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Abstract The vehicle routing problem with stochastic demands and customers
(VRPSDC) requires finding the optimal route for a capacitated vehicle that delivers
goods to a set of customers, where each customer has a fixed probability of requir-
ing being visited and a stochastic demand. For large instances, the evaluation of the
cost function is a primary bottleneck when searching for high quality solutions within
a limited computation time. We tackle this issue by using an empirical estimation
approach. Moreover, we adopt a recently developed state-of-the-art iterative improve-
ment algorithm for the closely related probabilistic traveling salesman problem. We
integrate these two components into several metaheuristics and we show that they
outperform substantially the current best algorithm for this problem.
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1 Introduction

Stochastic vehicle routing problems (SVRPs) have enormous practical importance in
transportation, strategic planning and scheduling [1]. They are similar to deterministic
vehicle routing problems except that customers visits, their demands, or travel times are
described by probability distributions. The introduction of probabilistic elements into
a vehicle routing problem increases its difficulty and solving it becomes a much more
challenging task than for the deterministic counterpart. Classical examples of SVRPs
are the probabilistic traveling salesman problem [2,3], the vehicle routing problem
with stochastic customers [1,4,5], the vehicle routing problem with stochastic demands
[6], the vehicle routing problem with stochastic demands and customers [1,7], and the
vehicle routing problem with stochastic travel and service times [8]. These problems
are academic variants of various real world SVRPs [1,2,9,10]. Exact methods [11–15]
can solve only small sized SVRPs [10]. Pragmatic approaches to tackle SVRPs mainly
involve the application of stochastic local search methods [16], in particular iterative
improvement algorithms and metaheuristics [17–23].

The vehicle routing problem with stochastic demands and customers (VRPSDC)
[1] is concerned with minimizing the cost involved in routing a capacitated vehicle
that distributes goods to a number of customers. Each customer has a probability of
requiring being visited and a stochastic demand. The VRPSDC is an NP-hard problem
that models a number of practical problems in the areas of truckload operations and
package delivery systems [1,7]. This problem is one of the most difficult, classical
stochastic vehicle routing problems [10]. It combines two stochastic vehicle routing
problems: the probabilistic traveling salesman problem (PTSP) and the vehicle routing
problem with stochastic demands. The former is similar to the traveling salesman
problem except that each customer has a probability of requiring being visited; in the
latter, a capacitated vehicle has to serve all customers, where each customer has a
stochastic demand.

An effective strategy to tackle SVRPs such as the VRPSDC is a priori optimization
[1,10,24]. In this strategy, the goal is to find an a priori solution that minimizes the
expected cost of the associated a posteriori solution. The a priori solution is a sequence
of all customers, which is decided before knowing which customers need to be served
and what is their demand; the associated a posteriori solution, which is computed after
the realization of the stochastic elements is known, is obtained by following the a priori
solution but with some recourse actions such as, for example, skipping customers that
do not require being visited and returning to the depot for replenishment. An alternative
to a priori optimization is re-optimization [21]. For algorithms that solve other SVRPs
using re-optimization, we refer the reader to [25–29].

A priori optimization can be addressed by two classes of approaches: analytical
computation, which computes the cost of a solution using closed-form expressions;
and empirical estimation, which estimates the solution cost through Monte Carlo sim-
ulation. So far, the VRPSDC has been tackled by algorithms that adopt the analytical
computation approach. Unfortunately, this approach is computationally very expen-
sive. Consequently, for large instances with several hundreds of nodes, the adoption
of the analytical computation approach considerably affects the performance of the
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algorithms. This issue can be addressed by an empirical estimation approach, which
has not yet been investigated for the VRPSDC.

In our recent research [30–33], we developed 2.5-opt-EEais, an effective
estimation-based iterative improvement algorithm for the PTSP. Then, we used this
algorithm as a local search inside three metaheuristics: iterated local search (ILS) [34],
memetic algorithms (MAs) [35,36], and ant colony optimization (ACO) [37,38]. All
these metaheuristics use an estimation-based procedure to evaluate the solution cost.
Our 2.5-opt-EEais algorithm and estimation-based metaheuristics outperform
by quite a wide margin previously proposed algorithms for the PTSP. In this paper,
we extend the aforementioned metaheuristics to tackle the VRPSDC by customizing
the estimation-based procedure to evaluate the solution cost of the VRPSDC. We
directly use 2.5-opt-EEais as a local search algorithm in all metaheuristics. Thus,
during the iterative improvement phase, customers demand and vehicle capacity are
completely ignored. This particular usage is aimed to exploit the speed advantage of
2.5-opt-EEais.

In this paper, we carry out three sets of experiments. In the first set, we show that a
random restart local search that adopts 2.5-opt-EEais as the local search outper-
forms the existing tailor-made tabu search algorithm. In the second set, we compare
our proposed estimation procedure with the currently used analytical computation
procedure in a random restart local search and we show that the former is highly
effective as it substantially reduces the computation time needed to compare the cost
of the solutions. Finally, we study estimation-based ILS, MAs, and ACO. All three
algorithms obtain high quality solutions that are better than that of random restart
local search. Besides the adoption of 2.5-opt-EEais as local search, the high
performance of the three algorithms is to be ascribed to the rigorous parameter tuning,
which is performed by grouping the instances into a number of classes and by tuning
each algorithm on each instance class.

The paper is organized as follows: In Sect. 2, we describe the VRPSDC and its
solution approaches. In Sect. 3, we describe some estimation-based metaheuristics for
the VRPSDC. In Sect. 4, we present an experimental study of the proposed algorithms
and we show their effectiveness. In Sect. 5, we conclude the paper.

2 The VRPSDC

Formally, an instance of the VRPSDC can be defined on a graph G with the following
elements: a set V = {1, 2, ..., n} of nodes that represent customers, with node 1 being
the depot; a set A = {〈i, j〉 : i, j ∈ V, i �= j} of edges, where edge 〈i, j〉 connects
nodes i and j ; a set C = {ci j : 〈i, j〉 ∈ A} of travel costs, where ci j is the cost of using
edge 〈i, j〉 ∈ A; a set P = {pi : i ∈ V, i �= 1, 0 ≤ pi ≤ 1} of probabilities, where pi

is the probability that a node i requires being visited; a set ψ = {ψi : i ∈ V, i �= 1} of
random variables, where ψi describes the stochastic demand of node i and a vehicle
of capacity Q. It is assumed that (i) travel costs are symmetric, that is, for all pairs of
nodes i, j we have ci j = c ji ; (ii) the events that two distinct nodes i and j require
being visited and their demands are assumed to be independent; (iii) demand ψi of a
node i is a discrete random variable that can take a finite set of distinct demand levels
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{ξ1
i , . . . , ξ

Li
i } and the probability that ψi = ξ l

i is given by pl
i ; (iv) the information

that a node i does not require being visited is revealed before the vehicle leaves the
predecessor of node i ; (v) the exact demand of a node i is revealed only when the
vehicle reaches node i ; and (vi) the maximum demand of any node does not exceed
the vehicle capacity Q.

The a priori optimization for the VRPSDC consists in finding an a priori solution
that minimizes the expected cost of the a posteriori solution. The a priori solution is
a Hamiltonian tour, which is found before knowing which nodes require being visited
and their respective demands; the a posteriori solution is obtained by following the
nodes in the order of the a priori solution with the following recourse actions: nodes
that do not require being visited are skipped; if the vehicle is empty after serving a
node, it goes back to the depot for replenishment and resumes the delivery from the
next node that requires being visited; if the amount of goods available in the vehicle is
not enough to satisfy the demand of a node, all the goods in the vehicle are delivered
to the node, then the vehicle returns to the depot for replenishment, and it goes back
to the same node to deliver the remaining goods.

Bertsimas [1] and Gendreau et al. [12,39] derived closed-form expressions to
compute the exact cost of a VRPSDC solution. Let π = (π(1), π(2), . . . , π(n),
π(n + 1) = π(1)) be an a priori solution for the VRPSDC and it is a permutation of
the set V . The cost F(π) of π can be obtained as follows:

F(π) =
n∑

i=1

n+1∑

j=i+1

cπ(i)π( j) pπ(i)π( j) + γ2
(
Q

)
, (1)

where

pπ(i)π( j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pπ(i) pπ( j),

j = i + 1,

pπ(i) pπ( j)
∏ j−1

h=i+1(1 − pπ(h)),

j > i + 1,

(2)

γi
(
g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pπ(n)(cπ(n)π(1) + cπ(1)π(n))
∑

l|ξ l
π(n)>g pl

π(n),

(i = n, 1 ≤ g ≤ Q),

(1 − pπ(i))γi+1(g)

+pπ(i)
[ ∑

l|ξπ(i)>g pl
π(i)(γi+1(Q − ξ l

π(i))+ cπ(i)π(1) + cπ(1)π(i))

+∑
l|ξπ(i)<g pl

π(i)γi+1(g − ξ l
π(i))

]

+P(ξπ(i) = g|π(i) is present)
[

pπ(i)γi+1(Q)

+∑n
j=i+1 pπ(i)π( j)(cπ(i)π(1)

+cπ(1)π( j) − cπ(i)π( j))
]

(i = 2, . . . , n − 1; 1 ≤ g ≤ Q).
(3)
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In Eq. 1, the first term represents the expected cost ofπ under node skipping recourse
actions; the second term γi

(
g) represents the expected non-negative penalty cost from

the node π(i) to the depot, given that the residual capacity of the vehicle is equal to
g upon arrival at π(i). Since the first node in π is always the depot, the second term
computation starts with index 2 and the vehicle capacity Q. The time complexity of
evaluating Eq. 1 is O(n2 +nl Q), where l is the maximum number of different demand
levels for any node [12]. It should be noted that in Eq. 1, an undirected solution must
be evaluated twice—once in the clockwise direction and once in the anti-clockwise
direction. This is due to the fact that a vehicle with a finite capacity Q might have
different recourse actions depending on whether it visits the nodes in the clockwise or
the anti-clockwise direction.

For solving the VRPSDC, Gendreau et al. [12,39] proposed an exact method based
on the Integer L-shaped algorithm. This method has solved instances with up to 46
nodes. An important result established by Gendreau et al. [12,39] is that the presence
of probabilistic nodes makes the problem more difficult to solve than the presence of
stochastic demands. To study the impact of the number of probabilistic nodes on the
difficulty of solving the problem, the authors tested the exact method on instances with
1, (n − 1)/2, and n − 1 probabilistic nodes. The results showed that the performance
of the exact method decreases with the number of probabilistic nodes. For example,
to solve an instance with 11 of which 10 are probabilistic nodes, the Integer L-shaped
method required up to 53903 CPU seconds on a Silicon Graphics computer with a 33
Mhz processor.

Gendreau et al. [17,39] tackled this problem using a tabu search algorithm called
TABUSTOCH. For a complete description of the algorithm, we refer the reader to
[17]. To the best of our knowledge, TABUSTOCH is the only metaheuristic that
explicitly tackles the VRPSDC. The main novelty in TABUSTOCH is the adoption of
the analytical approximation approach in delta evaluation. The authors systematically
tested four analytical approximation schemes: a TSP delta evaluation scheme that
considers edge costs but completely ignores node probabilities and demands; a PTSP
delta evaluation that adopts edge costs weighted by node probabilities; two VRPSDC
delta evaluation schemes that consider edge costs, node probabilities, and demands.
After some preliminary experiments, the authors adopted the PTSP delta evaluation
scheme, which they found to be more effective than the TSP and VRPSDC schemes.

It is worthwhile to focus on some implementation details of TABUSTOCH. Gen-
dreau et al. [17] developed TABUSTOCH to tackle the VRPSDC with K vehicles,
where K is a parameter. A penalized cost function is used to force the algorithm to
achieve K a priori routes. The approximation scheme is more sophisticated when a
node from one a priori route is moved to another a priori route during randomized
node-insertion moves. In the experimental analysis, TABUSTOCH is applied to solve
VRPSDC instances of up to 46 nodes with 2 vehicles. On the instance of size 11 with
10 probabilistic nodes, where the Integer L-shaped method needed up to 53903 CPU
seconds, TABUSTOCH required only 15.46 CPU seconds to find the optimal solution
on the same hardware.

There are two main factors that motivated us to develop estimation-based algo-
rithms for the VRPSDC. First, the currently available metaheuristic, TABUSTOCH,
uses a computationally expensive analytical computation approach, which affects the
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performance of the algorithm for large instances. The effectiveness of using the alter-
native empirical estimation approach has never been studied within metaheuristics to
tackle the VRPSDC. Second, there is only one metaheuristic for the VRPSDC; the
possibility of using other metaheuristics to tackle the VRPSDC has not been studied.
However, there exists a number of previous works on estimation-based metaheuristics
for other SVRPs. Some examples are a stochastic simulated annealing algorithm [40]
and an ACO algorithm [41,42] for the PTSP as well as the cross entropy method [19]
and a multi descent algorithm [22] for the vehicle routing problem with stochastic
demands.

In this paper, we focus on a single vehicle VRPSDC because it will allow us to
exactly assess the computational overhead involved in using the closed-form VRPSDC
cost-function [12] and it is straightforward to extend the PTSP algorithms to the single
vehicle version.

3 Estimation-based metaheuristics

In this section, we describe the proposed algorithms starting by the estimation-based
evaluation procedure.

3.1 Estimation-based approach

The empirical estimation technique consists in estimating the cost F(π) on the
basis of sample costs f (π, ω1), f (π, ω2), . . . , f (π, ωM ) of a posteriori solutions
obtained from M independent realizations ω1, ω2, . . . , ωM of probabilities and sto-
chastic demands of nodes. F̂M (π) = 1

M

∑M
r=1 f (π, ωr ) is an unbiased estimator of

F(π). A realization comprises two components for each node i : the first component
takes a value ‘1’ with a probability pi and a value ‘0’ with a probability 1 − pi ;
the second component is a demand value sampled from the random distribution that
describes ξi when the first component is ‘1’. See Fig. 1 for an illustration of a priori
and a posteriori solutions. The time complexity involved in evaluating the cost of a
solution by empirical estimation is O(nM), which is independent from the vehicle
capacity, Q, and from the maximum number of different demand levels for any node,
l.

Crucial to the effectiveness of the estimation approach is the number of realizations
M used to estimate the cost of a solution. For this purpose, we use an adaptive sample
size procedure, called ANOVA-Race [32]. It is based on sequential hypothesis testing
where the sample size for testing the null hypothesis is not determined in advance,
but chosen adaptively. In ANOVA-Race, for a given set of a priori solutions that
need to be compared, their corresponding a posteriori solution costs are computed
on a realization-by-realization basis and each time a new realization is considered,
the ANOVA statistical test is applied on the computed estimates. If the ANOVA test
indicates that the cost estimate of a solution is significantly worse than at least another
one, the inferior solution is discarded from further evaluation. Tukeys’ honestly signif-
icant differences test [43] is used to identify the inferior solution. The race continues
until a single solution remains, or a maximum number M of realizations is considered.
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(a) (b)

(c) (d)
Fig. 1 Illustration of a priori and a posteriori solutions. Plot 1a shows an a priori solution for a VRPSDC
instance with eight nodes, where node 1 is the depot and the nodes are visited in the following order: 1, 2,
3, 4, 5, 6, 7, 8, and 1. Plot 1b shows an a posteriori solution in which nodes 2 and 7 that do not require
being visited are skipped assuming that the amount of goods available in the vehicle is enough to satisfy
the demands of other nodes. Plot 1c shows an a posteriori solution in which the vehicle is empty at node
4 after serving the node. The vehicle goes back to the depot (node 1) and it resumes the delivery from the
next node 5 that requires being visited. Plot 1d shows an a posteriori solution in which the amount of goods
available in the vehicle is not enough to satisfy the demand of node 6. The vehicle delivers all goods, returns
to the depot (node 1), and goes back to node 6 to deliver the remaining goods

In case more than one solution survive the race, the one with the least cost estimate
is selected as the best one. The ANOVA-Race procedure also adopts the method of
common random numbers [44] to reduce variance: a same set of realizations is used
to sequentially evaluate and compare two or more solutions costs obtained at each
iteration of a metaheuristic.

3.2 The 2.5-opt-EEais algorithm

2.5-opt-EEais [30,31] is an iterative improvement algorithm for the PTSP. It
adopts a 2.5-exchange neighborhood, which combines the 2-exchange and the node-
insertion neighborhoods [45], and estimation approach within the delta evaluation. The
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estimation approach additionally includes an adaptive sample size procedure based
on Student’s t test and two variance reduction techniques: the method of common
random numbers and importance sampling [44]. The algorithm also exploits standard
neighborhood reduction techniques. We refer the reader to [30] and [31] for more
details.

The customization of the PTSP delta evaluation in 2.5-opt-EEais to the
VRPSDC delta evaluation is not feasible because local modifications in a solution
entail a global change in the cost of a solution. Therefore, we use 2.5-opt-EEais
as developed for the PTSP without any modification as a local search algorithm in
all metaheuristics. Thus, in the local search phase, a PTSP approximation is used
for the VRPSDC by ignoring the nodes demands and the vehicle capacity. This
usage is aimed to maintain the speed advantage of 2.5-opt-EEais. We expect
that 2.5-opt-EEais is effective for the VRPSDC because it has been shown
that the stochasticity due to probabilistic nodes has more influence than the one
due to the stochastic demands for solving the VRPSDC and that the PTSP approxi-
mation in TABUSTOCH is more effective than the problem-specific approximation
[12,39].

3.3 Metaheuristics

In this section, we present the metaheuristics that we use to tackle the VRPSDC. We
choose random restart local search as a baseline.

3.3.1 Random restart local search

In random restart local search (RRLS), a local search algorithm is repeatedly applied
to new initial solutions, which are generated independently of the previously found
local optima. In our implementation of RRLS, the new initial solution for the local
search is generated by the nearest neighbor heuristic for the first n iterations, where n
is the size of the instance. After n iterations, the algorithm uses a random solution as
the new initial solution.

3.3.2 Iterated local search

Iterated local search (ILS) is similar to RRLS except that the initial solution for the local
search is obtained by a perturbation of the incumbent local optimum and it is always
applied to the best-so-far solution. The perturbation scheme consists in applying ndb

random double-bridge moves, where ndb is a parameter, and randomly choosing ps %
of the n nodes, where ps is a parameter. These nodes are removed from the solution
and re-inserted according to the farthest insertion heuristic. In the context of the PTSP,
insertion moves and edge-exchange moves are effective when the customer probability
values are small and large, respectively [30,31,46,47]. The search is restarted from a
new nearest neighbor solution when no improvement is found for rsti t · n iterations,
where rsti t ∈ [0, 1] is a parameter.
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3.3.3 Memetic algorithms

The memetic algorithm (MA) we use for the VRPSDC is based on MAGX, a high
performing TSP algorithm [48]. This algorithm starts with an initial population of
pop_size solutions generated by a randomized variant of the greedy construction
heuristic and applies local search to each of them. At each iteration, off_frac × pop_size
offspring are obtained using a greedy recombination operator, where off_frac ∈ (0, 1]
is a parameter. This operator generates an offspring from two parent solutions in three
phases: (i) all solution components that are common to the parents are copied to the
offspring, (ii) new low cost solution components that are not common to the parents
are added to the offspring (this is determined by a parameter pn), and (iii) low cost
solution components from the parents are added to the offspring (this is determined by
a parameter pc). The individuals for the mutation are chosen at random and the ILS
hybrid perturbation mechanism parameterized by ndb and ps is used to mutate them.
As soon as a new solution is obtained by mutation or recombination, local search is
applied to it.

3.3.4 Ant colony optimization

We use ant colony system (ACS) [49] to tackle the VRPSDC. This is one of the most
effective ACO algorithms for the TSP [37] and for the PTSP [32]. In this algorithm, at
each iteration m ants construct solutions as follows: the probability for an ant k to move
from node i to node j depends on a random variable q uniformly distributed in the
interval [0,1], and a parameter q0. If q ≤ q0, then, among the feasible components,
the component that maximizes the product τi jη

β
i j is chosen, where τi j and ηi j =

1/ci j are the pheromone value and the heuristic value associated with the edge 〈i, j〉,
respectively; and β is a parameter that determines the relative influence of the heuristic
information as an ant traverses an edge 〈i, j〉. Otherwise, the ant k at node i chooses
to move to the node j with a probability pk

i j , which is given by

pk
i j = τi j · ηβi j

∑
l∈N k

i
τil · ηβil

if j ∈ N k
i , (4)

where N k
i is the set of feasible neighbors of node i . As soon as an ant moves from

node i to node j , the pheromone value associated with the edge 〈i, j〉 is updated to
τi j = (1 − ϕ) · τi j + ϕ · τ0, where ϕ ∈ (0, 1] is a parameter, and τ0 is the initial
value of the pheromone. At the end of each iteration, solutions are compared and the
pheromone value associated with each edge 〈i, j〉 of the best-so-far solution is updated
to τi j = (1 −ρ) · τi j +ρ ·Δτ best

i j , where ρ ∈ (0, 1] is a parameter andΔτ best
i j is set to

the inverse of the cost of the best-so-far solution. Note that local search is applied to all
solutions constructed by the ants prior to the pheromone update with the best-so-far
solution.
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3.3.5 General remarks on the metaheuristics

In all metaheuristics, 2.5-opt-EEais is used as the local search algorithm. To
handle the stochastic element of the VRPSDC, all metaheuristics use ANOVA-Race
to compare the solutions produced at each iteration. Moreover, all these solutions are
undirected. Therefore, given a number of solutions that need to be compared, ANOVA-
Race compares twice this number of solutions since each solution is evaluated once in
clockwise direction and once in anti-clockwise direction. We denote the customized
metaheuristic algorithms RRLS-EE, ILS-EE, MAGX-EE, and ACS-EE, respectively,
where the suffix EE indicates that these algorithms adopt the empirical estimation
approach.

4 Experimental analysis

4.1 Experimental setup

The VRPSDC instances we used for the experiments are obtained as follows. First, TSP
instances are generated with the DIMACS instance generator of the TSP [50], where
the nodes are arranged as a number of clusters in a 106×106 square. Four instance sizes
are considered: 30, 100, 300, and 1,000. For each TSP instance, a same probability
value p is assigned to all nodes except the first node, which is the depot. We considered
values for p ranging from 0.050 to 0.200 with an increment of 0.025 and additional
values 0.3, 0.5, 0.8, and 1.0. For generating heterogenous probabilities, we generated
values using a beta distribution as described in [33]. The demand distributions for the
nodes and the vehicle capacity are assigned as described in [10]: each node takes at
random one of three discrete uniform distributions. The three distributions are on the
values in {1, . . . , 9}, {5, . . . , 15}, and {10, . . . , 20}. In this way, for a given instance,
the expected demand of a node that requires being visited is equal to 10. The vehicle
capacity Q is set to 10 × ∑n

i=2(p/fc), where fc is the so-called filling coefficient. We
consider values of fc in {1.0, 2.0, 4.0, 8.0}. The generated instances are grouped into
three classes according to p: {0.050, 0.075, 0.100} (Class I), {0.150, 0.175, 0.200}
(Class II), {0.300, 0.500, 0.800, 1.000} (Class III).

For the experimental analysis, we implemented TABUSTOCH as described in [10]
but we applied it to VRPSDC instances with only one vehicle. This includes two
modifications. First, the penalization in the cost function is not used. Second, in the
approximation scheme, the auxiliary computations are excluded. We use the same
parameter values as suggested in [10].

All algorithms are implemented in C and compiled with gcc, version 3.3. The
implementation of ACS-EE is based on ACOTSP [51]. Experiments are carried out
on AMD OpteronTM244 processors running at 1.75 GHz with 1 MB L2-Cache and 2
GB RAM, under Rocks Cluster GNU/Linux.

For all algorithms, the quadrant nearest-neighbor strategy [52,53] is used to con-
struct the neighborhood list for each node. The length of the list is set to 40. The
nearest-neighbor heuristic is used to generate the initial solution in TABUSTOCH,
RRLS-EE, ILS-EE, and MAGX-EE. In ACS-EE, the candidate list for solution con-
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struction is set to size 40. The minimum number of realizations used in the adaptive
sampling procedure before applying ANOVA-Race is set to five; the null hypothe-
sis is rejected at a significance level of 0.05. All algorithms use a same set of M
realizations for all iterations; however, realizations are selected randomly from this
set at each iteration. The maximum number M of realizations is set to one thousand
in all algorithms. The critical values of the F-distribution and Tukey’s HSD test are
pre-computed and stored in a look up table. The closed-form VRPSDC cost function
is used for the post-evaluation of the best-so-far solutions found by all algorithms.
For 2.5-opt-EEais, we use the same parameter values obtained for the PTSP, as
reported in [33].

Since in [10], the impact of the values of node probabilities on the effectiveness
of the algorithms has not been investigated, we present exemplary results obtained
on several instances with homogeneous node probability values. The trend of the
results obtained on instances with heterogenous node probability values is similar to
the homogeneous cases. Complete results and numerical values are given in an online
supplementary document [54].

4.2 Effectiveness of 2.5-opt-EEais

In this section, we show that a simple random restart local search that uses
2.5-opt-EEais, is more effective than TABUSTOCH. Since RRLS-EE uses
2.5-opt-EEais and ANOVA-Race, it will be difficult for us to attribute the effec-
tiveness only to the adoption of 2.5-opt-EEais. Therefore, we use RRLS-AC, a
random restart local search similar to RRLS-EE with the exception that local optima
are compared using the closed-form VRPSDC cost function. We evaluate the two
algorithms on instances with 30, 100, and 300 nodes.

The stopping criterion for each instance is chosen as follows: TABUSTOCH is
run until it performs 1,000 iterations and the time needed for completion is recorded.
The time limit for RRLS-AC is then set to the time taken by TABUSTOCH. Table 1
shows the resulting average computation times. From the results we can observe that
the instance size has a strong impact on the computation time of TABUSTOCH. In
particular, the computation time increases quite drastically (more than two orders
of magnitude) by increasing the instance size from 30 to 300. However, there is no
considerable difference in computation time for different values of fc. The observed
trends are due to the fact that the term n2 in the O(n2 + nl Q) time complexity of the
closed-form VRPSDC cost function clearly dominates the other terms.

Figure 2 shows exemplary run-time development plots on instances of size 100.
From these plots, we can observe that RRLS-AC completely outperforms TABUS-
TOCH. We can also observe from the plots that the improvement in TABUSTOCH
when moving from an incumbent solution to a neighboring solution is rather small.
This is typical when an algorithm moves in the space of neighboring solutions. Fur-
thermore, it should be noted that, for a fixed value of fc, the relative difference in
the average solution cost between TABUSTOCH and RRLS-AC increases with an
increase of p. This is due to the adoption of the randomized node-insertion neighbor-
hood in TABUSTOCH, which we guess becomes less effective for large values of p.
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Table 1 Computation time (in CPU seconds) needed by TABUSTOCH to complete 1,000 iterations.

p(fc) n = 30 n = 100 n = 300

mean s.d. mean s.d. mean s.d.

0.100(1.00) 38 1 502 10 5457 114

0.100(8.00) 40 1 526 13 5727 99

0.200(1.00) 37 1 487 11 5268 130

0.200(8.00) 40 1 521 8 5347 149

0.300(1.00) 37 0 473 8 4999 91

0.300(8.00) 40 1 494 11 5035 135

0.500(1.00) 36 0 464 10 4842 78

0.500(8.00) 40 0 477 8 4917 122

0.800(1.00) 36 1 457 6 4738 55

0.800(8.00) 38 0 466 5 4781 78

1.000(1.00) 36 1 456 5 4638 60

1.000(8.00) 37 0 464 5 4749 78

For each combination of p and fc, the mean and the standard deviation (s.d.) are computed over 10 instances
of size 30, 100, and 300

Note that for the node-insertion neighborhood, we also observed a similar behavior in
iterative improvement algorithms for the PTSP [30,31].

The high performance of RRLS-AC is due to the adoption of 2.5-opt-EEais.
This can be inferred from Figure 2, which shows that for RRLS-AC there is a large
improvement within a short computation time (about 5 s). The traces of RRLS-AC
show that this large improvement is achieved in the very first iteration after the first
run of 2.5-opt-EEais on the initial solution.

For a given value of p, the relative difference in the average solution cost between
the two algorithms decreases with an increase in the value of fc. This can be explained
as follows: the number of recourse actions in which the vehicle has to return back to
the depot for replenishment increases with an increase in the value of fc. Since this
recourse action is ignored by 2.5-opt-EEais, the quality of the local optima found
by 2.5-opt-EEais decreases with an increase of fc.

Table 2 reports the observed relative difference between the final solution cost
achieved by the two algorithms, with a 95 % confidence bound obtained through a t
test. For the absolute values, we refer the reader to [54]. The results show as general
trend, that RRLS-AC is better than TABUSTOCH across a wide range of instance
sizes, node probabilities, and vehicle capacities. Most of the observed differences are
significant according to the t test.

4.3 Effectiveness of ANOVA-Race

In this section, we assess the effectiveness of the estimation-based evaluation pro-
cedure, ANOVA-Race, by comparing RRLS-EE to RRLS-AC. The two algorithms
differ only with respect to the evaluation procedure. Given that the PTSP-specific
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Fig. 2 Experimental results on clustered VRPSDC instances of size 100. The plots represent the develop-
ment of solution cost over computation time for RRLS-AC and TABUSTOCH. Solution costs are normalized
with respect to the best solution found by TABUSTOCH on an instance-by-instance basis for ten instances;
the normalized solution cost is then aggregated

2.5-opt-EEais obtained high quality solutions, we include in our analysis the
RRLS-EE algorithm developed for the PTSP. We denote this algorithm RRLS-
EE(PTSP). Note that RRLS-EE(PTSP) ignores node demands and uses the t test
to compare two local optima.

The three algorithms are compared on three instance sizes: 100, 300, and 1,000. For
each level of instance size and for each combination of p and fc, we use 10 instances
for the comparison. Since the time limit used in Sect. 4.2 is rather high, we allow the
three algorithms to run for n CPU seconds, where n is the size of the instance.

Figure 3 shows the run-time development plots obtained on instances of size 1,000.
Note that in the plots the computation time is shown in log scale because the difference
in speed between the two algorithms is rather large. From the plots we can observe
that RRLS-EE obtains the average solution cost of RRLS-AC in between 0.5 and 2
orders of magnitude less CPU time. From the run-time development plots reported in
[54], we can observe the following: RRLS-EE is faster than RRLS-AC by a factor of 1
to 2 on instances of size 300; we could not observe considerable speedup for instances
of size 100.
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Table 2 Comparison of the average cost obtained by RRLS-AC and TABUSTOCH over ten instances of
size 30 and 300.

n = 30 n = 300

p(fc) d [95 % CI] d [95 % CI]

0.100(1.00) +0.04 [−1.53,+1.62] −12.58 [−14.37,−10.78]
0.100(8.00) +1.85 [+0.58,+3.13] −3.40 [−4.39,−2.41]
0.200(1.00) −2.94 [−5.34,−0.53] −14.32 [−17.21,−11.44]
0.200(8.00) −0.21 [−2.38,+1.97] −5.36 [−6.35,−4.36]
0.300(1.00) −5.78 [−10.31,−1.24] −15.76 [−18.48,−13.05]
0.300(8.00) −2.08 [−3.46,−0.70] −6.74 [−7.53,−5.94]
0.500(1.00) −8.02 [−13.34,−2.70] −14.69 [−18.57,−10.81]
0.500(8.00) −2.63 [−3.70,−1.56] −6.55 [−7.76,−5.34]
0.800(1.00) −12.46 [−18.41,−6.50] −12.56 [−15.64,−9.48]
0.800(8.00) −3.15 [−4.58,−1.72] −7.17 [−8.51,−5.82]
1.000(1.00) −11.98 [−16.36,−7.59] −14.49 [−17.41,−11.57]
1.000(8.00) −3.85 [−5.38,−2.31] −8.92 [−11.06,−6.79]
Explanation of the contents and the typographic conventions For a given comparison A versus B, the table
reports the observed relative difference d between the two algorithms A and B and the 95 % confidence
interval, CI, obtained through the t test. If the value is positive, algorithm A obtained an average cost that
is larger than the one obtained by algorithm B. In this case, the value is typeset in italics if it is significantly
different from zero, according to the t test, at a confidence level of 95 %. If the value is negative, algorithm
A obtained an average cost that is smaller than the one obtained by algorithm B. In this case, the value is
typeset in boldface if it is significantly different from zero, according to the t test, at a confidence level of
95 %

Table 3 shows the average number of iterations performed by the two algorithms
for the given computation time. On instances of size 1,000, the average number of
iterations increases with an increase in the value of p: it increases from 34 to 43
in RRLS-AC, while in RRLS-EE, it increases from 330 to 3006. This is due to the
effectiveness of ANOVA-Race, which needs only few realizations to select the best
solution for large values of p. Although the average number of iterations performed
by RRLS-EE(PTSP) is slightly higher than that of RRLS-EE, the observed differences
are rather small. This shows that the VRPSDC -specific evaluation does not involve a
large computational overhead for taking into account the stochastic demands. We can
observe a similar trend for instances of size 100 and 300 [54].

Table 4 shows the difference in the average cost between the three algorithms on
instances of size 1,000. The results confirm that the VRPSDC-specific estimation
approach is more effective than the PTSP-specific estimation approach and the analyt-
ical computation approach. RRLS-EE obtains average solution costs that are between
0.23% and 1.90% lower than those of RRLS-AC. Although the difference in the num-
ber of iterations between RRLS-EE and RRLS-AC is quite large, the difference in the
final solution cost is rather small. This is due to the adoption of 2.5-opt-EEais,
which, as shown in Sect. 4.2, produces a large improvement at the first iteration. Con-
cerning the comparison between RRLS-EE and RRLS-EE(PTSP), we can observe
that the two algorithms achieve similar average costs for fc = 1.0, where the instances
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Fig. 3 Experimental results on clustered VRPSDC instances of size 1,000 for 1,000 CPU seconds. The
plots represent the development of the solution cost over computation time for RRLS-EE, RRLS-EE(PTSP),
and RRLS-AC. Solution costs are normalized with respect to the best solution found by RRLS-AC on an
instance-by-instance basis for ten instances; the normalized solution cost is then aggregated

are similar to PTSP instances. However, as fc increases, the PTSP-specific estimation
approach becomes less effective. Note that for a given value of p, the difference in the
average cost between RRLS-EE and RRLS-EE(PTSP) increases up to fc = 4.0; the
observed difference for fc = 8.0 is less than that of fc = 4.0. The results on instances
of size 100 and 300, which are given in [54], shows that the difference is less for
smaller instances.

4.4 Comparison between estimation-based metaheuristics

In this section, we compare ILS-EE, MAGX-EE, ACS-EE, and RRLS-EE on a new
set of instances with 100, 300, and 1000 nodes. We allow each algorithm to run for n
CPU seconds, where n is the size of the instance.

First, we tune the parameters of ILS-EE, MAGX-EE, and ACS-EE using Iterated
F-Race [55,56]. For the tuning task, we use a different set of clustered instances with
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Table 3 The average number of iterations performed by RRLS-EE and RRLS-AC.

p(fc) n = 100 n = 1, 000

RRLS-EE RRLS-AC RRLS-EE (PTSP) RRLS-EE RRLS-AC RRLS-EE
(PTSP)

0.100(1.00) 269 220 278 330 34 340

0.100(8.00) 268 216 278 326 30 336

0.200(1.00) 529 364 556 969 43 998

0.200(8.00) 514 353 554 962 41 999

0.300(1.00) 797 464 825 1243 43 1254

0.300(8.00) 759 452 832 1238 48 1248

0.500(1.00) 1364 594 1408 1645 44 1662

0.500(8.00) 1302 581 1402 1650 46 1662

0.800(1.00) 2394 715 2445 2244 41 2239

0.800(8.00) 2383 705 2435 2249 41 2259

1.000(1.00) 3938 800 3976 2985 43 3038

1.000(8.00) 3940 791 3975 3006 43 3014

Each algorithm is allowed to run for n CPU seconds, where n is the size of the instance

1,000 nodes: we generated 120 instances (ten instances times three values of p times
four values of fc) for instance Class I and Class II, respectively, and 160 instances (ten
instances times four values of p times four values of fc) for instance Class III. Iterated
F-Race is run nine times (three metaheuristics times three instance classes), each time
with a computational budget of 1,000 runs. Each run of a metaheuristic is given a
stopping criterion of n (=1,000) CPU seconds. Since Iterated F-Race is a stochastic
algorithm, the parameter tuning for the VRPSDC algorithms is repeated ten times. For
each metaheuristic and each instance class, we have a set of ten fine tuned parameter
configurations. The obtained parameter configurations are reported in [54].

To study the cost of the solutions obtained by each algorithm, we use the expected
solution cost obtained by a metaheuristic, where the expectation is taken with respect
to the distribution of tuned parameter configurations (ten parameter configurations)
and the distribution of test instances. The costs of the solutions obtained by ILS-EE,
MAGX-EE, and ACS-EE are normalized by the final solution cost reached by RRLS-
EE. The normalization is done on an instance-by-instance basis on ten instances for
each combination of p and fc.

Figure 4 shows exemplary run-time development plots of the four estimation-based
algorithms for up to 1,000 CPU seconds on instance size 1,000. For MAGX-EE and
ACS-EE, the plots take into account the improvement obtained by the first local search
applied to an individual of the population. Due to the adoption of 2.5-opt-EEais,
in all algorithms the initial solution is improved between 10 and 40 % in a very short
computation time. Further improvements in the following iterations are considerably
smaller than that of the first iteration.

Figure 5 shows the box plot of the solution cost of the algorithms on instance size
1,000. We can observe that ILS-EE, MAGX-EE, and ACS-EE outperform RRLS-EE
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Fig. 4 Experimental results on clustered VRPSDC instances of size 1,000 for 1,000 CPU seconds. The
plots represent the cost of the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE normalized by the
one obtained by RRLS-EE. The normalization is done on an instance-by-instance basis for ten instances;
the normalized solution cost is then aggregated

across most probability levels. The difference in the solution cost between RRLS-EE
and the other algorithms increases with an increase in instance size—see the online
supplementary document [54]. For a given instance size, the observed differences
in the solution cost between the four estimation-based algorithms increase with an
increase in the node probability p. This shows that for instances with small values
of p, it is rather easy to find high quality solutions by restarting 2.5-opt-EEais
a number of times. Nevertheless, for instances with large values of p, in addition
to 2.5-opt-EEais, the use of sophisticated metaheuristics is crucial to find high
quality solutions.

Table 5 reports the observed relative difference between the solution costs obtained
by the algorithms, with a 95 % confidence bound given by the t test. The results confirm
that the three estimation-based metaheuristics are more effective than RRLS-EE and
that they obtain average solution costs that are significantly less than the cost of the best
solution obtained by RRLS-EE on a wide range of instance sizes and probability levels:
ILS-EE, MAGX-EE, and ACS-EE obtain average solution costs that are 2.32, 2.19,
and 2.55 % less than that of RRLS-EE, respectively. The differences in the average
solution costs between ILS-EE, MAGX-EE, and ACS-EE are rather small and the
observed differences are less than 1 %. On Class I instances, the average solution cost
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Fig. 5 Experimental results on clustered VRPSDC instances. The box plots represent the normalized cost of
the solutions obtained by ILS-EE, MAGX-EE, and ACS-EE. The obtained solution costs of the algorithms
are normalized by the final solution cost reached by RRLS-EE. The normalization is done on an instance-
by-instance basis for 10 instances; the normalized solution cost is then aggregated. The dotted horizontal
line denotes therefore the final cost of RRLS-EE

obtained by ILS-EE is 0.09 and 0.07 % less than that of MAGX-EE and ACS-EE,
respectively. On Class II instances, the average solution cost obtained by ACS-EE
is 0.08 and 0.19 % less than that of ILS-EE and MAGX-EE, respectively. On Class
III instances, the observed differences are 0.60 and 0.79 %. The aggregated results
over all instances show that ACS-EE is more effective than ILS-EE and MAGX-EE:
the average solution cost obtained by ACS-EE is 0.23 and 0.37 % lower than that of
ILS-EE and MAGX-EE, respectively. The general trends of the results on instances of
size 100 and 300, which are reported in [54], are consistent with the results presented
here except that the observed differences are smaller.

5 Conclusions

In this paper, we customized a number of metaheuristic algorithms to tackle the vehicle
routing problem with stochastic demands and customers (VRPSDC). The customiza-
tion primarily consists in using a VRPSDC-specific cost evaluation procedure and
in tuning the parameters of the algorithms for the VRPSDC. All algorithms use the
2.5-opt-EEais local search, the state-of-the-art iterative improvement algorithm
for the PTSP.

The two main contributions of the paper are the following. From a methodological
perspective, we tackle for the first time the VRPSDC using the empirical estimation
approach and we show that this approach is more effective than the previously proposed
analytical computation approach, particularly on large instances. From an algorithmic
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Estimation-based metaheuristics for the single VRPSDC

Ta
bl

e
5

co
nt

in
ue

d

p(
fc
)

IL
S-

E
E

ve
rs

us

M
A

G
X

-E
E

IL
S-

E
E

ve
rs

us

A
C

S-
E

E

IL
S-

E
E

ve
rs

us

R
R

L
S-

E
E

M
A

G
X

-E
E

ve
rs

us

A
C

S-
E

E

M
A

G
X

-E
E

ve
rs

us

R
R

L
S-

E
E

A
C

S-
E

E

ve
rs

us

R
R

L
S-

E
E

d
[9

5%
C

I]
d

[9
5%

C
I]

d
[9

5%
C

I]
d

[9
5%

C
I]

d
[9

5%
C

I]
d

[9
5%

C
I]

0.
17

5(
4.

00
)

−0
.0

9
[−

0.
22
,
+0
.0

4]
+0
.1

2
[−

0.
02
,
+0
.2

6]
−2
.0

2
[−

2.
15
,
−1
.9

0]
+0
.2

2
[+

0.
07
,
+0
.3

6]
−1
.9

3
[−

2.
04
,
−1
.8

3]
−2
.1

4
[−

2.
29
,
(2
.0

0)
]

0.
17

5(
8.

00
)

−0
.0

6
[−

0.
14
,
+0
.0

3]
+0
.1

5
[+

0.
05
,
+0
.2

4]
−1
.2

2
[−

1.
29
,
−1
.1

4]
+0
.2

0
[+

0.
10
,
+0
.3

1]
−1
.1

6
[−

1.
24
,
−1
.0

8]
−1
.3

6
[−

1.
47
,
−1
.2

5]
0.

20
0(

1.
00

)
−0
.0

8
[−

0.
16
,
−0
.0

1]
+0
.0

2
[−

0.
06
,
+0
.1

0]
−2
.3

0
[−

2.
38
,
−2
.2

1]
+0
.1

0
[+

0.
02
,
+0
.1

8]
−2
.2

2
[−

2.
31
,
−2
.1

2]
−2
.3

2
[−

2.
40
,
−2
.2

3]
0.

20
0(

2.
00

)
−0
.2

3
[−

0.
41
,
−0
.0

4]
+0
.1

1
[−

0.
06
,
+0
.2

8]
−2
.9

0
[−

3.
10
,
−2
.6

9]
+0
.3

4
[+

0.
20
,
+0
.4

8]
−2
.6

7
[−

2.
83
,
−2
.5

2]
−3
.0

0
[−

3.
17
,
−2
.8

4]
0.

20
0(

4.
00

)
−0
.0

5
[−

0.
19
,
+0
.1

0]
+0
.1

9
[+

0.
04
,
+0
.3

5]
−2
.5

0
[−

2.
67
,
−2
.3

4]
+0
.2

4
[+

0.
07
,
+0
.4

1]
−2
.4

6
[−

2.
62
,
−2
.3

0]
−2
.6

9
[−

2.
87
,
−2
.5

1]
0.

20
0(

8.
00

)
−0
.1

3
[−

0.
23
,
−0
.0

3]
+0
.1

8
[+

0.
10
,
+0
.2

7]
−1
.4

4
[−

1.
53
,
−1
.3

5]
+0
.3

1
[+

0.
22
,
+0
.4

1]
−1
.3

1
[−

1.
39
,
−1
.2

3]
−1
.6

2
[−

1.
72
,
−1
.5

1]
ov

er
al

l
−0
.1

1
[−

0.
14
,
−0
.0

8]
+0
.0

8
[+

0.
05
,
+0
.1

2]
−1
.9

8
[−

2.
04
,
−1
.9

3]
+0
.1

9
[+

0.
15
,
+0
.2

2]
−1
.8

8
[−

1.
93
,
−1
.8

3]
−2
.0

6
[−

2.
12
,
−2
.0

1]
C

la
ss

II
I

0.
30

0(
1.

00
)

−0
.0

8
[−

0.
22
,
+0
.0

6]
+0
.0

1
[−

0.
13
,
+0
.1

4]
−3
.3

8
[−

3.
53
,
−3
.2

4]
+0
.0

9
[+

0.
01
,
+0
.1

6]
−3
.3

0
[−

3.
40
,
−3
.2

1]
−3
.3

9
[−

3.
47
,
−3
.3

1]
0.

30
0(

2.
00

)
−0
.1

2
[−

0.
32
,
+0
.0

9]
+0
.2

0
[+

0.
01
,
+0
.4

0]
−3
.7

9
[−

3.
99
,
−3
.5

8]
+0
.3

2
[+

0.
16
,
+0
.4

8]
−3
.6

7
[−

3.
83
,
−3
.5

2]
−3
.9

8
[−

4.
18
,
−3
.7

8]
0.

30
0(

4.
00

)
−0
.2

8
[−

0.
48
,
−0
.0

8]
+0
.0

4
[−

0.
16
,
+0
.2

4]
−3
.4

3
[−

3.
65
,
−3
.2

1]
+0
.3

2
[+

0.
12
,
+0
.5

2]
−3
.1

6
[−

3.
38
,
−2
.9

4]
−3
.4

7
[−

3.
63
,
−3
.3

1]
0.

30
0(

8.
00

)
−0
.2

7
[−

0.
39
,
−0
.1

5]
−0
.0

7
[−

0.
17
,
+0
.0

3]
−2
.1

0
[−

2.
20
,
(2
.0

0)
]

+0
.2

0
[+

0.
07
,
+0
.3

3]
−1
.8

4
[−

1.
94
,
−1
.7

3]
−2
.0

3
[−

2.
11
,
−1
.9

5]
0.

50
0(

1.
00

)
+0
.1

3
[−

0.
06
,
+0
.3

1]
+0
.4

8
[+

0.
29
,
+0
.6

7]
−3
.6

7
[−

3.
84
,
−3
.5

0]
+0
.3

5
[+

0.
27
,
+0
.4

2]
−3
.8

0
[−

3.
86
,
−3
.7

4]
−4
.1

3
[−

4.
19
,
−4
.0

7]
0.

50
0(

2.
00

)
−0
.1

1
[−

0.
37
,
+0
.1

5]
+0
.7

7
[+

0.
52
,
+1
.0

2]
−4
.5

4
[−

4.
86
,
−4
.2

3]
+0
.8

8
[+

0.
69
,
+1
.0

7]
−4
.4

4
[−

4.
69
,
−4
.1

9]
−5
.2

7
[−

5.
53
,
−5
.0

1]
0.

50
0(

4.
00

)
−0
.0

9
[−

0.
37
,
+0
.1

9]
+0
.6

8
[+

0.
39
,
+0
.9

7]
−3
.9

8
[−

4.
26
,
−3
.6

9]
+0
.7

7
[+

0.
60
,
+0
.9

4]
−3
.9

0
[−

4.
11
,
−3
.6

8]
−4
.6

3
[−

4.
82
,
−4
.4

4]
0.

50
0(

8.
00

)
+0
.0

0
[−

0.
14
,
+0
.1

4]
+0
.3

0
[+

0.
14
,
+0
.4

5]
−2
.9

8
[−

3.
09
,
−2
.8

6]
+0
.2

9
[+

0.
15
,
+0
.4

4]
−2
.9

8
[−

3.
09
,
−2
.8

7]
−3
.2

6
[−

3.
39
,
−3
.1

4]
0.

80
0(

1.
00

)
−0
.3

2
[−

0.
45
,
−0
.1

8]
+0
.6

8
[+

0.
54
,
+0
.8

1]
−3
.6

0
[−

3.
76
,
−3
.4

5]
+1
.0

0
[+

0.
88
,
+1
.1

2]
−3
.3

0
[−

3.
45
,
−3
.1

5]
−4
.2

5
[−

4.
36
,
−4
.1

5]
0.

80
0(

2.
00

)
−0
.9

3
[−

1.
22
,
−0
.6

4]
+0
.6

6
[+

0.
43
,
+0
.8

9]
−5
.1

0
[−

5.
35
,
−4
.8

4]
+1
.6

1
[+

1.
35
,
+1
.8

6]
−4
.2

1
[−

4.
45
,
−3
.9

6]
−5
.7

2
[−

5.
94
,
−5
.5

0]
0.

80
0(

4.
00

)
−0
.6

4
[−

0.
91
,
−0
.3

7]
+1
.0

1
[+

0.
80
,
+1
.2

2]
−4
.5

0
[−

4.
77
,
−4
.2

4]
+1
.6

6
[+

1.
40
,
+1
.9

2]
−3
.8

9
[−

4.
17
,
−3
.6

0]
−5
.4

6
[−

5.
70
,
−5
.2

2]
0.

80
0(

8.
00

)
−0
.4

3
[−

0.
64
,
−0
.2

1]
+0
.8

3
[+

0.
63
,
+1
.0

3]
−3
.7

9
[−

3.
99
,
−3
.5

9]
+1
.2

7
[+

1.
10
,
+1
.4

3]
−3
.3

8
[−

3.
54
,
−3
.2

2]
−4
.5

9
[−

4.
73
,
−4
.4

4]

123



P. Balaprakash et al.

Ta
bl

e
5

co
nt

in
ue

d

p(
fc
)

IL
S-

E
E

ve
rs

us

M
A

G
X

-E
E

IL
S-

E
E

ve
rs

us

A
C

S-
E

E

IL
S-

E
E

ve
rs

us

R
R

L
S-

E
E

M
A

G
X

-E
E

ve
rs

us

A
C

S-
E

E

M
A

G
X

-E
E

ve
rs

us

R
R

L
S-

E
E

A
C

S-
E

E

ve
rs

us

R
R

L
S-

E
E

d
[9

5%
C

I]
d

[9
5%

C
I]

d
[9

5%
C

I]
d

[9
5%

C
I]

d
[9

5%
C

I]
d

[9
5%

C
I]

1.
00

0(
1.

00
)

+0
.2

9
[+

0.
16
,
+0
.4

3]
+0
.8

5
[+

0.
71
,
+0
.9

8]
−3
.6

3
[−

3.
77
,
−3
.4

9]
+0
.5

5
[+

0.
46
,
+0
.6

4]
−3
.9

1
[−

4.
02
,
−3
.8

1]
−4
.4

4
[−

4.
53
,
−4
.3

5]
1.

00
0(

2.
00

)
−0
.0

8
[−

0.
34
,
+0
.1

7]
+1
.1

0
[+

0.
84
,
+1
.3

6]
−5
.2

8
[−

5.
55
,
−5
.0

0]
+1
.1

8
[+

0.
94
,
+1
.4

3]
−5
.2

0
[−

5.
42
,
−4
.9

7]
−6
.3

0
[−

6.
52
,
−6
.0

9]
1.

00
0(

4.
00

)
−0
.1

4
[−

0.
42
,
+0
.1

5]
+1
.1

7
[+

0.
90
,
+1
.4

5]
−4
.8

2
[−

5.
16
,
−4
.4

7]
+1
.3

1
[+

1.
09
,
+1
.5

3]
−4
.6

9
[−

5.
02
,
−4
.3

5]
−5
.9

2
[−

6.
22
,
−5
.6

2]
1.

00
0(

8.
00

)
−0
.0

7
[−

0.
35
,
+0
.2

0]
+0
.8

9
[+

0.
60
,
+1
.1

8]
−4
.7

0
[−

4.
97
,
−4
.4

4]
+0
.9

7
[+

0.
74
,
+1
.1

9]
−4
.6

3
[−

4.
84
,
−4
.4

3]
−5
.5

5
[−

5.
77
,
−5
.3

3]
ov

er
al

l
−0
.2

0
[−

0.
25
,
−0
.1

4]
+0
.6

0
[+

0.
54
,
+0
.6

5]
−3
.9

6
[−

4.
02
,
−3
.8

9]
+0
.7

9
[+

0.
74
,
+0
.8

4]
−3
.7

7
[−

3.
83
,
−3
.7

1]
−4
.5

2
[−

4.
60
,
−4
.4

5]
ov

er
al

l(
3

cl
as

se
s)

−0
.1

4
[−

0.
16
,
−0
.1

1]
+0
.2

3
[+

0.
21
,
+0
.2

6]
−2
.3

2
[−

2.
38
,
−2
.2

6]
+0
.3

7
[+

0.
34
,
+0
.4

0]
−2
.1

9
[−

2.
24
,
−2
.1

3]
−2
.5

5
[−

2.
61
,
−2
.4

9]
Ty

po
gr

ap
hi

c
co

nv
en

tio
ns

ar
e

th
e

sa
m

e
as

in
Ta

bl
e

2.

123



Estimation-based metaheuristics for the single VRPSDC

point-of-view, we showed that the proposed estimation-based algorithms are more
effective than the existing analytical computation tabu search algorithm. This allowed
us to obtain new state-of-the-art algorithms for the VRPSDC.

Further work will be devoted to extend the proposed estimation-based algorithms to
the VRPSDC with multiple vehicles. Given the observed superior performance of the
PTSP-specific iterative improvement algorithm for the VRPSDC and the previously
proposed analytical approximation scheme that ignores stochastic demands, it seems
that the stochastic demand element, which makes delta evaluation difficult, is not cru-
cial on the tested class of instances. Also, for the related vehicle routing problem with
stochastic demands (VRPSD), Bianchi et al. [20] showed that the TSP approxima-
tion is better than the problem-specific delta evaluation. In this context, the impact of
stochastic demands in the VRPSD and the VRPSDC needs further investigation.
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