Swarm Intelligence Traveling Salesman Problem and Ant System

Leonardo Bezerra and Leslie Perez Caceres

IRIDIA – Université Libre de Bruxelles (ULB) Bruxelles, Belgium Iperez@iridia.ulb.ac.be Ibezerra@iridia.ul.ac.be

Outline

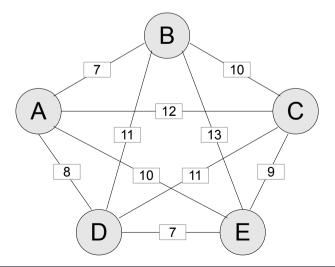
1. Travelling salesman problem

- Problem definition
- Examples
- 2. Ant System Algorithm
 - Description
 - Applied to TSP
- 3. Practical exercise

Traveling Salesman Problem Informal definition

 Given a set of customer cities, a salesman from his home town needs to find a shortest tour that takes him through all customers just once and then back home.

Traveling Salesman Problem (TSP)


Main reasons for choosing the TSP:

- It is a classical **combinatorial optimization problem**.
- It is **NP hard**.
- It is the problem to which the Ant System algorithm was first applied.
- Often used to test new algorithms and variants.

Traveling Salesman Problem Formal Definition

The TSP can be modeled as a Graph *G(N,A)* where:

- **N** is the set of nodes representing the cities
- A is the set of arcs
- Each arc is assign a cost value (length) **d**
 - d_{ij} is the arc cost, or the length from city *i* to city *j*

Traveling Salesman Problem Formal definition

Find a minimum length $f(\pi)$ Hamiltonian circuit of a graph G(N,A), where n is number of nodes and π is a permutation of the nodes indices.

$$f(\mathbf{\pi}) = \sum_{i=1}^{n-1} d_{\pi(i)\pi(i+1)} + d_{\pi(n)\pi(1)}$$

Traveling Tournament Problem First attempt to solve

- The **nearest neighborhood heuristic** is a simple greedy-type construction heuristic
 - It starts from a chosen city and always select the closest city that is not yet visited

- Initial city: C
- Closest city: A cost: 8
- Closest city: B cost: 7
- Closest city: D cost: 13
- Closest city: E cost: 7
- Return city cost: 9
 - Total: 44
- Lets see a more complex example

Traveling Tournament Problem First attempt to solve

- The nearest neighbour algorithm is easy to implement and executes quickly.
- Usually the last a few edges added are extremely large, due to the "greedy" nature.
- In some cases it even constructs the unique worst possible tour.
- How to generate a tour more intelligently?
 - Learn from the previous constructions!

Ant System

- Ant System is a basic ant behaviour based algorithm.
- Ants visit the cities sequentially till they obtain a tour.
- Transition from city *i* to *j* depends on:
 - Heuristic desirability to visit city *j* when in city *i*, associated to a static value based on the edge-cost (distance) η_{ij}
 - Pheromone that represents the learned desirability to visit city *i* when in city *j* associated to a dynamic value τ_{ii}

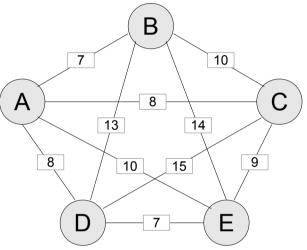
Ant System Stochastic Solution Construction

- Use memory to remember partial tours.
- Being at a city *i* choose next city *j* probabilistically among feasible neighbors.
- Probabilistic choice depends on:
 - pheromone trails $\boldsymbol{\tau}_{ii}$
 - heuristic information $\eta_{ii} = 1/d_{ii}$
- A common action choice rule at node *i* is:

$$p_{ij}^{k}(t) = [\mathbf{T}_{ij}(t)]^{\alpha} \cdot [\mathbf{\eta}_{ij}]^{\beta}$$

- Use pheromone evaporation to avoid unlimited increase of pheromone trails and allow forgetting of earlier choices
 - Pheromone evaporation rate $0 < \rho \leq 1$
- Use pheromone deposite to positive feedback, reinforcing components of good solutions
 - Better solutions give more feedback

Ant System Pheromone Update


• Example of pheromone update $\tau_{ij}(t) = (1-\rho) \cdot \tau(t-1) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}$

 $\Delta T_{ij}^{k} = \frac{1}{L_{k}}$, if arc(i, j) is used by ant k on its tour

- L_k : Tour length of ant k
- *m*: number of ants

Ant System Simple example

• For our example with #ants=3, α =1, β =5, ρ =0.5 and τ_0 =1

- Heuristic Information

$$\Delta \mathbf{T}_{ij}^{k} = \frac{1}{L_k}$$

nij	Α	В	С	D	E
Α	-	1/7	1/8	1/8	1/10
В	1/7	-	1/10	1/13	1/14
С	1/8	1/10	-	1/15	1/9
D	1/8	1/13	1/15	-	1/7
Е	1/10	1/14	1/9	1/7	-

- Pheromone trails

tij	Α	В	С	D	E
Α	-	1	1	1	1
В	1	-	1	1	1
С	1	1	-	1	1
D	1	1	1	-	1
E	1	1	1	1	-

Ant System Simple example

• For ant #1 we start from city **C** (random), selection probabilities

$p_{ii}^k(t) =$	$\left[\mathbf{ au}_{_{ij}}(t) ight]^{lpha} \cdot \left[\mathbf{ au}_{_{ij}} ight]^{eta}$
$p_{ij}(\iota) -$	$\sum \left[\boldsymbol{\tau}_{il}(t) \right]^{\alpha} \cdot \left[\boldsymbol{\eta}_{il} \right]^{\beta}$
	$l \in N_i^k$

pij	Α	В	С	D	Е
Α	-	0,2493	0,2454	0,2478	0,2502
В	0,2488	-	0,2472	0,2416	0,2530
С	0,2498	0,2520	-	0,2637	0,2493
D	0,2498	0,2439	0,2611	-	0,2475
E	0,2516	0,2548	0,2463	0,2469	_

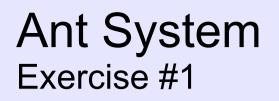
- Select a city \rightarrow rand 0.3747
 - City B selected

pij	Α	В	С	D	Е
Α	-	0,0000	0,0000	0,3366	0,3333
В	0,3317	-	0,0000	0,3281	0,3370
С	0,0000	0,0000	-	0,0000	0,0000
D	0,3329	0,0000	0,0000	-	0,3296
E	0,3354	0,0000	0,0000	0,3353	-

- Select a city \rightarrow rand 0.6216
 - City **D** selected

pij	Α	В	С	D	E
Α	-	0,0000	0,0000	0,0000	0,5028
В	0,0000	-	0,0000	0,0000	0,0000
С	0,0000	0,0000	-	0,0000	0,0000
D	0,4982	0,0000	0,0000	-	0,4972
Е	0,5018	0,0000	0,0000	0,0000	-

- Select a city \rightarrow rand 0.2033
 - City E selected


Ant System Simple example

- First iteration we can have:
 - Ant #1: C-B-D-E-A
 - Ant #2: D-A-C-B-E
 - Ant #2: A-C-B-D-E
- Update the pheromone using this tours

$$\mathbf{T}_{ij}(t) = [1 - \rho] \cdot \mathbf{T}(t - 1) + \sum_{k=1}^{m} \Delta \mathbf{T}_{ij}^{k}$$

tij	Α	В	С	D	E
Α	-	0,50	0,54	0,50	0,52
В	0,50	-	0,52	0,52	0,50
С	0,50	0,54	-	0,52	0,52
D	0,54	0,50	0,50	-	0,52
E	0,52	0,52	0,50	0,52	-

And then iterate

- Implement Ant System according to one of the provided templates.
 - C
 - Java

• The following slides give a practical view of the Ant System algorithm procedures.

Ant System Algorithm Solution Construction

1	Procedure ConstructSolutions
2	For $k = 1$ To m Do #m number of ants
3	For $i = 1$ To n Do # n number of cities
4	ant[k].visited[i] ← false
5	EndFor
6	EndFor
7	step ← 1
8	For $k = 1$ To m Do
9	$r \leftarrow random\{1, \ldots, n\}$
10	$ant[k].tour [step] \leftarrow r$
11	$ant[k]$.visited $[r] \leftarrow true$
12	EndFor

Ant System Algorithm Solution Construction

13	While (step < n) Do
14	step ← step + 1
15	For $k = 1$ To m Do
16	ASDecisionRule(k, step)
17	EndFor
18	EndWhile
19	For $k = 1$ To m Do
20	$ant[k].tour [n+1] \leftarrow ant[k].tour[1]$
21	$ant[k].tour length \leftarrow ComputeTourLength(k)$
22	EndFor
23	EndProcedure

Ant System Algorithm Decision Rule

1	Procedure ASDecisionRule(k, i)
2	Input k % ant identifier
3	Input i % counter for construction step
4	$c \leftarrow ant[k].tour[i-1]$
5	$sum_prob = 0.0$
6	For $j = 1$ To n Do
7	<pre>If ant[k].visited[j] Then</pre>
8	$selection_prob[j] \leftarrow 0.0$
9	Else
10	$selection_prob[j] \leftarrow choice_info[c][j]$
11	<pre>sum_prob</pre>
12	EndIf
13	EndFor

Ant System Algorithm Decision Rule

14	$r \leftarrow random[0, sum_prob]$
15	j ←1
16	p ← selection_prob[j]
17	While $(p < r)$ Do
18	j ← j + 1
19	$p \leftarrow p + selection_prob[j]$
20	EndWhile
21	ant[k].tour[i] ← j
22	$ant[k]$.visited[j] \leftarrow true
23	EndProcedure

Ant System Algorithm Pheromone Update

- 1 **Procedure** ASPheromoneUpdate
- 2 **Evaporate**
- 3 **For** k = 1 **To** *m* **Do**
- 4 **DepositPheromone**(k)
- 5 EndFor
- 6 *ComputeChoiceInformation*
- 7 EndProcedure

Ant System Algorithm Pheromone Update

1	Procedure Evaporate
2	For $i = 1$ To n Do
3	For j = i To n Do
4	pheromone[i][j]←(1-p)・pheromone[i][j]
5	pheromone[j][i]←pheromone[i][j]
	%pheromones are symmetric
6	EndFor
7	EndFor
8	EndProcedure

Ant System Algorithm Pheromone Update

1	Procedure DepositPheromone(k)
2	Input k % ant identifier
3	$\Delta \tau \leftarrow 1/ant[k].tour_length$
4	For $i = 1$ To n Do
5	$j \leftarrow ant[k].tour[i]$
6	$l \leftarrow ant[k].tour[i+1]$
7	$pheromone[j][l] \leftarrow pheromone[j][l]$
8	$pheromone[1][j] \leftarrow pheromone[j][1]$
9	EndFor
10	EndProcedure

+ Δτ

Ant System Algorithm Slides for download

- Slides are available at:
 - http://iridia.ulb.ac.be/~leonardo/teaching/INFO-H-414/lessons02-03.pdf
- Templates are available at:
 - http://iridia.ulb.ac.be/~leonardo/teaching/INFO-H-414/template_c.tar.gz
 - http://iridia.ulb.ac.be/~leonardo/teaching/INFO-H-414/template_java.tar.gz

Ant System Exercise #2

- Test and analyse the behaviour of the algorithm.
 - Modify some parameters:
 - Number of ants
 - α, β, ρ
- What effect can you appreciate?
- What is the reason?