The model with 6 rules was

then estimated on the whole data set. The plot in Fig. 3a shows the identification error.

We obtained an RMSE=0.04 (root mean square error).

Lazy learning. We use the same training database DB . We adopted the recursive identifi-

cation method described in (Bontempi et al., 1998) to estimate the local model. In spite

of the fact that a local model has to be estimated for each prediction, the whole learning

process (training, validation and prediction) was largely shorter than in the neuro-fuzzy

case (3 minutes vs. 2 days of computation time). Also, we were able to obtain a better

performance (RMSE=0.03). The plot in Fig. 3b shows the identification error.

5.2 The local self-tuning control of a nonlinear discrete-time system

In this simulation we consider the control of the nonlinear system described by Eq. 9.

The reference output yref (k) is given by a periodic square wave. The controller is the pole

placement STR controller described in section 4.1.
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Figure 3: System identification: a) Neuro-fuzzy: identification error (RMSE=0.04) b) Lazy learning: identification

error (RMSE=0.03).

Neuro-fuzzy controller . In order to control the system we adopt the same structure which

was identified in the previous section (6 inference rules). The plot in Fig. 4a shows the

reference and the system output.

The control system behaviour exhibits a steady-state error. A possible explanation could

be related to the fact that to follow the reference value the control signal u has to

reach values corresponding to regions of the input domain not enough represented in

the training set DB. The control error is consequent to the extrapolation error of the

neuro-fuzzy model.

Lazy learning controller We will present two simulations. In both of them, the training

database is initialized with DB, but while in the first one, the training database is kept

fixed all along the simulation (non adaptive case), in the second one the database is

updated on-line each time a new input-output pairs is returned by the simulated system

(adaptive case). The plot in Fig. 4b shows the reference and the system output in the non

adaptive case while Fig. 4c presents the adaptive case. The lazy non adaptive controller

has a better performance than the neuro-fuzzy one, but the steady state error persists.

This is not the case for the adaptive formulation. It is interesting to see how in this case

the lazy controller is able to cancel the steady state error after few simulation steps,

compensating to the deficiency of the non adaptive version.

6 Is readability compatible with accuracy?

Neuro-fuzzy and lazy learning share the divide-and-conquer approach of increasing accu-

racy in modeling by decomposing complex global problems in simpler local sub-problems.
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Figure 4: Self-tuning control: reference (solid) and system (dotted) outputs a) Neuro-fuzzy: RMSE=0.098 b)

Lazy learning: RMSE=0.042 c) Lazy learning adaptive: RMSE=0.026 .

At the same time, they are on opposite sides for what concerns the readability of the

resulting model.

Underlying neuro-fuzzy models is the idea that by hybridizing the adaptivity of neural

nets together with the linguistic nature of fuzzy systems, it is possible to synthetize

models which are not only accurate but also easy to interpret. On the other hand, while

lazy learning appears to be among the most efficient techniques for modeling on the basis

of data, it is also one of the least readable since it does not even conduct to any form of

explicit representation neither in a linguistic form nor in a mathematical one. It rathers

uses the raw data as the best model, never trying to explicitly capture the analytical

structure underlying them.

Further, the experimental results of the paper seem to confirm that accuracy and readibil-

ity could direct towards opposite ways. The objective of extracting linguistic knowledge

from an input-output mapping appears to be a constraint which limits the potentiality

of the neuro-fuzzy model as a reliable estimator.

However and independently of our experiments, we can, by means of simple intuitive

arguments, break the idea that you can both have readable and accurate models for the

same price. Take the trivial example of fitting data sampled from a parabola shaped I/O

distribution. If you use whatever statistical tools which include the possibility to fit data

by polynomial, naturally the program will select for you a second degree polynomial as

the best model to fit the data. As a matter of fact, a second degree polynomial is not a

structure so easy to express with common words. Perhaps, the best you can do to describe

the behaviour of a one-dimensional parabola is to use three rules akin to the following: “if

x is nearly zero, y also”; “if x gets small, y will increase faster”; “if x increases, y will also

increase faster”. Is it really necessary to use more than these three rules to capture the

main information needed to describe the behaviour of the parabola? Suppose you try to

accurately fit the data with a linguistic fuzzy model. You know this is something you can



do because it has been demonstrated that this type of model has sufficient approximation

power once provided with the sufficient number of rules . Here resides a major problem

since, even for a simple parabola, a very accurate fit will demand an impressive number

of rules. Now, even if each of these rules is expressed in common words, having plenty of

them becomes an information hard to be managed and with an informative power not

superior to the original dataset.

In this context the main issue is no more the readibility/accuracy dilemma but becomes

the generalization/approximation problem. If it is demonstrated that linguistic model can

approximate any functional expression, there are no equivalent results that the general-

ization power of these formalisms is superior to others. The problem becomes important

in the perspective of estimation from data where the real problem is not really to approx-

imate a functional expression but how to select, starting from few samples, the model

complexity that will generalize the best in front of fresh data. On this field, the lazy

learning estimator appear to be superior to existing linguistic models. The availability of

rigorous and validation algorithms is probably the secret of the success of lazy algorithms,

which results more efficient in dealing with the key problem of estimation from limited

data: find the best trade/off complexity vs. performance. On this matter, they can profit

of the amount of theoretical results and experimental design collected along the years in

linear statistical methods.

These reasons justify the separation to maintain, we believe, between the two objectives

which are the readability of a model and its accuracy to fit the data. We believe also

that the symbolism used for expressing the model should not be the same as the one use

to construct the statistical approximator. If it is legitimate to aim at some qualitative

knowledge of any observed process, it is far from obvious that this qualitative description

could directly underlie the statistical structure that will accurately predict the data. In

order to qualitatively reason about the process such linguistic type of knowledge could

be useful, but as soon as precision is needed it is the right time to forget the common

language and to use fine algorithms and clever mathematics.
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