
The irace Package: User Guide

Manuel López-Ibáñez, Leslie Pérez Cáceres, Jérémie Dubois-Lacoste,
Thomas Stützle and Mauro Birattari

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

August 11, 2016

Contents

1 General information 4
1.1 Background . 4
1.2 Version . 4
1.3 License . 4

2 Before starting 4

3 Installation 5
3.1 System requirements . 5
3.2 irace installation . 5

3.2.1 Install automatically within R . 5
3.2.2 Manual download and installation . 5
3.2.3 Local installation . 6
3.2.4 Testing the installation and invoking irace 7

4 Running irace 7
4.1 Step-by-step setup guide . 9
4.2 Set-up example for ACOTSP . 12

5 irace scenario 13
5.1 Target algorithm parameters . 13

5.1.1 Parameter types . 13
5.1.2 Parameter domains . 14
5.1.3 Conditional parameters . 14
5.1.4 Parameter file format . 14
5.1.5 Parameters R format . 15

5.2 Target algorithm runner . 17
5.2.1 Target runner executable program . 17
5.2.2 Target runner R function . 18

5.3 Target evaluator . 19
5.3.1 Target evaluator R function . 20
5.3.2 Target evaluator executable program . 20

5.4 Training instances . 20

1

5.5 Initial configurations . 22
5.6 Forbidden configurations . 22

6 Parallelization 23

7 Testing of configurations 23

8 Recovering irace runs 24

9 Output and results 25
9.1 Text output . 25
9.2 Data file output . 27
9.3 Analysis of results . 32

10 Advanced topics 37
10.1 Tuning budget . 37
10.2 Multi-Objective tuning . 38
10.3 Tuning computation time . 38
10.4 Heterogeneous scenarios . 39
10.5 Choosing the statistical test . 39
10.6 Complex parameters . 40
10.7 Unreliable target algorithms . 41

11 irace options 41
11.1 General options . 41
11.2 Elitist irace . 42
11.3 Internal irace options . 43
11.4 Target algorithm parameters . 44
11.5 Target algorithm execution . 44
11.6 Initial configurations . 45
11.7 Training instances . 45
11.8 Tuning budget . 45
11.9 Statistical test . 46
11.10 Recovery . 46
11.11 Testing . 46

12 FAQ 47
12.1 Is irace minimizing or maximizing the output of my algorithm? 47
12.2 Is it possible to configure a MATLAB algorithm with irace? 47
12.3 My program works perfectly on its own, but not when running under irace. Is

irace broken? . 47
12.4 My program may be buggy and run into an infinite loop. Is it possible to set a

maximum timeout? . 47
12.5 When using the mpi option, irace is aborted with an error message indicating

that a function is not defined. How to fix this? 48

13 Resources and contact information 48

14 Acknowledgements 49

Appendix A R installation 50

2

A.1 GNU/Linux . 50
A.2 OS X . 50
A.3 Windows . 50

Appendix B TargetRunner script check list 50

Appendix C Glossary 53

3

1 General information

1.1 Background

The irace package implements an iterated racing procedure, which is an extension of Iterated
F-race (I/F-Race). The main use of irace is the automatic configuration of optimization and
decision algorithms, that is, finding the most appropriate settings of an algorithm given a set of
instances of a problem. However, it may also be useful for configuring other types of algorithms
when performance depends on the used parameter settings. It builds upon the race package by
Birattari and it is implemented in R. The irace package is available from CRAN. More information
about irace is available at http://iridia.ulb.ac.be/irace.

1.2 Version

The current version of the irace package is version 2.0. Previous versions of the package can be
found in the irace package CRAN website.

https://cran.r-project.org/web/packages/irace/

Previous versions of irace might not be compatible with the file formats detailed in this
document.

1.3 License

The irace package is Copyright c© 2016 and distributed under the GNU General Public License
version 3.0 (http://www.gnu.org/licenses/gpl-3.0.en.html). The irace package is free soft-
ware (software libre): you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

The irace package is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

2 Before starting

The irace package provides an automatic configuration tool for tuning optimization algorithms.
The irace tool automatically finds good configurations for the parameters values of a (target)
algorithm saving the effort that normally requires manual tuning.

Figure 1 gives a general scheme of how irace works. irace receives as input a parameter space
definition corresponding to the parameters of the target algorithm that will be tuned, a set of
instances for which the parameters must be tuned for and a set of options for irace.

irace searches in the parameter search space for good performing algorithm configurations by
executing the target algorithm on different instances and with different parameter configurations.
To execute the target algorithm with a specific parameter configuration (θ) and instance (i) a
targetRunner must be provided. The targetRunner acts as an interface between the execution
of the target algorithm and irace: It receives the instance and configuration as arguments and
must return the evaluation of the execution of the target algorithm.

The following user guide contains guidelines to use irace and define the needed components
to execute irace to automatically configure an optimization algorithm.

4

http://iridia.ulb.ac.be/irace
https://cran.r-project.org/web/packages/irace/
http://www.gnu.org/licenses/gpl-3.0.en.html

Training
instances

Parameter
space

Configuration
scenario

targetRunner

calls with θ,i returns c(θ,i)
iraceirace

Figure 1: Scheme of irace flow of information.

3 Installation

3.1 System requirements

• R (version ≥ 2.15) is required for running irace, but you don’t need to know the R language
to use it. R is freely available and you can download it from the R project website (http:
//www.r-project.org). See Appendix A for a quick installation guide of R.

• For GNU/Linux and OS X, the command-line executables irace and parallel-irace

require GNU Bash.

3.2 irace installation

The irace package can be installed automatically within R or by manual download and installa-
tion. We advise to use the automatic installation unless particular circumstances do not allow
it. The instructions to install irace with the two mentioned methods are the following:

3.2.1 Install automatically within R

In the R console execute the following line to install the package :

> install.packages("irace")

Select a mirror close to your location, and test the installation in the R console with:

> library("irace")

> CTRL+d

Alternatively, within the R graphical interface, you may use the Packages and data ->Package

installer menu on OS X or the Packages menu on Windows.

3.2.2 Manual download and installation

From the irace package CRAN website (http://cran.r-project.org/package=irace), down-
load one of the three versions available depending on your operating system:

5

http://www.r-project.org
http://www.r-project.org
http://cran.r-project.org/package=irace

• irace_2.0.tar.gz (Unix/BSD/GNU/Linux)

• irace_2.0.tgz (OS X)

• irace_2.0.zip (Windows)

To install the package on GNU/Linux and OS X, you must execute the following command
at the shell:

Replace <package> with the path of the downloaded file.

R CMD INSTALL <package>

To install the package on Windows open R and execute the following line on the R console:

Replace <package> with the path of the downloaded file.

install.packages("<package>", repos = NULL)

If the previous installation instructions fail because of insufficient permissions and you do
not have sufficient admin rights to install irace system-wide, then you need to force a local
installation.

3.2.3 Local installation

Let’s assume you wish to install irace on a path denoted by <R_LIBS_USER>, which is a filesystem
path for which you have sufficient rights. This directory must exist before attempting the
installation. Moreover, you must provide to R the path to this library when loading the package.
However, the latter can be avoided by adding the path to the system variable R_LIBS or to the
R internal variable .libPaths, as we will see below.1

On GNU/Linux or OS X, execute the following commands to install the package on a local
directory:

export R_LIBS_USER="<R_LIBS_USER>"

Create R_LIBS_USER if it doesn't exist

mkdir $R_LIBS_USER

Replace <package> with the path to the downloaded file.

R CMD INSTALL --library=$R_LIBS_USER <package>

Tell R where to find R_LIBS_USER

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

On Windows, you can install the package on a local directory by executing the following lines
in the R console:

> # Replace <package> with the path to the downloaded file.

> # Replace <R_LIBS_USER> with the path used for installation.

> install.packages("<package>", repos = NULL, lib = "<R_LIBS_USER>")

> # Tell R where to find R_LIBS_USER.

> # This must be executed for every new session.

> .libPaths(c("<R_LIBS_USER>", .libPaths()))

1On Windows, see also https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-

permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory.

6

https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#I-don_0027t-have-permission-to-write-to-the-R_002d3_002e3_002e1_005clibrary-directory

3.2.4 Testing the installation and invoking irace

Once irace has been installed, load the package and test that the installation was successful by
opening an R console and executing:

> # Load the package

> library("irace")

> # Obtain the installation path

> system.file(package = "irace")

The last command must print out the filesystem path where irace is installed. In the remain-
der of this guide, the variable $IRACE_HOME is used to denote this path. When executing any
provided command that includes the $IRACE_HOME variable do not forget to replace this variable
with the installation path of irace.

On GNU/Linux or OS X, you can let the operating system know where to find irace by
defining the $IRACE_HOME variable and adding it to the system PATH. Append the following
commands to ~/.bash_profile, ~/.bashrc or ~/.profile:

Replace <IRACE_HOME> with the irace installation path

export IRACE_HOME=<IRACE_HOME>

export PATH=${IRACE_HOME}/bin/:$PATH
Tell R where to find R_LIBS_USER

Use the following line only if local installation was forced

export R_LIBS=${R_LIBS_USER}:${R_LIBS}

Then, open a new terminal and launch irace as follows:

irace --help

On Windows, you need to add both R and the installation path of irace to the environment
variable PATH. To edit the PATH, search for “Environment variables” in the control panel, edit
PATH and add a string similar to C:\R_PATH\bin;C:\IRACE_HOME\bin, where R_PATH is the
installation path of R and IRACE_HOME is the installation path of irace. If irace was installed
locally, you also need to edit the environment variable R_LIBS to add R_LIBS_USER. Then, open
a new terminal (run program cmd.exe) and launch irace as:

irace.bat --help

Alternatively, you may directly invoke irace from within the R console by executing:

> library("irace")

> irace.cmdline("--help")

4 Running irace

Before performing the tuning of your algorithm, it is necessary to define an irace tuning scenario
that will give irace all the necessary information to optimize the parameters of the algorithm.
The tuning scenario is composed of the following elements:

7

1. Target algorithm parameter description (see Section 5.1).

2. Target algorithm runner (see Section 5.2).

3. Training instances list (see Section 5.4)

4. Irace options (see Section 11).

5. Optional: Initial configurations (see Section 5.5).

6. Optional: Forbidden configurations (see Section 5.6).

7. Optional: Target algorithm evaluator (see Section 5.3).

These scenario elements can be provided as plain text files or as R objects. This user guide
provides examples of both types, but we advise the use of plain text files, which we consider the
simpler option.

For a step-by-step guide to create the scenario elements for your target algorithm continue
to Section 4.1. For an example execution of irace using the ACOTSP scenario go to Section 4.2.

Once all the scenario elements are prepared you can execute irace. irace can be executed
using the command-line wrappers provided by the package or directly from the R console:

1. Execute irace from the command-line as (on Windows, you should execute irace.bat):

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace --scenario scenario.txt

For this example we assume that the needed scenario files have been set properly in the
scenario.txt file using the options described in Section 11. Most irace options can be
specified in the command line or directly in the scenario.txt file.

2. Execute irace from the R console as:

> library("irace")

> parameters <- readParameters("parameters.txt")

> scenario <- readScenario(filename = "scenario.txt",

+ scenario = defaultScenario())

> irace(scenario = scenario, parameters = parameters)

irace provides an option (--check) to check that the scenario is correctly defined. We recom-
mend to perform a check every time you create a new scenario. When performing the check, irace
will verify that the scenario and parameter definitions are correct and will test the execution of
the target algorithm. To check your scenario execute the following commands:

1. From the command-line (on Windows, execute irace.bat):

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace --scenario scenario.txt --check

2. From the R console:

8

> library("irace")

> parameters <- readParameters("parameters.txt")

> scenario <- readScenario(filename = "scenario.txt",

+ scenario = defaultScenario())

> checkIraceScenario(scenario = scenario, parameters = parameters)

4.1 Step-by-step setup guide

This section provides a guide to setup a basic execution of irace. The template files provided
in the package ($IRACE_HOME/templates) will be used as basis for creating your new scenario.
Please follow carefully the indications provided in each step and in the template files used; if you
have doubts check the the sections that describe each option in detail.

1. Create a directory (e.g., ~/tuning/) for the scenario setup. This directory will contain all
the files that describe the scenario. On GNU/Linux or OS X, you can do this as follows:

mkdir ~/tuning

cd ~/tuning

2. Copy all the template files from the $IRACE_HOME/templates/ directory to the scenario
directory.

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/templates/*.tmpl ~/tuning/

Remember that $IRACE_HOME is the path to the installation directory of irace. It can be
obtained in the R console with:

> library("irace")

> system.file(package = "irace")

3. For each template in your tuning directory, remove the .tmpl suffix, and modify them
following the next steps.

4. Define the target algorithm parameters to be tuned, follow the instructions in parameters.txt.
Available parameter types and other guidelines can be found in Section 5.1.

5. Optional : Define the initial parameter configuration(s) of your algorithm, this option allows
you to provide good starting configurations (if you know some) for the tuning. Follow the
instructions in configurations.txt. More information in Section 5.5. Important: If
you do not need to define initial configurations remove this file from the directory.

6. Optional : Define forbidden parameter value combinations, that is, configurations that
irace must not consider in the tuning. Follow the instructions in forbidden.txt. More
information about forbidden configurations in Section 5.6. Important: If you do not need
to define forbidden configurations remove this file from the directory.

9

7. Place the instances you would like to use for the tuning of your algorithm in the folder

~/tuning/Instances/. In addition, you can create a file (e.g., instances-list.txt) that
specifies which instances from that directory should be run and which instance-specific
parameters to use. To use such an instance file, set the appropriate option in scenario.txt,
e.g., trainInstancesFile = "instances-list.txt". See Section 5.4 for guidelines.

8. Uncomment and assign in scenario.txt only the options for which you need a value
different than the default. The names of the template files match the default names of the
scenario options. Some common parameters that you might want to adjust are:

execDir (--exec-dir): the directory in which irace will execute the target algorithm; the
default value is the current directory.

maxExperiments (--max-experiments): the maximum number of executions of the target
algorithm that irace will perform.

maxTime (--max-time): the total maximum execution time of the target algorithm. Note
that you must provide either maxTime or maxExperiments.

For setting the tuning budget see Section 10.1. For more information on irace options and
their default values see Section 11.

9. Modify the target-runner script to run your algorithm. This script must execute your
algorithm with the parameters and instance specified by irace and return the evaluation
of the execution and *optionally* the execution time (cost [time]). When the maxTime

option is used, returning time is mandatory. The template we use in this guide is in
GNU Bash scripting language, which can be executed easily in GNU/Linux and OS X
systems. However, you may use any other programming language. As an example, we
provide a Python template in the $IRACE_HOME/examples/python directory. Follow these
instructions to adjust the given target-runner template to your algorithm:

(a) Set the EXE variable with the path to the executable of the target algorithm.

(b) Set the FIXED_PARAMS if you need extra arguments in the execution line of your
algorithm. An example could be the time that your algorithm is required to run
(FIXED_PARAMS="--time 60") or the number of evaluations required
(FIXED_PARAMS="--evaluations 10000").

(c) The line provided in the template executes the executable described in the EXE vari-
able.

$EXE ${FIXED_PARAMS} -i ${INSTANCE} --seed ${SEED} ${CONFIG_PARAMS}

You must change this line according to the way your algorithm is executed. In this
example, the algorithm receives the instance to solve with the flag -i and the seed
of the random number generator with the flag --seed. The variable CONFIG_PARAMS

adds to the command line the parameters that irace has given for the execution. You
must set the command line execution as needed. For example, the instance might not
need a flag and might need to be the first argument:

$EXE ${INSTANCE} ${FIXED_PARAMS} --seed ${SEED} ${CONFIG_PARAMS}

The output of your algorithm is saved to the file defined in the $STDOUT variable, and
error output is saved in the file given by $STDERR. The line:

if [-s "$STDOUT"]; then

10

checks if the file containing the output of your algorithm is not empty. The example
provided in the template assumes that your algorithm prints in the last output line
the best result found (only a number). The line:

COST=$(cat ${STDOUT} | grep -e '^[[:space:]]*[+-]\?[0-9]' | cut -f1)

parses the output of your algorithm to obtain the result from the last line. The
target-runner script must return only one number. In the template example, the
result is returned with echo "$COST" (assuming maxExperiments is used) and the
used files are deleted.

The target-runner script must be executable.

You can test the target runner from the R console by checking the scenario as explained
earlier in Section 4

If you have problems related to the target-runner script when executing irace see
Appendix B for a check list to diagnose common problems. For more information
about the targetRunner please see Section 5.2,

10. Optional : Modify the target-evaluator file. You can follow the guidelines provided for
defining the targetEvaluator in Section 5.3.

Once the files have been prepared you can execute irace using the command-line or directly
from the R console:

• On the console: call the command:

cd ~/tuning/

$IRACE_HOME/bin/irace

• On the R console: open an R console and execute:

> library("irace")

> # Go to the directory containing the scenario files

> setwd("~/tuning")

> # Create the R objects scenario and parameters

> parameters <- readParameters("parameters.txt")

> scenario <- readScenario(filename = "scenario.txt",

+ scenario = defaultScenario())

> irace(scenario = scenario, parameters = parameters)

This will perform one run of irace. See the output of irace --help in the command-line or
irace.usage() in R for quick information on additional irace parameters. For more information
about irace options, see Section 11.

Command-line parameters override the scenario setup specified in the scenario.txt file.

11

4.2 Set-up example for ACOTSP

The ACOTSP tuning example can be found in the package installation:

$IRACE_HOME/examples/acotsp

Additionally, a number of example scenarios can be found in the examples folder. More examples
of tuning scenarios can be found in the Algorithm Configuration Library (AClib):

http://www.aclib.net/

In this section, we describe how to execute the ACOTSP scenario. If you wish to start setting
up your own scenario, continue in the next section. For this example, we assume a GNU/Linux
system but making the necessary changes in the commands and targetRunner, it can be executed
in any system that has a C compiler. To execute this scenario follow the steps described in the
following:

1. Create a directory for the tuning (e.g., ~/tuning/) and copy the example scenario files
located in the examples folder to the created directory:

mkdir ~/tuning

cd ~/tuning

$IRACE_HOME is the installation directory of irace.

cp $IRACE_HOME/examples/acotsp/* ~/tuning/

2. Download the training instances from http://iridia.ulb.ac.be/irace/ to the ~/tuning/
directory.

3. Create the instance directory (e.g., ~/tuning/Instances) and decompress the instance
files on it.

mkdir ~/tuning/Instances/

cd ~/tuning/

tar -xvf tsp-instances-training.tar.bz2 Instances/

4. Download the ACOTSP software from http://www.aco-metaheuristic.org/aco-code/

to the ~/tuning/ directory and compile it.

cd ~/tuning/

tar -xvf ACOTSP-1.03.tgz

cd ~/tuning/ACOTSP-1.03

make

5. Create a directory for the executable and copy it:

mkdir ~/bin/

cp ~/tuning/ACOTSP-1.03/acotsp ~/bin/

6. Create a directory for executing the experiments and execute irace:

12

http://www.aclib.net/
http://iridia.ulb.ac.be/irace/
http://www.aco-metaheuristic.org/aco-code/

mkdir ~/tuning/acotsp-arena/

cd ~/tuning/

$IRACE_HOME is the installation directory of irace.

$IRACE_HOME/bin/irace

7. You can also execute irace from the R console using:

> library("irace")

> setwd("~/tuning/")

> parameters <- readParameters("parameters-acotsp.txt")

> scenario <- readScenario(filename = "scenario.txt",

+ scenario = defaultScenario())

> irace(scenario = scenario, parameters = parameters)

5 irace scenario

5.1 Target algorithm parameters

The parameters of the target algorithm are defined by a parameter file as described in Sec-
tion 5.1.4. Optionally, when executing irace from the R console, the parameters can be specified
directly as an R object (see Section 5.1.5). For defining your parameters follow the guidelines
provided in the following sections.

5.1.1 Parameter types

Each target parameter has an associated type that defines its domain and the way irace handles
them internally. Understanding the nature of the domains of the target parameters is important
to select appropriate types. The four basic types supported by irace are the following:

• Real parameters are numerical parameters that can take floating-point values within a
given range. The range is specified as an interval ‘(<lower bound>,<upper bound>)’.
This interval is closed, that is, the parameter value may eventually be one of the bounds.
The possible values are rounded to a number of decimal places specified by option digits.
For example, given the default number of digits of 4, the values 0.12345 and 0.12341 are
both rounded to 0.1234.

• Integer parameters are numerical parameters that can take only integer values within the
given range. The range is specified as for real parameters.

• Categorical parameters are defined by a set of possible values specified as ‘(<value 1>,

..., <value n>)’. The values are quoted or unquoted character strings. Empty strings
and strings containing commas or spaces must be quoted.

• Ordinal parameters are defined by an ordered set of possible values in the same format as
for categorical parameters. They are handled internally as integer parameters, where the
integers correspond to the indexes of the values.

13

5.1.2 Parameter domains

For each target parameter, an interval or a set of values must be defined according to its type,
as described above. There is no limit for the size of the set or the length of the interval, but
keep in mind that larger domains could increase the difficulty of the tuning task. Choose always
values that you consider relevant for the tuning. In case of doubt, we recommend to choose larger
intervals, as occasionally best parameter settings may be not intuitive a priori. All intervals are
considered as closed intervals.

It is possible to define parameters that will have always the same value. Such “fixed” param-
eters will not be tuned but their values are used when executing the target algorithm and they
are affected by constraints defined on them. All fixed parameters must be defined as categorical
parameters and have a domain of one element.

5.1.3 Conditional parameters

Conditional parameters are active only when others have certain values. These dependencies
define a hierarchical relation between parameters. For example, the target algorithm may have a
parameter localsearch that takes values (sa,ts) and another parameter ts-length that only
needs to be set if the first parameter takes precisely the value ts. Thus, parameter ts-length

is conditional on localsearch == "ts".

5.1.4 Parameter file format

For simplicity, the description of the parameters space is given as a table. Each line of the table
defines a configurable parameter

<name> <label> <type> <range> [| <condition>]

where each field is defined as follows:

14

<name> The name of the parameter as an unquoted alphanumeric string, e.g., ‘ants’.

<label> A label for this parameter. This is a string that will be passed together with
the parameter to targetRunner. In the default targetRunner provided with
the package (Section 5.2), this is the command-line switch used to pass the
value of this parameter, for instance ‘"--ants "’.
The value of the parameter is concatenated without separator to the switch
string when invoking targetRunner, thus whitespace is significant. Following
the same example, when parameter ants takes value 5, the default targetRun-
ner will pass the parameter as "--ants 5".

<type> The type of the parameter, either integer, real, ordinal or categorical, given as
a single letter: ‘i’, ‘r’, ‘o’ or ‘c’.

<range> The range or set of values of the parameter delimited by parentheses.
e.g., (0,1) or (a,b,c,d).

<condition> An optional condition that determines whether the parameter is enabled or
disabled, thus making the parameter conditional. If the condition evaluates to
false, then no value is assigned to this parameter, and neither the parameter
value nor the corresponding label are passed to targetRunner. The condition
must be a valid R logical expression2. The condition may contain the name of
other parameters as long as the dependency graph does not contain any cycle.
Otherwise, irace will detect the cycle and stop with an error.

Figure 2 shows as an example the parameters file of the ACOTSP scenario.

name switch type values [conditions (using R syntax)]

algorithm "--" c (as,mmas,eas,ras,acs)

localsearch "--localsearch " c (0, 1, 2, 3)

alpha "--alpha " r (0.00, 5.00)

beta "--beta " r (0.00, 10.00)

rho "--rho " r (0.01, 1.00)

ants "--ants " i (5, 100)

nnls "--nnls " i (5, 50) | localsearch %in% c(1, 2, 3)

q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"

dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

rasrank "--rasranks " i (1, 100) | algorithm == "ras"

elitistants "--elitistants " i (1, 750) | algorithm == "eas"

Figure 2: Parameter file (parameters.txt) for tuning ACOTSP.

5.1.5 Parameters R format

The target parameters are stored in an R list that you can obtain from the R console using the
following command:

> parameters <- readParameters(file="parameters.txt")

See the help of the readParameters function (?readParameters) for more information. The
structure of the parameter list that is created is as follows:

2For a quick list of R operators see: https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.

html

15

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

names Vector that contains the names of the parameters.

types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’.

switches Vector that contains the labels of the parameters. e.g., switches to be used
for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maxi-
mum) for real and integer parameters, or a set of values for categorical and
ordinal parameters.

conditions List of R logical expressions, with variables corresponding to parameter
names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not
need to be tuned.

nbParameters An integer, the total number of parameters.

nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (i.e., to be tuned) parameters.

The following example shows the structure of the parameters R object for the algorithm,
ants and q0 parameters of the ACOTSP scenario:

> print(parameters)

$names

[1] "algorithm" "ants" "q0"

#

$types

algorithm ants q0

"c" "i" "r"

#

$switches

algorithm ants q0

"--" "--ants " "--q0 "

#

$domain

$domain$algorithm

[1] "as" "mmas" "eas" "ras" "acs"

#

$domain$ants

[1] 5 100

#

$domain$q0

[1] 0 1

#

#

$conditions

$conditions$algorithm

expression(TRUE)

#

$conditions$ants

expression(TRUE)

16

#

$conditions$q0

expression(algorithm %in% c("acs"))

#

#

$isFixed

algorithm ants q0

FALSE FALSE FALSE

#

$nbParameters

[1] 3

#

$nbFixed

[1] 0

#

$nbVariable

[1] 3

5.2 Target algorithm runner

The execution of a candidate configuration on a single instance is done by means of a user-given
auxiliary program or, alternatively, a user-given R function. The function (or program name)
is specified by the option targetRunner. The targetRunner must return the evaluation of the
execution unless a post-execution evaluation (e.g., multi-objective evaluation) is required, see
Section 5.3 for details.

The objective of irace is to minimize the obtained evaluations. If you wish to maximize, you can
multiply the evaluations by -1 before returning them.

5.2.1 Target runner executable program

When targetRunner is an auxiliary executable program, it is invoked for each candidate config-
uration, passing as arguments:

<id.configuration> <id.instance> <seed> <instance> [<extra.params>] <configuration>

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair <instance,

seed>;

seed seed for the random number generator to be used for this evaluation,
ignore the seed for deterministic algorithms;

instance string giving the instance to be used for this evaluation;

extra.params user-defined parameters associated to the instance;

configuration the pairs parameter label-value that describe this candidate configu-
ration. Typically given as command-line switches to be passed to the
executable program.

The experiment list shown in Section 5.2.2, would result in the following execution line:

17

target-runner 1 113 734718556 /home/user/instances/tsp/2000-533.tsp \
--eas --localsearch 0 --alpha 2.92 --beta 3.06 --rho 0.6 --ants 80

The command line switches that describe the candidate configuration are constructed by ap-
pending to each parameter label (switch), without separator, the value of the parameter, following
the order given in the parameter table. The program targetRunner must print a real number,
which corresponds to the cost measure of the candidate configuration for the given instance
and optionally its execution time (mandatory when maxTime is used). The working directory of
targetRunner is set to the execution directory specified by the option execDir. This allows the
user to execute independent runs of irace in parallel using different values for execDir, without
the runs interfering with each other.

5.2.2 Target runner R function

When targetRunner is an R function, then it is invoked for each candidate configuration as:

> targetRunner(experiment, scenario)

where experiment is a list that contains the information of candidate and instance to execute
one experiment and scenario is the scenario list. The structure of the experiment list is as
follows:

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair <instance,

seed>;

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

extra.params user-defined parameters associated to the instance;

configuration 1-row data frame with a column per parameter name.

switches vector of parameter switches in the order of parameters used in
configuration.

The following is an example of an experiment list for the ACOTSP scenario:

> print(experiment)

$id.configuration

[1] 1

#

$id.instance

[1] 113

#

$seed

[1] 734718556

#

$configuration

algorithm localsearch alpha beta rho ants nnls q0 dlb

1 eas 0 2.92 3.06 0.6 80 NA NA <NA>

18

rasrank elitistants

1 NA 588

#

$instance

[1] "/home/user/instances/tsp/2000-533.tsp"

#

$extra.params

NULL

#

$switches

algorithm localsearch alpha

"--" "--localsearch " "--alpha "

beta rho ants

"--beta " "--rho " "--ants "

nnls q0 dlb

"--nnls " "--q0 " "--dlb "

rasrank elitistants

"--rasranks " "--elitistants "

The function targetRunner must return a numerical value corresponding to the evaluation of
the candidate configuration on the given instance and optionally the execution time (mandatory
when maxTime is used).

5.3 Target evaluator

The evaluation of the execution of a candidate configuration on an instance must be returned
when finalizing the targetRunner execution (see Section 5.2). Nevertheless, there are cases when
the evaluation of the candidate configurations must be delayed until all candidate configurations
in a race have been executed on a instance.

The targetEvaluator parameter is an auxiliary program (or an R function) that allows
postponing the evaluations of the candidate configurations. For each instance seen, the evaluation
of targetEvaluator for any configuration is only invoked after all the calls of targetRunner for
all alive candidate configurations on the same instance have already finished.

When using targetEvaluator, targetRunner must not return the evaluation of the
configuration. If maxTime is used, targetRunner must return only execution time.

As an example, targetEvaluator may be used to dynamically find normalization bounds for
the output returned by an algorithm for each individual instance. In this case, targetRunner
will save the output of the algorithm, then the first call to targetEvaluator will examine the
output produced by all calls to targetRunner for the same instance, update the normalization
bounds and return the normalized output. Subsequent calls to targetEvaluator for the same
instance will simply return the normalized output.

A similar need arises when using quality measures for multi-objective optimization algorithms,
such as the hypervolume, which typically require specifying reference points or sets. By using
targetEvaluator, it is possible to dynamically compute the reference points or sets while irace
is running. Examples are provided at examples/hypervolume. See also Section 10.2 for more
information on how to tune multi-objective algorithms.

19

5.3.1 Target evaluator R function

When targetEvaluator is an R function, then it is invoked for each candidate configuration as:

> targetEvaluator(experiment, num.configurations, all.conf.id, scenario,

+ target.runner.call)

where experiment is a list that contains the information of one experiment (See Section 5.2.2),
num.configurations is the number of configurations alive on the race, all.conf.id is the list
of the alive candidates configurations ids, scenario is the scenario list and target.tunner.call

is the string of the targetRunner execution line.
The function targetEvaluator must return a numerical value corresponding to the cost

measure of the candidate configuration on the given instance.

5.3.2 Target evaluator executable program

When targetEvaluator is an auxiliary executable program, then it is invoked for each candidate
with the following arguments:

<id.configuration> <id.instance> <seed> <instance> <num.configurations> <all.conf.id>

id.configuration an alphanumeric string that uniquely identifies a configuration;

id.instance an alphanumeric string that uniquely identifies a pair <instance,

seed>;

seed seed to be used for this evaluation;

instance string giving the instance to be used for this evaluation;

num.configurations number of alive candidate configurations;

all.conf.id list of IDs of the alive configurations separated by whitespace.

The targetEvaluator executable must print a numerical value corresponding to the cost
measure of the candidate configuration on the given instance.

5.4 Training instances

The irace options trainInstancesDir and trainInstancesFile specify where to find the train-
ing instances.

By default, the value of trainInstancesFile is empty. This means that irace will consider
all files within the directory given by trainInstancesDir (by default ./Instances) as training
instances.

Otherwise, the value of trainInstancesFile may specify a text file. The format of this file
is one instance per line, and the first alphanumeric string of each line corresponds to the instance
filename. The remainder text within each line are considered as extra parameters to be supplied
to targetRunner for this specific instance. The following example shows a training instance file
for the ACOTSP scenario:

The value of trainInstancesDir is always prefixed to the instance name, that is, the in-
stances names are treated as relative to this directory. For example, given the above file as
trainInstancesFile and the default value of trainInstancesDir (./Instances), then a pos-
sible invocation of targetRunner would be:

20

Example training instances file

100/100-1_100-2.tsp --time 1

100/100-1_100-3.tsp --time 2

100/100-1_100-4.tsp --time 3

Figure 3: Training instances file for tuning ACOTSP.

target-runner 1 113 734718556 ./Instances/100/100-1_100-2.tsp --time 1 --alpha 2.92 ...

Training instances do not need to be files, irace just passes their names to targetRunner,
thus the names can denote benchmark functions or descriptive labels that the target algorithm
understands. The extra instance parameters could actually be the definition of the instance. In
that case, trainInstancesDir is usually set to the empty string (--train-instances-dir="").
For example,

Example training instances file

rosenbrock_20 --function=12 --nvar 20

rosenbrock_30 --function=12 --nvar 30

rastrigin_20 --function=15 --nvar 20

rastrigin_30 --function=15 --nvar 30

Optionally, when executing irace from the R console, the list of instances and their spe-
cific parameters might be provided explicitly by means of the variables scenario$instances

and scenario$instances.extra-params, respectively. Thus, the previous example would be
equivalent to:

> scenario$instances <- c("rosenbrock_20", "rosenbrock_40",

+ "rastrigin_20", "rastrigin_40")

> scenario$instances.extra.params <-

+ c("--function=12 --nvar 20", "--function=12 --nvar 30",

+ "--function=15 --nvar 20", "--function=15 --nvar 30")

By default, irace assumes that the target algorithm is stochastic (the value of the option
deterministic is 0), thus, the same configuration can be executed more than once on the same
instance and obtain different results. In this case, irace generates pairs <instance,seed> by
assigning a random seed to each instance. Once all pairs have been seen within a run of irace,
new pairs are generated with different seeds.

If deterministic is set to 1, then each instance will be used at most once per race. This
should only be used for target algorithms that do not have a stochastic behavior and, therefore,
executing the target algorithm on the same instance several times with different seeds does not
make sense.

If deterministic is active and the number of training instances provided to irace is less than
firstTest (default: 5), no statistical test will be performed on the race.

Finally, irace randomly re-orders the sequence of instances provided. This random sampling
may be disabled by using the option sampleInstances (--sample-instances 0) if keeping the
order provided in the instance file is important.

We advise to always sample instances to prevent biasing the tuning due to the instance order.

21

5.5 Initial configurations

The scenario option configurationsFile allows specifying a text file that contains an initial set
of configurations to start the execution of irace. If the number of initial configurations supplied in
the file is less than the number of configurations required by irace in the first iteration, additional
configurations will be sampled uniformly at random.

The format of the configurations file is one configuration per line, and one parameter value
per column. The first line must give the parameter name corresponding to each column (names
must match those given in the parameters file). Each configuration must satisfy the parameter
conditions (NA should be used for those parameters that are not enabled for a given configuration)
and not be forbidden by the constraints that define forbidden configurations (Section 5.6), if any.

Figure 4 gives an example file that corresponds to the ACOTSP scenario:

Initial candidate configuration for irace

algorithm localsearch alpha beta rho ants nnls dlb q0 rasrank elitistants

as 0 1.0 1.0 0.95 10 NA NA 0 NA NA

Figure 4: Initial configuration file (default.txt) for tuning ACOTSP.

We advise to use this feature when a default configuration of the target algorithm exists or
when different sets of good parameter values are known. This will allow irace to start the search
from those parameter values and attempt to improve their performance.

5.6 Forbidden configurations

The scenario option forbiddenFile specifies a text file containing logical expressions of param-
eter values that valid configurations should not satisfy, that is, no configuration that satisfies
any of these logical expressions will be evaluated by irace. This is useful when some combination
of parameter values could cause the target algorithm to crash, consume excessive CPU time or
memory, or when it is known that they do no produce satisfactory results.

The format of the forbidden configurations file is one constraint per line, where each constraint
is a logical expression (in R syntax) containing parameter names as defined by the parameterFile
(Section 5.1), values and logical operators. For a quick list of R logical operators see:

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

If a parameter configuration is generated that makes any of the logical expressions evaluate
to TRUE, then the configuration is considered forbidden and it is discarded. Figure 5 shows an
example file that corresponds to the ACOTSP scenario:

Examples of valid logical operators are:

== != >= <= > < & | ! %in%

(alpha == 0.0) & (beta == 0.0)

Figure 5: Forbidden configurations file (forbidden.txt) for tuning ACOTSP.

If initial configuration are provided (Section 5.5), they must also comply with the constraints
defined in forbiddenFile.

22

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Syntax.html

6 Parallelization

A single run of irace can be done much faster by executing the calls to targetRunner (the runs
of the target algorithm) in parallel. There are four ways to parallelize a single run of irace:

• Parallel processes: The option parallel allows executing in parallel, within a single
computer, the calls to targetRunner, by means of the parallel R package. For example,
adding --parallel N to the command line of irace will launch in parallel up to N calls of
the target algorithm.

• MPI: By enabling the option mpi, calls to targetRunner will be executed in parallel by
using the message passing interface (MPI) protocol (requires the Rmpi R package). In this
case, the option parallel controls the number of slave nodes used by irace. For example,
adding --mpi 1 --parallel N to the command-line will create N slaves + 1 master, and
execute up to N calls of targetRunner in parallel.

The user is responsible for setting up the required MPI environment. MPI is commonly
available in computing clusters and requires launching irace in some particular way. An ex-
ample script for using MPI mode in a SGE cluster is given at $IRACE_HOME/examples/mpi/.

• SGE cluster: This mode uses the commands qsub and qstat often found in Sun Grid
Engine (SGE) and compatible clusters. The command qsub must return a message that
contains the string: "Your job JOBID", where JOBID is a unique identifier for the job
submitted. The command qstat -j JOBID must return nonzero if JOBID has finished its
execution, and zero otherwise.

Enabling the option sgeCluster (--sge-cluster 1) will launch as many calls of targetRunner
as possible and use qstat to wait for cluster jobs. In this mode, irace must run in the
submission node of the cluster, and hence, qsub should not be used to invoke irace itself.
The user must call qsub from within targetRunner with the appropriate settings for their
cluster, otherwise targetRunner will not submit jobs to the cluster. Moreover, the use of
a separate targetEvaluator script is required to parse the results of targetRunner and
return them to irace. See the examples in $IRACE_HOME/examples/sge-cluster/.

• targetRunnerParallel: This option allows users to fully control the parallelization of
targetRunner. Its value must be an R function that will be invoked by irace as follows:

targetRunnerParallel(experiments, targetRunner, scenario)

where experiments is a list that contains elements with the information of configura-
tions and instances to be executed (see Section 5.2 for a description), targetRunner is the
targetRunner script or function and scenario is the scenario list. The targetRunnerParallel
function must execute the given targetRunner using the experiments and scenario pro-
vided, and return a list of the same length as experiments containing the output of each
call to targetRunner.

7 Testing of configurations

Once the tuning process is finished, irace commonly returns a set of configurations correspond-
ing to the elite configurations at the end of the run, ordered from best to worst. To further

23

investigate the quality of these configurations, irace offers the possibility of evaluating these con-
figurations on a test instance set, typically different from the training set used during the tuning
phase. These evaluations will use the same settings for parallel execution, targetRunner and
targetEvaluator.

The test instance set can be specified by the options testInstancesDir and testInstancesFile,
or by setting directly the variable scenario$testInstances, which behave the same as their
counterparts for the training instances (Section 5.4). In particular, each test instance is assigned
a different seed in the same way as done for the training instances.

The options testNbElites and testIterationElites control which configurations are eval-
uated during the testing phase. In particular, setting testIterationElites = 1 will test not
only the final set of elite configurations (those returned at the end of the training phase), but
also the set of elites at the end of each race (iteration). The option testNbElites limits the
maximum number of configurations considered within each set. Some examples:

• testIterationElites = 0; testNbElites = 1 means that only the best configuration
found during the run of irace, the final best, will be used in the testing phase.

• testIterationElites = 1; testNbElites = 1 will test, in addition to the final best,
the best configuration found at each iteration.

• testIterationElites = 1; testNbElites = 2 will test the two best configurations found
at each iteration, in addition to the final best and second-best configurations.

The testing can be also (re-)executed at a later time by using the following R command:

> testing.main(logFile = "./irace.Rdata")

This line will load the irace results found in the generated logFile file to perform the
testing. The testing results will be saved in the irace log file specified in scenario$logFile in
the iraceResults$testing R object. The structure of the object is described in Section 9.2.
For examples on how to analyse the data see Section 9.3.

8 Recovering irace runs

Problems like power cuts, hardware malfunction or the need to use computational power for
other tasks may occur during the execution of irace, terminating a run before completion. At
the end of each iteration, irace saves an R data file (logFile, by default "./irace.Rdata")
that not only contains the information of the tuning progress (Section 9.2), but also internal
information that allows recovering an incomplete execution.

To recover an incomplete irace run, set the option recoveryFile to the log file previously
produced, and irace will continue the execution from the last saved iteration. The state of the
random generator is saved and loaded, therefore, as long as the execution is continued in the same
machine, the obtained results will be exactly the same as executing irace in one step (although
external factors, such as CPU load and disk caches, may affect the target algorithm and that
may affect the results). You can specify the recoveryFile from the command-line or from the
scenario file, and execute irace as described in Section 4. For example, from the command-line
use:

24

irace --recovery-file "./irace-backup.Rdata"

When recovering a previous run, irace will try to save data on the file specified by the logFile

option. Thus, you must specify different files for logFile and recoveryFile. Before recovering,
we strongly advise to rename the saved R data file as in the example above, which uses
"irace-backup.Rdata".

Do not change anything in the log file or the scenario file before recovering, as it may have
unexpected effects on the recovered run of irace. In case of doubt, please contact us first
(Section 13).

9 Output and results

During its execution, irace prints information about the progress of the tuning in the standard
output. Additionally, after each iteration, an R data file is saved (logFile option) containing
the state of irace.

9.1 Text output

Figure 6 shows the output, up to the end of the first iteration, of a run of elitist irace applied to
the ACOTSP scenario with 1000 evaluations as budget.

First, irace gives the user a warning informing that it has found a file with the default scenario
file name and it will use it. Then, general information about the selected irace options is printed:

• nbIterations indicates the minimum number of iterations irace has calculated for the
scenario. Depending on the development of the tuning the final iterations that are executed
can be more.

• minNbSurvival indicates the minimum number of alive configurations that are required to
continue a race. When less configurations are alive the race is stopped and a new iteration
begins.

• nbParameters is the number of parameters of the scenario.

• seed is the number that was used to initialize the random number generator in irace.

• confidence level is the confidence level of the statistical test.

• budget is the total number of evaluations available for the tuning.

• time budget maximum execution time available for the tuning.

• mu is a value used for calculating the minimum number of iterations.

• deterministic indicates if the target algorithm has been marked as deterministic.

In each iteration information about the progress of the execution printed as follows:

• experimentsUsedSoFar is the number of experiments from the total budget has been used
until the actual iteration.

• timeUsed time used so far in the experiments. Only available when reported in the
targetRunner (activate it with maxTime option).

25

Warning: A default scenario file './scenario.txt' has been found and will be read

2016-05-02 19:24:50 CEST: Elitist race

Elitist instances: 1

Elitist limit: 2

2016-05-02 19:24:50 CEST: Initialization

nbIterations: 5

minNbSurvival: 5

nbParameters: 11

seed: 1234

confidence level: 0.95

budget: 1000

time budget: 0

mu: 5

deterministic: FALSE

2016-05-02 19:24:50 CEST: Iteration 1 of 5

experimentsUsedSoFar: 0

remainingBudget: 1000

currentBudget: 200

nbConfigurations: 33

Markers:

x No test is performed.

- The test is performed and some configurations are discarded.

= The test is performed but no configuration is discarded.

! The test is performed and configurations could be discarded but elite

configurations are preserved.

+-+---------+------+-----+------------+-----------+--------+-----+----+------+

| | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar|

+-+---------+------+-----+------------+-----------+--------+-----+----+------+

|x| 1| 33| 15| 23268924.00| 33|00:01:55| NA| NA| NA|

|x| 2| 33| 8| 23185736.50| 66|00:01:53|+0.97|0.99|0.0025|

|x| 3| 33| 8| 23239054.33| 99|00:01:56|+0.96|0.97|0.0030|

|x| 4| 33| 8| 23168442.50| 132|00:01:55|+0.96|0.97|0.0027|

|-| 5| 3| 8| 23222299.80| 165|00:01:56|-0.05|0.16|0.7109|

+-+---------+------+-----+------------+-----------+--------+-----+----+------+

Best configuration: 8 mean value: 23222299.80

Description of the best configuration:

.ID. algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank

8 8 acs 1 3.8157 8.5915 0.4141 59 10 0.5812 1 NA

elitistants .PARENT.

NA NA

2016-05-02 19:34:27 CEST: Elite configurations:

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants

8 acs 1 3.8157 8.5915 0.4141 59 10 0.5812 1 NA NA

18 mmas 2 3.1134 7.3864 0.4623 60 32 NA 1 NA NA

15 ras 3 2.5838 6.5086 0.5082 42 6 NA 0 90 NA

Figure 6: Sample text output of irace.

• remainingBudget is the number of evaluations that have not been used yet.

• timeEstimate estimation of the mean execution time, this is used to calculate the remain-
ing budget when maxTime is used.

• currentBudget is the number of evaluations irace has allocated to the current iteration.

26

• nbConfigurations is the number of configurations irace will use in the current iteration.
On the first iteration this number of configurations include the initial configurations pro-
vided and in later iterations includes the elite candidates of the previous iterations.

After the iteration information a table shows the progress of the iteration execution. Each
row of the table gives information about the execution of an instance in the race. The first
column contains a symbol that describes the results or non application of the statistical test:

In each iteration is initially printed information about the progress of the execution:

• |x| : No statistical test was performed for this instance. To adjust in which instances of a
race statistical tests are performed see irace options firstTest and eachTest in Section 11.

• |-| : Statistical test performed and configurations have been discarded. To know how
many configurations have been discarded see the table column Alive.

• |=| : Statistical test performed and no configurations have been discarded. This means
irace needs more information to identify the best configurations.

• |!|: This indicator exists only for the elitist version of irace. It indicates that the statistical
test was performed and some elite configurations show bad performance and could be
discarded but they are kept given the elitist irace discarding rules. See irace option elitist

in Section 11 for more information.

The instance column gives the number of <instance,seed> pair executed. This number
corresponds to the index of the list found in state$.irace$instancesList. See Section 9.2 for
more information.

The Alive column gives the number of configurations that have not been discarded after the
statistical test was performed. The column Best gives the id of the best configuration according
to the experiments performed so far in the race (includes previous instances). The Mean best

column gives the mean of the best configuration across all the instances executed so far in the
race. The Exp so far gives the number of evaluations performed so far. The W time column
gives the waiting time to execute all the configurations in the current instance.

The columns rho and KenW give the values of the Spearman’s rho and the Kendall concor-
dance coefficient of the configurations across the instances executed so far. The Qvar gives the
variance measure across the instances. Use rho, KenW and Qvar to analyze how consistent is the
performance of the configurations across the instances. Note that these values are only valid for
the instances that were already executed in the iteration. Values close to 1 for rho and KenW

and values close to 0 for the Qvar indicate that the performance is consistent and therefore the
scenario is homogeneous. For heterogeneous scenarios we provide advice in Section 10.4.

Finally irace outputs the best configuration found and a list of the elite configurations. The
elite configurations are configurations that did not show statistically significant difference during
the race; they are ordered according to their mean performance on the executed instances.

9.2 Data file output

The R data file created by irace (logFile) contains an object called iraceResults. You can
load this data in the R console by:

> load("irace-output.Rdata")

The iraceResults object is a list, the elements of a list can be accessed in R by using the $

or [[]] operators:

27

> iraceResults$irace.version

[1] "2.0.1397M"

> iraceResults[["irace.version"]]

[1] "2.0.1397M"

The iraceResults list contains the following elements:

• scenario: The scenario R object containing the irace options used for the execution. See
Section 11 and the help of the irace package; open an R console and type: ?defaultScenario.
See Section 11 for more information.

• parameters: The parameters R object containing the description of the target algorithm
parameters. See Section 5.1.

• allConfigurations: The target algorithm configurations generated by irace. This object
is a data frame, each row is a candidate configuration; the first column (.ID.) indicates the
internal identifier of the configuration; the following columns correspond to the parameter
values; each column is named as the parameter name specified in the parameter object.
The final column (.PARENT.) is the identifier of the configuration from which model the
actual configuration was sampled.

> head(iraceResults$allConfigurations)

.ID. algorithm localsearch alpha beta rho ants nnls

1 1 as 2 2.9953 0.6188 0.7023 75 6

2 2 mmas 0 4.6876 8.2611 0.1948 44 NA

3 3 mmas 1 3.6487 6.7212 0.2986 91 44

4 4 as 0 4.5230 3.3080 0.3026 58 NA

5 5 as 2 2.6748 3.2815 0.4874 5 25

6 6 mmas 0 3.0051 5.1321 0.5918 24 NA

q0 dlb rasrank elitistants .PARENT.

1 NA 1 NA NA NA

2 NA <NA> NA NA NA

3 NA 1 NA NA NA

4 NA <NA> NA NA NA

5 NA 0 NA NA NA

6 NA <NA> NA NA NA

• allElites: A list that contains one element per iteration. Each element contains the inter-
nal identifier of the elite candidate configurations of the corresponding iteration (identifiers
correspond to allConfigurations$.ID.).

> print(iraceResults$allElites)

[[1]]

[1] 8 18 15

28

#

[[2]]

[1] 47

#

[[3]]

[1] 47 67 70 69

#

[[4]]

[1] 47 118 70 96 95

#

[[5]]

[1] 118 154 47 119 95

#

[[6]]

[1] 118 47 95 164 156

#

[[7]]

[1] 95 47 164 156 118

The configurations are ordered by mean performance, that is, the id of the best config-
uration corresponds to the first id. To obtain the values of the parameters of all elite
configurations found by irace use:

> getFinalElites(irace.logFile="irace-output.Rdata", n=0)

.ID. algorithm localsearch alpha beta rho ants nnls

1 95 acs 3 2.1078 3.5827 0.399 44 30

2 47 acs 3 1.5946 2.6973 0.7878 37 31

3 164 acs 3 2.0925 3.7981 0.9098 18 34

4 156 acs 3 1.4171 5.3167 0.5322 23 31

5 118 acs 3 1.5666 5.7256 0.6368 27 43

q0 dlb rasrank elitistants .PARENT.

1 0.3813 1 NA NA 47

2 0.2983 1 NA NA 15

3 0.2981 1 NA NA 47

4 0.3379 1 NA NA 118

5 0.1491 1 NA NA 70

• iterationElites: A vector containing the best candidate configuration internal identifier
of each iteration. The best configuration found corresponds to the last one of this vector.

> print(iraceResults$iterationElites)

[1] 8 47 47 47 118 118 95

Obtain the full configuration with:

29

> last <- length(iraceResults$iterationElites)

> id <- iraceResults$iterationElites[last]

> getConfigurationById(irace.logFile="irace-output.Rdata",

+ ids=id)

.ID. algorithm localsearch alpha beta rho ants nnls

95 95 acs 3 2.1078 3.5827 0.399 44 30

q0 dlb rasrank elitistants .PARENT.

95 0.3813 1 NA NA 47

• experiments: A matrix with configurations as columns and instances as rows. Column
names correspond to the internal identifier of the configuration (allConfigurations$.ID.).
To obtain the experiment results of a particular configuration use:

> # As an example, we use the best configuration found

> best.config <- getFinalElites(iraceResults=iraceResults,

+ n=1)

> id <- best.config$.ID.

> # Obtain the configurations using the identifier

> # of the best configuration

> all.exp <- iraceResults$experiments[,as.character(id)]

> all.exp[!is.na(all.exp)]

1 2 3 4 5 6

23143448 22959710 23284140 22858335 23226582 23264551

7 8 9 10 11 12

23439606 23108045 23388942 23097102 23069267 23300829

13 14 15

23079207 23384244 23104481

When a configuration was not executed on an instance there is a NA value in the correspond-
ing matrix cell. A configuration is not executed on an instance for three different reasons:
1) because it was not created yet when the instance was used (only for the non elitist irace)
or 2) because it was discarded by the statistical test or 3) the race was terminated before
the instance could reach the execution of the instance.

The row names correspond to the identifier of the <instance,seed> pairs defined in
state$.irace$instancesList. To obtain the instance and seed used for a particular
experiment use:

> # As an example, we get seed and instance of the experiments

> # of the best candidate.

> # Get index of the instances

> pair.id <- names(all.exp[!is.na(all.exp)])

> index <-

+ iraceResults$state$.irace$instancesList[pair.id,"instance"]

> # Obtain the instance names

> iraceResults$scenario$instances[index]

30

character(0)

> # Get the seeds

> iraceResults$state$.irace$instancesList[index,"seed"]

NULL

• experimentLog: A matrix with columns:

<iteration,instance,configuration>.

This matrix contains the log of all the experiments that irace performs during its execution.
The instance column refers to the index of the state$.irace$instancesList data frame.

• softRestart: A logical vector that indicates if a soft restart was performed on each it-
eration. If FALSE, then no soft restart was performed. For info about soft restart see
Section 11.

• state: A list that contains the state of irace, the recovery (Section 8) is done using the
information contained in this object. The probabilistic model of the last elite configurations
can be found here doing:

> # As an example, we get the model probabilities for the

> # localsearch parameter.

> iraceResults$state$model["localsearch"]

$localsearch

$localsearch$`118`

[1] 0.0002285714 0.0002285714 0.0002285714 1.0000000000

#

$localsearch$`47`

[1] 0.0002285714 0.0002285714 0.0002285714 1.0000000000

#

$localsearch$`95`

[1] 0.0002285714 0.0002285714 0.0002285714 1.0000000000

#

$localsearch$`164`

[1] 0.0002285714 0.0002285714 0.0002285714 1.0000000000

#

$localsearch$`156`

[1] 0.0002285714 0.0002285714 0.0002285714 1.0000000000

> # The order of the probailities corresponds to:

> iraceResults$parameters$domain$localsearch

[1] "0" "1" "2" "3"

The example shows a list that has one element per elite configuration (id as element name).
In this case, localsearch is a categorical parameter and it has a probability per each value.

31

• testing: A list that contains the testing results. The list contains the following elements:

– experiments: Matrix of experiments in the same format as the tuning experiment

matrix. The column names indicate the candidate configuration identifier and the row
names contain the name of the instances.

> # Get the experiments of the testing

> iraceResults$testing$experiments

95 47 164 156 118

1000-1.tsp 23409880 23410576 23422748 23404330 23366881

1000-2.tsp 23126916 23144708 23212491 23100817 23196172

1000-3.tsp 23084684 23076230 23110653 23086263 23098047

1000-4.tsp 23251050 23232485 23232201 23228093 23234648

1000-5.tsp 23278985 23287118 23330620 23295181 23336133

1000-6.tsp 22983127 22959425 23073906 22989811 22951321

1000-7.tsp 23087699 23124945 23115738 23122621 23084600

1000-8.tsp 22893110 22850619 22863202 22865437 22913600

1000-9.tsp 23180624 23174994 23209675 23227996 23205438

1000-10.tsp 23367381 23333064 23405137 23341862 23356161

– seeds: The seeds used for the experiments, each seed corresponds to each instance in
the rows of the test experiments matrix.

> # Get the experiments of the testing

> iraceResults$testing$seeds

[1] 716498671 999094119 1613704058 978659676 1046072282

[6] 1418237375 466610226 249199596 828014021 1647202103

In the example instance 1000-1.tsp is executed with seed 1815573416.

9.3 Analysis of results

The best configurations provided by irace are configurations that were found to be not statisti-
cally sgnificantly different. The configurations are reported in average performance order, that
is, the best by mean configuration is reported first.

If testing is performed you can further analyze the resulting best configurations by performing
statistical tests in R or just plotting the results:

> results <- iraceResults$testing$experiments

> # Wilcoxon paired test

> conf <- gl(ncol(results), #number of configurations

+ nrow(results), #number of instances

+ labels=colnames(results))

> pairwise.wilcox.test (as.vector(results),

+ conf,

+ paired=TRUE,

+ p.adj = "bonf")

#

32

Pairwise comparisons using Wilcoxon signed rank test

#

data: as.vector(results) and conf

#

95 47 164 156

47 1.000 - - -

164 0.488 0.098 - -

156 1.000 1.000 0.488 -

118 1.000 1.000 1.000 1.000

#

P value adjustment method: bonferroni

> # Plot the results

> boxplot (iraceResults$testing$experiments,

+ ylab="solution quality",

+ xlab="configuration id")

33

95 47 164 156 118

22
90

00
00

23
10

00
00

23
30

00
00

configuration id

so
lu

tio
n

qu
al

ity

During the tuning, irace iteratively updates sampling models for the parameters focusing on
the best areas of the parameter search space. The frequency of the sampled configurations can
provide insight on the parameter search space. We provide a function that allows to create plots
that show the frequency of the sampling of a set of configurations. The following example plots
the frequency of the parameters sampled during all the irace execution:

> parameterFrequency(iraceResults$allConfigurations,

+ iraceResults$parameters)

Plotting: algorithm

Plotting: localsearch

Plotting: alpha

Plotting: beta

Plotting: rho

34

Plotting: ants

Plotting: nnls

Plotting: q0

Plotting: dlb

Plotting: rasrank

Plotting: elitistants

as eas ras acs

algorithm

values

F
re

qu
en

cy

0
40

10
0

0 1 2 3

localsearch

values

F
re

qu
en

cy

0
40

10
0

alpha

values

P
ro

ba
bi

lit
y

de
ns

ity

0 1 2 3 4 5

0.
00

0.
20

beta

values

P
ro

ba
bi

lit
y

de
ns

ity

0 2 4 6 8 10

0.
00

0.
10

rho

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

ants

values
P

ro
ba

bi
lit

y
de

ns
ity

20 40 60 80 100

0.
00

0
0.

02
0

nnls

values

P
ro

ba
bi

lit
y

de
ns

ity

10 20 30 40 50

0.
00

0.
03

q0

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

0 1 <NA>

dlb

values

F
re

qu
en

cy

0
60

rasrank

values

P
ro

ba
bi

lit
y

de
ns

ity

0 20 40 60 80 100

0.
00

0
0.

01
5

elitistants

values

P
ro

ba
bi

lit
y

de
ns

ity

0 200 400 600

0.
00

00
0.

00
20

For more information of this function please see the R help, type in the R console: ?parameterFrequency.
Using parallel coordinates plots it is possible to analyze how the parameters interact with each

other. The following example shows how to create a parallel coordinate plot of the candidates
of the last two iterations of irace.

35

> # Get last iteration number

> last <- length(iraceResults$iterationElites)

> lasts <- c(last-1, last)

> # Get last iterations candidates

> conf <- getConfigurationByIteration(iraceResults = iraceResults,

+ iterations = lasts)

> parallelCoordinatesPlot (conf,

+ iraceResults$parameters,

+ param_names=c("algorithm",

+ "alpha",

+ "beta",

+ "rho",

+ "q0"),

+ hierarchy=FALSE)

36

Parameters parallel coordinates
al

go
rit

hm

al
ph

a

be
ta

rh
o q0

as

mmas

eas

ras

acs

NA

0

1

2

3

4

5

<NA>

0

2

4

6

8

10

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

0

0.2

0.4

0.6

0.8

1

<NA>

For more information of this function please see the R help, type in the R console: (?parallelCoordinatesPlot).

10 Advanced topics

10.1 Tuning budget

irace provides two options for setting the total tuning budget (maxExperiments and maxTime).
Consider the number of parameters that need to be tuned, available processing power and avail-
able time before setting the budget for the tuning. The option maxExperiments limits the
number of executions of targetRunner performed by irace. The option maxTime limits the total
time of the targetRunner executions, when this option is used targetRunner must return the
evaluation cost together with the execution time (<cost><time>).

37

When tuning computation time and using maxTime as tuning budget just return the time as the
evaluation cost (< time >< time >).

When using targetEvaluator and using maxTime as tuning budget just return the time
(< time >).

When using maxTime, irace estimates the execution time of each targetRunner execution
before the configuration. The amount of budget used for the estimation is set with the option
budgetEstimation (default is 2%). The obtained estimation is adjusted after each iteration
using the obtained results and is] used to estimate the number of experiments that can be
executed. Internally, irace uses the number of remaining experiments to adjust the number of
configurations tested in each race.

10.2 Multi-Objective tuning

irace performs the automatic configuration of an algorithm optimizing only one objective that
can be solution quality, computation time or any other objective and that is returned to irace
through the targetRunner.

If you wish to tune your algorithm with irace for more than one objective there are two
alternatives:

• Aggregate the objectives in one resulting number.

• Use ta unary (e.g., the hypervolume) indicator for evaluating the quality of the configura-
tions.

The first option is simple, it requires to devise a formula that can aggregate the objectives
in a way that balances the importance of all of them. This might not be an easy task in some
scenarios, and therefore using a more adequate indicator to evaluate the performance of a multi-
objective optimizer, such as the hypervolume, is strongly advised.

For setting up the multi-objective tuning you must not return the evaluation of the experiment
when finalizing the execution of targetRunner (see Section 5.2) and specify a targetEvaluator

in which the reference points are obtained and the hypervolume is calculated. For more infor-
mation about defining a targetEvaluator see Section 5.3. For the hypervolume calculation we
suggest the following implementation:

http://lopez-ibanez.eu/hypervolume

Examples of a multi-objective tuning using the hypervolume can be found in the templates:

$IRACE_HOME/examples/hypervolume

$IRACE_HOME/examples/moaco

10.3 Tuning computation time

irace was developed primarily for tuning solution quality after a given amount of computation
time. To use irace for tuning computation time, the execution time of a configuration must be
returned as result by the targetRunner. Even though irace can be used for tuning computation
time, it may not be the best method to do so as in its current version it does not use an “adaptive
capping” mechanism as do ParamILS or SMAC. These latter two configurators may be obtained
in the following links:

38

http://lopez-ibanez.eu/hypervolume

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

We are currently extending irace by an adaptive capping mechanism and it will likely be
included in the forthcomming version 2.1.

10.4 Heterogeneous scenarios

We classify a scenario as homogeneous when the target algorithm has a consistent performance
regarding the instances that is, good configurations tend to be good for all instances. On the
contrary, for heterogeneous scenarios the target algorithm has an inconsistent performance on
different instances, that is, some configurations are good for one or a subset of instances while
are very bad for another subset of instances.

If you know your scenario has heterogeneous characteristics, the first question you should ask
yourself is if the tuning objective is to find configurations that are good for all instances. If this is
not the case, then separating executions of irace, one per instance type, is the best choice. You
may combine in this case configuations obtained by irace with algorithm selection techniques
that help to find the right configuration for each class of instances.

If finding a good configuration for all the instances is the objective, then we recommend to
always sample the instances initially (option sampleInstances) unless you provide an instance
order that does not bias the search. For example, assume you have an scenario that has two
kinds of instances, if the ten first instances belong to only one class, the search will be biased to
obtain configurations that are good for those instances. The best order in this case would be to
intercalate different types of instances to avoid bias.

Another advice is to increase the number of instances executed per iteration, as an het-
erogeneous scenario will need to gather more information about the different instances before
discarding configurations. Use the option elitistInstances (default value is 1) when the elitist
irace version (option elitist) is used to increase the number of new instances executed in each
iteration (e.g.,–elitist-instances 5). When using the non elitist irace version you can indirectly
increase the number of instances by increasing the firstTest (default is 5) option (e.g.,–first-test
10).

When executing irace you can analyze the homogeneity of the scenario by observing the
results of the Kendall W and Spearman’s rho in the text output of irace. See Section 9.1 for
more information.

10.5 Choosing the statistical test

The statistical test identifies statistically bad performing configurations that irace can discard
from the race in order to save budget. The criterion that is used to assess the quality of the
configurations might have an effect on the tuning results.

irace provides two kinds of statistical tests. Both test have different characteristics that could
be beneficial for certain scenarios:

• Friedman test (F-test): This test uses the ranking of the configurations to analyze the
difference between their performance. This makes the test suitable for scenarios where the
numerical results and their scale are not significant to assess the quality of the configu-
rations. For example, if the results for different instances have high numerical differences
and evaluating the performance of the configurations using the mean could be deceiving.
We recommend to use the F-test (default) when tuning for solution quality and whenever
the best performing algorithm must solve as well as possible all the instances.

39

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

• Student’s t-test (t-test): This test uses the mean performance of the configurations to
analyze the differences between the configurations. This makes the test suitable for sce-
narios where the differences between values obtained for different instances are relevant to
assess good configurations. We recommend using t-test when tuning for computation time,
whenever the obtained configurations must solve the instances in the best average time.

Using the option confidence, is possible to set the statistical significance of the test. In-
creasing the value of confidence leads to a more strict statistical test. Keep in mind that a
strict test will require more budget to identify which configurations perform worse. A less strict
test discards configurations quickly by requiring less data against them and therefore it has more
probability of discarding good configurations.

10.6 Complex parameters

Some parameters may have complex dependencies. We advice to always try to define the pa-
rameters in the way that is most suitable for the tuning objective. For example, when tuning a
branch and bound algorithm one may have the following parameters:

• branching (b): This parameter can take the values {0,1,2,3}, 0 indicates no branching
will be used and the rest are different types of branching.

• stabilization (s): This parameter can take the values {0,1,2,3,4,5,6,7,8,9,10}, of which
for b=0 only {0,1,2,3,4,5} are relevant.

In this case is not possible to describe the parameter space defining only two parameters for
irace. An extra parameter must be introduced as follows:

<name> <label> <type> <range> [| <condition>]

b "-b " c (0,1,2,3)

s1 "-s " c (0,1,2,3,4,5) | b == "0"

s2 "-s " c (0,1,2,3,4,5,6,7,8,9,10) | b != "0"

Parameters whose values depend on the value of other parameters also could be described
using extra parameters or changing the parameters and processing them in the targetRunner.
For example the following parameters:

• Population size (p): This parameter can take the integer values [1,100].

• Selection size (s): This parameter can take as maximum the population size, that is [1,p].

In this case is possible to describe the parameters p and s using surrogate parameters that
represent a percentage of original interval as described below.

<name> <label> <type> <range>

p "-p " r (0.0,1.0)

s "-s " r (0.0,1.0)

The parameter values must be processed in the targetRunner. For example, if the surrogate p
parameter is p=0.5, transforming p to the interval [1,100] we obtain that the final value is p=50.
Note that in this case more than one value of the surrogate parameter (e.g., p=0.501,p=0.502)
can result in the same final value. Parameter s has an interval that depends on the final value

40

of parameter p, the percentage s=0.3 must be calculated over the [1,50] interval, giving that
the final value for s is s=15.

More complex value dependencies could be also expressed by mixing extra parameters and
transformations. Keep in mind that the targetRunner can also process the parameters. You
can also split parameters and join them in the targetRunner, for example assume the following
parameters:

<name> <label> <type> <range>

m "-m " i (1,250)

e "-e " r (0.0,2.0)

These parameters could be part of one parameter that has a multiplier and an exponent that
has to be passed to your target algorithm as "--strength m · 10e". targetRunner can join the
extra parameters e and m and provide them in the correct format.

10.7 Unreliable target algorithms

There are some situations in which the target algorithm may fail to execute correctly. This could
be due to system problems or bugs for which no fix is available or fixing them is impossible
because there is no access to the source code.

The irace option targetRunnerRetries indicates the number of times a targetRunner exe-
cution is repeated if it fails. Use this option if you know new repetitions could be successful.

When the program consistently fails using a particular set of configurations and repeating
the execution will cause always the program to crash, you can use the forbiddenFile option to
specify the configurations that must be avoided. On the other hand, if you do not know which
configurations cause the problems, we advise you to handle this in the targetRunner script, when
the program crashes you can use a penalty evaluation (very big number for minimization) that
will allow irace to discard the configuration based on that result. Adjust the penalty according
to your objective and the results you consider appropriate, for example, if a configuration crashes
for an instance you might still consider it as a good configuration if it gives very good results for
other instances.

11 irace options

Most of the irace options can be specified by command line using a flag, by setting them in the
irace scenario file using the option name or by directly setting them in the scenario R object.
This section describes the irace options that can be specified by the user.

11.1 General options

scenarioFile flag: -s or --scenario default: ./scenario.txt
File that contains the scenario setup and other irace settings. All options listed in this
section can be included in this file. See $IRACE_HOME/templates/ for an example.

debugLevel flag: --debug-level default: 0
Level of information to display in the text output of irace. A value of 0 silences all debug
messages. Higher values provide more verbose debug messages. To see details about the
text output of irace, see Section 9.1.

41

seed flag: --seed default: NA
Seed to initiallize the random number generator. The seed must be a positive integer. If
the seed is NA a random seed will be used.

execDir flag: --exec-dir default: ./
Directory where the target algorithm executions will be performed. The default execDir is
the current directory.

irace will not attempt to create the execution directory so it must exist before calling irace.

logFile flag: -l or --log-file default: ./irace.Rdata
File to save tuning results as an R dataset. The provided path must be either an absolute
path or a relative to execDir. See Section 9.2 for details on the format of the R dataset.

11.2 Elitist irace

elitist flag: --elitist default: 1
Enable/disable elitist irace.

In the elitist irace version elite configurations cannot be discarded from the race until
the new configurations have executed the same instances as the elite configurations.

The race begins with a number of initial instances for which any configuration in race have
been executed. This number of instances can be defined with the option elitistInstances.
Once the new instances have been executed, the instances executed in previous iterations
are executed. Elite configurations have already results for most of these instances and
therefore do not need to be executed. Finally when the “previous instances” have all
finished to be executed, new instances are used.

The statistical tests can be performed at any moment during the race according to the
setting of the options firstTest and eachTest. The elitist rule forbids to discard elite
configurations, even if the show bad performance, until the last “previous instance” has
been executed.

The non-elitist irace version can discard the elite configurations from the race at any
time. Instances are not re-used from one iteration to another, but new instances are always
executed unless the deterministic option is active and all instances have already been
used.

elitistInstances flag: --elitist-instances default: 1
Number of new instances to add to the execution list before “previous instances” in elitist
irace.

If deterministic is TRUE then the number of elitistInstances will be reduced or set to
0 in case no more instances are available.

elitistLimit flag: --elitist-limit default: 2
Limit for the elitist race that specifies the number of statistical tests performed without
successful elimination. If it reaches elitistLimit, the race will be stopped. This limit has
effect after all “previous instances” have been executed. Use 0 to disable the limit.

42

11.3 Internal irace options

sampleInstances flag: --sample-instances default: 1
Enable/disable the sampling of the training instances. If the option sampleInstances is
disabled, the instances are used in the order provided in the trainInstancesFile or in
the order they are read from the trainInstancesDir whentrainInstancesFile is not
provided. For more information about training instances see Section 5.4.

nbIterations flag: --iterations default: 0
Number of iterations to be executed. By default irace calculates the number of iterations
based on the scenario as described as follows (Nparam is the number of non fixed parameters
to be tuned).

N iter = b2 + log2N
paramc (1)

We recommend to use the default value.

nbExperimentsPerIteration flag: --experiments-per-iteration default: 0
Number of experiments to execute per iteration. By default irace calculates the number
of experiments per iteration based on the scenario as follows, where Bj is the budget for
iteration j, B is the total tuning budget (maxExperiments), Bused is the used budget
and N iter is maximum between the planned number of iterations (nbIterations) and the
current iteration (j).

Bj =
(B −Bused)

(N iter − j + 1)
(2)

We recommend to use the default value.

nbConfigurations flag: --num-configurations default: 0
The number of configurations that should be sampled and evaluated at each iteration. By
default irace calculates the number of configurations per iteration based on the scenario
as follows, where Nj is the number of configurations that will be used in iteration j, Bj is
the budget for iteration j and µ is the irace option mu. We recommend to use the default
value.

Nj = b Bj

(µ+ min(5, j))
c (3)

mu flag: --mu default: 5
This value is used to determine the number of configurations to be sampled and evaluated
at each iteration.

minNbSurvival flag: --min-survival default: 0
The minimum number of configurations needed to continue the execution of an iteration.

softRestart flag: --soft-restart default: 1
Enable/disable the soft restart strategy that avoids premature convergence of the proba-
bilistic model. When a sampled configuration is highly similar to its parent configuration
the probabilistic model these configurations is soft restarted. The similarity of categorical
and ordered parameters is given by the hamming distance, the option softRestartThreshold

defines the similarity of numerical parameters.

softRestartThreshold flag: --soft-restart-threshold default: NA
Soft restart threshold value for numerical parameters. If NA, it is computed as 10−digits,
where digits corresponds to the irace option explained in this section.

43

11.4 Target algorithm parameters

parameterFile flag: -p or --param-file default: ./parameters.txt
File that contains the description of the parameters of the target algorithm. See Section 5.1.

digits flag: --digits default: 4
Number of decimal places to be considered for the real parameters.

forbiddenFile flag: --forbidden-file default:
File containing a list of logical expressions that cannot be true for any evaluated configu-
ration. If empty or NULL, no forbidden configurations are considered. See Section 5.6 for
more information.

11.5 Target algorithm execution

targetRunner flag: --target-runner default: ./target-runner
This option defines a script or an R function that launches the program to be tuned for a
particular experiment (configuration + instance). See Section 5.2 for details.

targetRunnerRetries flag: --target-runner-retries default: 0
Number of times to retry a call to targetRunner if the call failed.

targetRunnerData default: NULL
Optional data passed to targetRunner. This is ignored by the default targetRunner

function, but it may be used by custom targetRunner functions to pass persistent data
around.

targetRunnerParallel default: NULL
Optional R function to provide custom parallelization of targetRunner. See Section 6 for
more information.

targetEvaluator flag: --target-evaluator default: ""
Optional script or R function that evaluates an experiment (configuration + instance), that
is. The evaluation must consist of a numeric value. See Section 5.3 for details.

deterministic flag: --deterministic default: 0
Enable/disable deterministic algorithm mode. If the target algorithm is deterministic, con-
figurations will be evaluated only once per instance. See Section 5.4 for more information.

Note that if the number of instances provided is less than the value specified for the
option firstTest, no statistical test will be performed.

parallel flag: --parallel default: 0
Number of calls of the targetRunner to execute in parallel. A value of 0 means disabled.
For more information on parallelization see Section 6.

loadBalancing flag: --load-balancing default: 1
Enable/disable load-balancing when executing experiments in parallel. Load-balancing
makes better use of computing resources, but increases communication overhead. If this
overhead is large, disabling load-balancing may be faster. See Section 6.

44

mpi flag: --mpi default: 0
Enable/disable MPI. Use Rmpi to execute the targetRunner in parallel. When mpi is
enabled, the option parallel is the number of slaves. See Section 6.

sgeCluster flag: --sge-cluster default: 0
Enable/disable SGE cluster mode. Use qstat to wait for cluster jobs to finish (targetRunner
must invoke qsub). See Section 6.

11.6 Initial configurations

configurationsFile flag: --configurations-file default:
File containing a list of initial configurations. If empty or NULL, irace will not use initial
configurations. See Section 5.5.

The provided configurations must not violate the constraints described in parameterFile

and forbiddenFile.

11.7 Training instances

trainInstancesDir flag: --train-instances-dir default: ./Instances
Directory where tuning instances are located; either absolute path or relative to current
directory. See Section 5.4.

trainInstancesFile flag: --train-instances-file default:
File containing a list of instances and optionally additional parameters for them. See
Section 5.4.

If trainInstancesDir is specified the path contained in trainInstancesFile must be
relative to the directory. For having the absolute path or for defining instances that are
not files set trainInstancesDir="".

11.8 Tuning budget

maxExperiments flag: --max-experiments default: 0
The maximum number of runs (invocations of targetRunner) that will be performed. It
determines the maximum budget of experiments for the tuning. See Section 10.1.

maxTime flag: --max-time default: 0
The maximum time in seconds for the runs of targetRunner that will be performed. The
mean execution time is estimated to calculate the maximum number of experiments. When
this is used targetRunner must return the execution time as second output: < cost > <
time >. See Section 10.1.

budgetEstimation flag: --budget-estimation default: 0.02
The percentage of the budget used for estimating the mean execution time. Only used
when maxTime > 0. See Section 10.1.

45

11.9 Statistical test

testType flag: --test-type default: F-test
Specifies the statistical test type:

• F-test (Friedman test)

• t-test (pairwise t-tests with no correction)

• t-test-bonferroni (t-test with Bonferronís correction for multiple comparisons)

• t-test-holm (t-test with Holmś correction for multiple comparisons).

When selecting t-test we recommend to not use corrections for multiple comparisons. See
Section 10.5 to have more information about how to choose the statistical test.

firstTest flag: --first-test default: 5
Specifies how many instances are executed before the first elimination test.

The value of firstTest must be a multiple of eachTest.

eachTest flag: --each-test default: 1
Specifies how many instances are executed between elimination tests.

confidence flag: --confidence default: 0.95
Confidence level for the elimination test.

11.10 Recovery

recoveryFile flag: --recovery-file default: ""
Previously saved irace log file that should be used to recover the execution of irace, ei-
ther absolute path or relative to the current directory. If empty or NULL, recovery is not
performed. For more details about recovery see Section 11.10.

11.11 Testing

testNbElites flag: --test-num-elites default: 1
Number of elite configurations returned by irace that will be tested if test instances are
provided. For more information about the testing, see Section 7.

testIterationElites flag: --test-iteration-elites default: 0
Enable/disable testing the elite configurations found at each iteration.

testInstancesDir flag: --test-instance-dir default:
Directory where testing instances are located, either absolute or relative to the current
directory.

testInstancesFile flag: --test-instance-file default:
File containing a list of test instances and optionally additional parameters for them.

46

12 FAQ

12.1 Is irace minimizing or maximizing the output of my algorithm?

By default, irace considers that the value returned by targetRunner (or by targetEvaluator,
if used) should be minimized . In case of a maximization problem, one can simply multiply
the value by -1 before returning it to irace. This is done, for example, when maximizing the
hypervolume (see the last lines in $IRACE_HOME/examples/hypervolume/target-evaluator).

12.2 Is it possible to configure a MATLAB algorithm with irace?

Definitely. There are two main ways to achieve this:

1. Edit the targetRunner script to call MATLAB in a non-interactive way. See the MAT-
LAB documentation, or the following links3. You would need to pass the parameter re-
ceived by targetRunner to your MATLAB script: http://www.mathworks.nl/support/

solutions/en/data/1-1BS5S/?solution=1-1BS5S. There is a minimal example in:

$IRACE_HOME/examples/matlab/.

2. Call MATLAB code directly from R using the R.matlab package (http://cran.r-project.
org/package=R.matlab). This is a better option if you are experienced in R. Define
targetRunner as an R function instead of a path to a script. The function should call
your MATLAB code with appropriate parameters.

12.3 My program works perfectly on its own, but not when running
under irace. Is irace broken?

Every time this was reported, it was a difficult-to-reproduce bug in the program, not in irace.
We recommend that in targetRunner, you use valgrind to run your program. That is, if your
program is called like:

$EXE ${FIXED_PARAMS} -i $INSTANCE ${CONFIG_PARAMS} \
1> ${STDOUT} 2> ${STDERR}

then replace that line with:

valgrind --error-exitcode=1 $EXE ${FIXED_PARAMS} \
-i $INSTANCE ${CONFIG_PARAMS} 1> ${STDOUT} 2> ${STDERR}

If there are bugs in your program, they will appear in $STDERR, thus do not delete those files.

12.4 My program may be buggy and run into an infinite loop. Is it
possible to set a maximum timeout?

We are not aware of any way to achieve this using R. However, in GNU/Linux, it is easy to
implement by using the timeout command in targetRunner when invoking your program.

3http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab

http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-

stdout-before-exiting

47

http://www.mathworks.nl/support/solutions/en/data/1-1BS5S/?solution=1-1BS5S
http://www.mathworks.nl/support/solutions/en/data/1-1BS5S/?solution=1-1BS5S
http://cran.r-project.org/package=R.matlab
http://cran.r-project.org/package=R.matlab
http://stackoverflow.com/questions/1518072/suppress-start-message-of-matlab
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting
http://stackoverflow.com/questions/4611195/how-to-call-matlab-from-command-line-and-print-to-stdout-before-exiting

12.5 When using the mpi option, irace is aborted with an error message
indicating that a function is not defined. How to fix this?

Rmpi does not work the same way when called from within a package and when called from a
script or interactively. When irace creates the slave nodes, the slaves will load a copy of irace
automatically. If the slave nodes are on different machines, they must have irace installed. If
irace if not installed system-wide, R needs to be able to find irace on the slave nodes. This is
usually done by setting R LIBS, .libPaths() or by loading irace using library() or require()
with the argument “lib.loc”. The settings on the master are not applied to the slave nodes
automatically, thus the slave nodes may need their own settings. After spawning the slaves, it is
too late to modify those settings, thus modifying the shell variable R LIBS seems the only valid
way to tell the slaves where to find irace.

If the path is set correctly and the problem persists, please check follow these instructions:

1. Test that irace and Rmpi work: run irace on a single machine (submit node), without
calling qsub, mpirun or a similar wrapper around irace/R.

2. Test loading irace on the slave nodes. Note that qsub/mpirun may use a different mech-
anism than if you log into the node (e.g., with ssh). Thus, you need to write a little R
program such as:

library(Rmpi)

mpi.spawn.Rslaves(nslaves = 10)

x <- mpi.applyLB(1:10, function(x) {
library(irace)

return(path.package("irace")) })
print(x)

submit this program to the cluster (using qsub/mpirun) like you would submit irace.

3. Check bin/parallel-irace-mpi. The function irace main() creates an MPI job for our
cluster. You may need to speak with the admin of your cluster and ask them how to best
submit a job for MPI. There may be some particular settings that you need. Note also that
Rmpi usually creates some log files; irace does not create those files unless debugLevel >0.

Please contact us on the irace google group if you have further problems.

13 Resources and contact information

More information of the package can be found on the irace webpage:

http://iridia.ulb.ac.be/irace/.

For questions and suggestions please contact the development team through the irace package
Google group:

https://groups.google.com/d/forum/irace-package

or by sending an email to:

irace-package@googlegroups.com

48

http://iridia.ulb.ac.be/irace/
https://groups.google.com/d/forum/irace-package
mailto:irace-package@googlegroups.com

14 Acknowledgements

We would like to thank all the people that directly or indirectly have colaborated in the devel-
opment and improvement of irace.

• Prasanna Balaprakash

• Zhi (Eric) Yuan

• Franco Mascia

• Alberto Franzin

• Anthony Antoun

49

Appendix A R installation

This section gives a quick R installation guide that will work in most cases. The official instruc-
tions are available at http://cran.r-project.org/doc/manuals/r-release/R-admin.html

A.1 GNU/Linux

You should install R from your package manager. On a Debian/Ubuntu system it will be some-
thing like:

sudo apt-get install r-base

Once R is installed, you can launch R from the Terminal and from the R prompt install the
irace package (see Section 3.2).

A.2 OS X

You can install R directly from a CRAN mirror4. Alternatively, if you use homebrew, you can
just brew the R formula from the science tap (unfortunately it does not come already bottled so
you need to have Xcode5 installed to compile it):

brew tap homebrew/science

brew install r

Once R is installed, you can launch R from the Terminal (or from your Applications), and
from the R prompt install the irace package (see Section 3.2).

A.3 Windows

You can install R from a CRAN mirror6. We recommend that you install R on a filesystem path
without spaces, special characters or long names, such as C:\R. Once R is installed, you can
launch the R console and install the irace package from it (see Section 3.2).

Appendix B TargetRunner script check list

When the targetRunner script is not running properly it can be difficult to detect where the
problem is. The more your script provides descriptive errors, the easier it will be to debug it.
If you are using temporary files to redirect the output of your algorithm, check that these are
created properly. We recommend to follow the structure of the example file (target-runner)
provided in $IRACE_HOME/templates. The following examples are based on a file with that
characteristics.

When you have problems with the targetRunner, you will see an error on the irace output
that says that the execution of targetRunner was not successful.

Follow this list to detect where the problem is:

4Belgian CRAN mirror: http://cran.freestatistics.org/bin/macosx/
5Xcode download webpage: https://developer.apple.com/xcode/download/
6Belgian CRAN mirror: http://cran.freestatistics.org/bin/windows/

50

http://cran.r-project.org/doc/manuals/r-release/R-admin.html
http://cran.freestatistics.org/bin/macosx/
https://developer.apple.com/xcode/download/
http://cran.freestatistics.org/bin/windows/

1. Make sure that your targetRunner script is the specified location. If you see an error as:

Error: == irace == run program runner '~/tuning/target-runner' does not exist

irace is not finding the script file. Check that the file is in the path specified by the error.

2. Make sure that your targetRunner script is an executable if you see an error as:

Error: == irace == run program runner '~/tuning/target-runner' is a directory,not

a file

or

Error: == irace == run program runner '~/tuning/target-runner' is not executable

This error means that your targetRunner is not an executable file. In the first case, the script
is a folder and therefore there must be a problem with the name of the script. In the second
case, you must make the file executable, which in GNU/Linux can be done by:

cd ~/tuning/

chmod +x target-runner

3. Make sure that your executable is in the location described in the script (variable EXE for the
templates example). If you see an error as follows this is your problem:

Error: == irace == running command ''~/tuning/target-runner'

1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras

--localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37

--nnls 48 --dlb 0 --rasranks 15 2>&1' had status 1

== irace == The call to target.runner.default was:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp

--ras --localsearch 2 --alpha 4.03 --beta 1.89 --rho 0.02

--ants 37 --nnls 48 --dlb 0 --rasranks 15

== irace == The output was:

Tue May 3 19:00:37 UTC 2016: error: ~/bin/acotsp: not found

or not executable (pwd: ~/tuning/acotsp-arena)

For testing your script you can copy the line of execution and execute it directly in the command-
line. In this case, the line is:

~/tuning/target-runner 1 8 676651103 ~/tuning/Instances/1000-16.tsp --ras --localsearch

2 --alpha 4.03 --beta 1.89 --rho 0.02 --ants 37 --nnls 48 --dlb 0 --rasranks 15

This line executes the targetRunner script as irace does. The output of this script must be only
one number.

51

4. Check that your targetRunner script is actually returning one number as output. If you see an
error as the following, this is your problem:

Error: == irace == The output of '~/tuning/target-runner

1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras

--localsearch 1 --alpha 0.26 --beta 6.95 --rho 0.69

--ants 56 --nnls 10 --dlb 0 --rasranks 7' is not numeric!

== irace == The output was:

Solution: 24479793

For testing your script, copy the line of execution and execute it directly in the command-line:

~/tuning/target-runner 1 25 365157769 ~/tuning/Instances/1000-31.tsp --ras --localsearch

1 --alpha 0.26 --beta 6.95 --rho 0.69 --ants 56 --nnls 10 --dlb 0 --rasranks 7

This line executes the targetRunner script as irace does. The output of this script must be
only one number. In this example, the output of the script is “Solution: 24479793”, which
means that the regular expression used to obtain the result from the algorithm output file must
be checked.

5. Check that your targetRunner script is creating the output files for your algorithm. If you see
an error as:

== irace == The output was: Tue May 3 19:41:40 UTC 2016:

error: c1-9.stdout: No such file or directory

The output file of the execution of your algorithm has not been created (check permissions) or
has been deleted before the result can be read.

6. Other errors can produce the following output:

== irace == The output was: Tue May 3 19:49:06 UTC 2016:

error: c1-23.stdout: Output is not a number

This might be due that your targetRunner script is not executing your algorithm correctly. To
further investigate this issue comment the line that eliminates the temporary files where the
output of your algorithm is redirected:

rm -f "${STDOUT}" "${STDERR}"

Execute the targetRunner command-line the error provides and search in your execution direc-
tory the files that are created. Check the .stderr file for errors and the .stdout file to see the
output your algorithm produces.

52

Appendix C Glossary

1. Parameter tuning: Process of searching good settings for the parameters of an algorithm
under a particular tuning scenario (instances, execution time, etc.).

2. Scenario: Settings of a tuning scenario, these settings include the algorithm to be tuned
(target), budget for the execution of the target algorithm (execution time, evaluations,
iterations, etc.), set of problem instances and all the information that is required to perform
the tuning.

3. Target algorithm: algorithm whose parameters will be tuned.

4. Target parameter: parameter of the target algorithm that will be tuned.

5. irace option: configurable option of irace.

6. Elite configurations: best configurations found from whose probabilistic models new con-
figurations are sampled for the next iteration. All elite configurations are also included in
the next iteration.

53

	General information
	Background
	Version
	License

	Before starting
	Installation
	System requirements
	irace installation
	Install automatically within R
	Manual download and installation
	Local installation
	Testing the installation and invoking irace

	Running irace
	Step-by-step setup guide
	Set-up example for ACOTSP

	irace scenario
	Target algorithm parameters
	Parameter types
	Parameter domains
	Conditional parameters
	Parameter file format
	Parameters R format

	Target algorithm runner
	Target runner executable program
	Target runner R function

	Target evaluator
	Target evaluator R function
	Target evaluator executable program

	Training instances
	Initial configurations
	Forbidden configurations

	Parallelization
	Testing of configurations
	Recovering irace runs
	Output and results
	Text output
	Data file output
	Analysis of results

	Advanced topics
	Tuning budget
	Multi-Objective tuning
	Tuning computation time
	Heterogeneous scenarios
	Choosing the statistical test
	Complex parameters
	Unreliable target algorithms

	irace options
	General options
	Elitist irace
	Internal irace options
	Target algorithm parameters
	Target algorithm execution
	Initial configurations
	Training instances
	Tuning budget
	Statistical test
	Recovery
	Testing

	FAQ
	Is irace minimizing or maximizing the output of my algorithm?
	Is it possible to configure a MATLAB algorithm with irace?
	My program works perfectly on its own, but not when running under irace. Is irace broken?
	My program may be buggy and run into an infinite loop. Is it possible to set a maximum timeout?
	When using the mpi option, irace is aborted with an error message indicating that a function is not defined. How to fix this?

	Resources and contact information
	Acknowledgements
	Appendix R installation
	GNU/Linux
	OS X
	Windows

	Appendix TargetRunner script check list
	Appendix Glossary

